Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

Содержание

основные элементы, их назначение, устройство и принцип работы

Автор Павел Александрович Белоусов На чтение 7 мин. Просмотров 186

Принципиальная задача системы смазки двигателя в разрезе десятилетий развития ДВС осталась неизменной – подача к трущимся элементам смазывающего и теплоотводящего материала. Но повсеместные ужесточения экологических норм заставляют конструкторов находить скрытые ресурсы для повешения КПД мотора и уменьшения вредных выбросов в атмосферу. Рассмотрим устройство системы смазки двигателя, их виды, принцип работы масляного насоса и редукционного клапана.

Схема циркуляции масла в двигателе

Моторное масло из поддона всасывается шестеренчатым насосом и подается к фильтру. Проходя через фильтрующий элемент, масло по каналам в блоке цилиндров и ГБЦ подается к шейкам коленчатого вала, кулачкам и постелям распределительного вала. Давление в системе смазки зависит от скорости вращения коленчатого вала.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация Минимальное давление развивается насосом на холостом ходу, а максимальное ограничивается редукционным клапаном.

Для контроля водителем исправности системы в блоке цилиндров, а иногда и в ГБЦ, вмонтирован датчик давления масла. На современных авто стрелочным указателем давления на приборной панели оборудуются лишь немногие спортивные автомобили. На большинстве авто их заменили индикатором низкого давления, который загорается лишь при падении напора в масляных магистралях.

Усложнение конструкции

На примере дизельного двигателя объемом 2,5 л от VW можно увидеть, насколько сложнее стала схема работы смазочной системы современного двигателя. Давайте рассмотрим предназначение каждого из элементов.

  • Двухступенчатый масляный насос шестеренчатого типа с внутренним зацеплением. Устанавливается в поддоне картера.
  • Клапан регулировки давления масла. С помощью электромагнитного клапана ECU (Engine Control Module) направляет масло в разные каналы, переключая тем самым режимы работы масляного насоса.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация При регулировании производительности учитывается нагрузка на двигатель, температура охлаждающей жидкости, обороты коленчатого вала и сигналы с АКПП. При подаче управляющего сигнала клапан открывается, пропуская масло в каналы первой ступени (давление в системе порядка 1,8 атмосфер). При отсутствии управляющей «массы» возвратная пружина возвращает клапан в исходное положение, изменяет направление протекания масла, поднимая давление в системе до 3,3-4 Атм.

Изменение производительности позволяет снизить механические потери, затрачиваемые на смазывание и охлаждение трущихся пар двигателя. Такое решение повышает общий КПД двигатели, уменьшая количество вредных выбросов.

  • Обратные клапаны в возвратных трубопроводах. Пропускают смазку только в одном направлении и предотвращают полный слив масла из каналов после остановки двигателя. Заполненные каналы позволяют избежать масляного голодания в первые секунды после запуска мотора.
  • Предохранительный клапан. Открывается при холодном запуске, когда в системе развивается чрезмерное давление.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация
  • Клапан малого контура циркуляции. Срабатывает при засорении фильтрующего элемента, открывая путь маслу в обход фильтра.
  • Масляный охладитель. Через корпус теплообменника циркулирует масло и охлаждающая жидкость.
  • Охладитель способствует поддержанию теплового баланса двигателя и препятствует перегреву масла.
  • Клапан масляной форсунки. Открывается при достижении в системе расчетного давления, открывая магистраль к форсункам.
  • Масляная форсунка. Разбрызгивает масло на днище поршня, отводя от него тепло.
  • Редукционный клапан. Срабатывает при достижении в системе чрезмерного давления, защищает ГБЦ от лишнего масла.

Масляный насос

Среди различных типов конструкции наибольшее распространение получили шестеренчатые и роторные масляные насосы. Устройство масляного насоса шестеренчатого типа с наружным зацеплением:

  1. Ведомая шестерня.
  2. Канал забора масла с поддона.
  3. Ведущая шестерня. Именно она посредством червячной, цепной или шестеренчатой передачи соединена с коленчатым валом двигателя.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация
  4. Приводной вал (в данном типе масляного насоса соединяет коленвал и ведущую шестерню).
  5. Канал нагнетания.
  6. Ось вращения ведущей шестерни.

При вращении шестерен масло всасывается из заборного канала и подается по каналам нагнетания к трущимся парам двигателя. Давление масла в системе смазки и производительность насоса напрямую связаны со скоростью вращения коленчатого вала. При превышении давления, достаточного для смазывания и отвода тепла трущихся элементов, лишняя смазка стравливается редукционном клапаном.   

В отличие от шестеренчатого насоса с наружным зацеплением, в помпах с внутренним зацеплением ведущая шестерня вращается внутри ведомой. Принцип работы смазочной системы с точки зрения нагнетания давления остается неизменным и схож с работой роторной помпы. Внутри корпуса устанавливается внешний и внутренний роторы. Вращение последнего приводит к всасыванию смазки и подаче ее под давлением в нагнетательный канал.

Редукционный клапан

Поскольку производительность нерегулируемых насосов напрямую зависит от количества оборотов двигателя, максимальное безопасное давление масла в системе смазки поддерживается редукционным клапаном.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация Он представляет собой запорный клапан, подпертый возвратной пружиной. Когда расчетное давление масла со стороны клапана преодолевает усилие пружины, клапан открывается, перепуская излишки масла обратно в поддон картера.

Двухступенчатые масляные насосы

Конструкцию двухступенчатого масляного насоса рассмотрим на примере агрегата роторного типа от автоконцерна VAG.

  1. Первая ступень работы определяется конструкторами, исходя из необходимого двигателю объема масла на всех режимах работы. Из полости нагнетания масло направляется в каналы двигателя и к подвижному ротору в месте его упора в регулировочную пластину. В таком режиме объем полости всасывания и, как следствие, количество прокачиваемого масла небольшое.
  2. Вторая ступень. При повышении оборотов двигателя возникает потребность в большем количестве смазки. Давление на подвижный ротор ослабевает. Теперь регулировочная пружина доворачивает статор на несколько градусов, изменяя положение ведомого ротора.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация Таким образом увеличивается объем полости всасывания и количество прокачиваемой смазки.

В двигателях FSI Audi объемом 2,8 и 3,2 литра переход с первой на вторую ступень происходит на оборотах коленвала свыше 4600. Благодаря двухступенчатым помпам конструкторам удалось на 1/3 снизить расход топлива.

Клапан N428

Клапан управления масляного насоса N428 предназначен для регулировки давления на управляющий поршень. В зависимости от давления на поршень, изменяется положение статора и объем камеры всасывания. Часть масла из полости нагнетания всегда подается в управляющую магистраль к клапану N428. По команде блока управления двигателя на клапан подается питание, масло подается к управляющему поршню. По своему устройству N428 представляет собой электроуправляемый гидравлический 3/2 ходовой клапан.

Отличие мокрого картера от сухого

Выше нами рассмотрен исключительно мокрый картер, когда основной объем системы смазки двигателя находится в поддоне и забирается оттуда масляным насосом.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

На схеме представлены детали и приборы системы смазки мотора с сухим картером. Основное отличие в том, что поддон двигателя не используется для хранения масла. Весь стекший туда смазывающий материал откачивается специальным насосом и подается в отдельный бак. Оттуда давление в масляной системе создается уже при помощи нагнетающей помпы. Такая система смазки двигателя применяется на автомобилях повышенной проходимости и гоночных болидах. Основные преимущества:

  • уменьшается высота поддона, что позволяет установить мотор ниже. Снижение центра масс улучшает курсовую устойчивость и управляемость автомобиля;
  • сухой картер исключает масляное голодание при движении авто в больших продольных и поперечных углах, что актуально для внедорожников на пересеченной местности;
  • исключено масляное голодание вследствие отлива смазки (перетекания из одной части в другую) при длительном движении автомобиля в дуге, что актуально для кольцевых автогонок и соревнований по дрифту;
  • моторное масло лучше охлаждается.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

Но не лишена система и недостатков, так как усложнение системы снижает надежность и увеличивает массу автомобиля.

Видео: Система смазки двигателя внутреннего сгорания (ДВС) в 3D. Как работает?

Неполадки в системе смазки

  • механический износ деталей масляного насоса. Происходит вследствие несвоевременной замены масла, фильтрующего элемента. При износе в зоне всасывания не создается достаточное разряжение, из-за чего падает производительность помпы;
  • коксование и засорение посторонними предметами маслоприемника. Случается при несвоевременной замене масла, разрушении пластиковых элементов натяжительных и успокоительных башмаков;
  • подвисание редукционного клапана;
  • электрическая неисправность или проблемы с проводкой клапана управления двухступенчатым насосом;
  • выход из строя датчика давления масла, из-за чего на приборной панели загорается сигнальная лампа низкого давления;
  • заклинивание обратного клапана в возвратных магистралях;
  • поломка указателя давления масла;
  • заклинивание масляного термостата, применяющегося для более быстрого прогрева смазки.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

Современная смазочная система состоит из множества механических и электронных компонентов, ввиду чего надежность ее значительно снизилась. Поэтому крайне важно следить за соблюдением сервисных интервалов, качеством фильтров и моторного масла.

Система смазки двигателя - устройство, принцип работы, схема системы, фото и видео

Система смазки двигателя или, как многим она известна, смазочная система, необходима для снижения трения между соприкасающимися деталями силового агрегата, читаем статью устройство двигателя внутреннего сгорания. Кроме выполнения своей главной функции смазочная система также обеспечивает:

  • защиту всех деталей двигателя от возникновения коррозии;
  • охлаждение двигателя и его деталей;
  • вывод продуктов износа и нагара.

Устройство системы смазки двигателя.

Поддон картера.

Данная деталь предназначена для размещения масла. Обычно уровень содержания масла контролируется при помощи датчика показывающего температуру и уровень масла, а также с использованием специального щупа.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

Насос для масла.

Необходим для подачи масла из поддона в систему. Данный агрегат осуществляет свою работу при помощи распределительного вала, вала двигателя (коленвала) либо при использовании проводного дополнительного вала. В большинстве случаев на двигателях современных автомобилей используются насосы шестеренного типа.

Фильтр масляный.

Предназначен для производства очистки поступающего масла от продуктов нагара и износа. Процесс очистки происходит при помощи использования элемента фильтрации, который нужно заменять при замене масла.

Масляный радиатор.

Отвечает за охлаждение масла. А происходит это при помощи патока специальной охлаждающей жидкости, поступающей из охлаждающей системы.

Датчик, измеряющий давление.

В такой конструкции используется для контроля за давлением масла. Он расположен в масляной магистрали. Электросигнал поступает от него на приборную панель к контрольной лампе. На современных авто также устанавливают указатель масляного давления.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация И вместе с ним может устанавливаться температурный датчик масла.

Перепускные (редукционные) клапана.

Нужны для постоянного поддержания давления во всей системе. Обычно клапана ставят непосредственно в системные элементы: масляный фильтр, масляный насос.

Схема системы смазки двигателя.

Работа системы смазки двигателя.

В двигателях автомобилей выпускающихся в настоящее время производители используют комбинированную смазочную систему, в которой смазывание одних деталей происходит при помощи самотека или разбрызгивания, а других деталей под давлением.

Смазочный процесс двигателя происходит циклически: во время работы мотора происходит закачка в систему масла при помощи масляного насоса. Под давлением масло попадает в масляной фильтр, где оно и проходит очистку от различных механических примесей. После чего по специальным каналам масло перетекает к шатунным и коренным подшипникам (шейкам) коленчатого вала, на верхнюю опору шатуна, к опорам распредвала для смазывания поршневого пальца.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

Масло при помощи форсунок или через специальное отверстие в опоре шатуна подается к цилиндру на его рабочую поверхность. А все оставшиеся механизмы двигателя смазываются при помощи разбрызгивания. Та часть масла, которая проходит через промежутки между соединениями, разбрызгивается при помощи движущихся частей газораспределительного и кривошипно-шатунного механизмов. При этом появляется маслянистый туман, при оседании которого производится смазывание деталей двигателя. Под действием сил тяготения масло перетекает обратно в поддон, и смазочный цикл вновь повторяется по вышеуказанному кругу.

В автомобилях спортивного класса обычно устанавливается система смазки двигателя с сухим картером. Особенность работы такой конструкции заключается в том, что масло находится в специальном баке, в который оно закачивается из кратера движка специальным насосом. Благодаря этому картер постоянно остается пустым – оттуда и название «с сухим картером». Данная конструкция применяется для обеспечения бесперебойной работы системы смазки двигателя в любом режиме и в любом положении маслозаборника, а также объема масла в картере.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

Видео

/p

Рекомендую прочитать:

Система смазки двигателя: основные элементы, их назначение, устройство и принцип работы

Принципиальная задача системы смазки двигателя в разрезе десятилетий развития ДВС осталась неизменной – подача к трущимся элементам смазывающего и теплоотводящего материала. Но повсеместные ужесточения экологических норм заставляют конструкторов находить скрытые ресурсы для повешения КПД мотора и уменьшения вредных выбросов в атмосферу.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация Рассмотрим устройство системы смазки двигателя, их виды, принцип работы масляного насоса и редукционного клапана.

Схема циркуляции масла в двигателе

Моторное масло из поддона всасывается шестеренчатым насосом и подается к фильтру. Проходя через фильтрующий элемент, масло по каналам в блоке цилиндров и ГБЦ подается к шейкам коленчатого вала, кулачкам и постелям распределительного вала. Давление в системе смазки зависит от скорости вращения коленчатого вала. Минимальное давление развивается насосом на холостом ходу, а максимальное ограничивается редукционным клапаном.

Для контроля водителем исправности системы в блоке цилиндров, а иногда и в ГБЦ, вмонтирован датчик давления масла. На современных авто стрелочным указателем давления на приборной панели оборудуются лишь немногие спортивные автомобили. На большинстве авто их заменили индикатором низкого давления, который загорается лишь при падении напора в масляных магистралях.

Усложнение конструкции

На примере дизельного двигателя объемом 2,5 л от VW можно увидеть, насколько сложнее стала схема работы смазочной системы современного двигателя.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация Давайте рассмотрим предназначение каждого из элементов.

  • Двухступенчатый масляный насос шестеренчатого типа с внутренним зацеплением. Устанавливается в поддоне картера.
  • Клапан регулировки давления масла. С помощью электромагнитного клапана ECU (Engine Control Module) направляет масло в разные каналы, переключая тем самым режимы работы масляного насоса. При регулировании производительности учитывается нагрузка на двигатель, температура охлаждающей жидкости, обороты коленчатого вала и сигналы с АКПП. При подаче управляющего сигнала клапан открывается, пропуская масло в каналы первой ступени (давление в системе порядка 1,8 атмосфер). При отсутствии управляющей «массы» возвратная пружина возвращает клапан в исходное положение, изменяет направление протекания масла, поднимая давление в системе до 3,3-4 Атм.

Изменение производительности позволяет снизить механические потери, затрачиваемые на смазывание и охлаждение трущихся пар двигателя. Такое решение повышает общий КПД двигатели, уменьшая количество вредных выбросов.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

  • Обратные клапаны в возвратных трубопроводах. Пропускают смазку только в одном направлении и предотвращают полный слив масла из каналов после остановки двигателя. Заполненные каналы позволяют избежать масляного голодания в первые секунды после запуска мотора.
  • Предохранительный клапан. Открывается при холодном запуске, когда в системе развивается чрезмерное давление.
  • Клапан малого контура циркуляции. Срабатывает при засорении фильтрующего элемента, открывая путь маслу в обход фильтра.
  • Масляный охладитель. Через корпус теплообменника циркулирует масло и охлаждающая жидкость.
  • Охладитель способствует поддержанию теплового баланса двигателя и препятствует перегреву масла.
  • Клапан масляной форсунки. Открывается при достижении в системе расчетного давления, открывая магистраль к форсункам.
  • Масляная форсунка. Разбрызгивает масло на днище поршня, отводя от него тепло.
  • Редукционный клапан. Срабатывает при достижении в системе чрезмерного давления, защищает ГБЦ от лишнего масла.Система смазки двс принцип работы: Система смазки двигателя. Назначение, принцип работы, эксплуатация

Масляный насос

Среди различных типов конструкции наибольшее распространение получили шестеренчатые и роторные масляные насосы. Устройство масляного насоса шестеренчатого типа с наружным зацеплением:

  1. Ведомая шестерня.
  2. Канал забора масла с поддона.
  3. Ведущая шестерня. Именно она посредством червячной, цепной или шестеренчатой передачи соединена с коленчатым валом двигателя.
  4. Приводной вал (в данном типе масляного насоса соединяет коленвал и ведущую шестерню).
  5. Канал нагнетания.
  6. Ось вращения ведущей шестерни.

При вращении шестерен масло всасывается из заборного канала и подается по каналам нагнетания к трущимся парам двигателя. Давление масла в системе смазки и производительность насоса напрямую связаны со скоростью вращения коленчатого вала. При превышении давления, достаточного для смазывания и отвода тепла трущихся элементов, лишняя смазка стравливается редукционном клапаном.

В отличие от шестеренчатого насоса с наружным зацеплением, в помпах с внутренним зацеплением ведущая шестерня вращается внутри ведомой. Принцип работы смазочной системы с точки зрения нагнетания давления остается неизменным и схож с работой роторной помпы. Внутри корпуса устанавливается внешний и внутренний роторы. Вращение последнего приводит к всасыванию смазки и подаче ее под давлением в нагнетательный канал.

Редукционный клапан

Поскольку производительность нерегулируемых насосов напрямую зависит от количества оборотов двигателя, максимальное безопасное давление масла в системе смазки поддерживается редукционным клапаном. Он представляет собой запорный клапан, подпертый возвратной пружиной. Когда расчетное давление масла со стороны клапана преодолевает усилие пружины, клапан открывается, перепуская излишки масла обратно в поддон картера.

Двухступенчатые масляные насосы

Конструкцию двухступенчатого масляного насоса рассмотрим на примере агрегата роторного типа от автоконцерна VAG.

  1. Первая ступень работы определяется конструкторами, исходя из необходимого двигателю объема масла на всех режимах работы. Из полости нагнетания масло направляется в каналы двигателя и к подвижному ротору в месте его упора в регулировочную пластину. В таком режиме объем полости всасывания и, как следствие, количество прокачиваемого масла небольшое.
  2. Вторая ступень. При повышении оборотов двигателя возникает потребность в большем количестве смазки. Давление на подвижный ротор ослабевает. Теперь регулировочная пружина доворачивает статор на несколько градусов, изменяя положение ведомого ротора. Таким образом увеличивается объем полости всасывания и количество прокачиваемой смазки.

В двигателях FSI Audi объемом 2,8 и 3,2 литра переход с первой на вторую ступень происходит на оборотах коленвала свыше 4600. Благодаря двухступенчатым помпам конструкторам удалось на 1/3 снизить расход топлива.

Клапан N428

Клапан управления масляного насоса N428 предназначен для регулировки давления на управляющий поршень. В зависимости от давления на поршень, изменяется положение статора и объем камеры всасывания. Часть масла из полости нагнетания всегда подается в управляющую магистраль к клапану N428. По команде блока управления двигателя на клапан подается питание, масло подается к управляющему поршню. По своему устройству N428 представляет собой электроуправляемый гидравлический 3/2 ходовой клапан.

Отличие мокрого картера от сухого

Выше нами рассмотрен исключительно мокрый картер, когда основной объем системы смазки двигателя находится в поддоне и забирается оттуда масляным насосом.

На схеме представлены детали и приборы системы смазки мотора с сухим картером. Основное отличие в том, что поддон двигателя не используется для хранения масла. Весь стекший туда смазывающий материал откачивается специальным насосом и подается в отдельный бак. Оттуда давление в масляной системе создается уже при помощи нагнетающей помпы. Такая система смазки двигателя применяется на автомобилях повышенной проходимости и гоночных болидах. Основные преимущества:

  • уменьшается высота поддона, что позволяет установить мотор ниже. Снижение центра масс улучшает курсовую устойчивость и управляемость автомобиля;
  • сухой картер исключает масляное голодание при движении авто в больших продольных и поперечных углах, что актуально для внедорожников на пересеченной местности;
  • исключено масляное голодание вследствие отлива смазки (перетекания из одной части в другую) при длительном движении автомобиля в дуге, что актуально для кольцевых автогонок и соревнований по дрифту;
  • моторное масло лучше охлаждается.

Но не лишена система и недостатков, так как усложнение системы снижает надежность и увеличивает массу автомобиля.

Видео: Система смазки двигателя внутреннего сгорания (ДВС) в 3D. Как работает?

Неполадки в системе смазки

  • механический износ деталей масляного насоса. Происходит вследствие несвоевременной замены масла, фильтрующего элемента. При износе в зоне всасывания не создается достаточное разряжение, из-за чего падает производительность помпы;
  • коксование и засорение посторонними предметами маслоприемника. Случается при несвоевременной замене масла, разрушении пластиковых элементов натяжительных и успокоительных башмаков;
  • подвисание редукционного клапана;
  • электрическая неисправность или проблемы с проводкой клапана управления двухступенчатым насосом;
  • выход из строя датчика давления масла, из-за чего на приборной панели загорается сигнальная лампа низкого давления;
  • заклинивание обратного клапана в возвратных магистралях;
  • поломка указателя давления масла;
  • заклинивание масляного термостата, применяющегося для более быстрого прогрева смазки.

Современная смазочная система состоит из множества механических и электронных компонентов, ввиду чего надежность ее значительно снизилась. Поэтому крайне важно следить за соблюдением сервисных интервалов, качеством фильтров и моторного масла.

Изучая устройство транспортного средства, применяемые в его работе технические жидкости и порядок проведения технического обслуживания, нельзя не затронуть особенности системы смазки. Система смазки автомобильного двигателя обеспечивает средству передвижения стабильность и эффективность в его ежедневной работе, поэтому очень важно разобраться в ее строении, изучить выполняемые ею функции и ознакомиться с принципом ее работы.

Назначение системы смазки и выполняемые функции

Двигатель внутреннего сгорания любого транспортного средства состоит из множества элементов, которые в процессе его работы весьма агрессивно взаимодействуют между собой. Ввиду их постоянного движения внутри установки возникает высокая сила трения, влекущая за собой большие мощностные потери и, как следствие, повышенное потребление топлива. Длительная работа «на сухую» может и вовсе привести к заклиниванию силового агрегата: усиленное взаимодействие деталей приведет к нагреванию их поверхностей и дальнейшему расширению; в результате, это уменьшит рабочие зазоры конструкции и приведет к их заполнению металлической стружкой, образовавшейся вследствие разрушения основных элементов.

Чтобы предотвратить это состояние и продлить срок полезного использования, двс оборудуется смазочной конструкцией, которая облегчает ход деталей, создавая вокруг элементов системы внутреннего сгорания прочную защитную пленку.

Таким образом, система смазки любого двухтактного или четырехтактного двигателя выполняет следующий ряд функций:

  1. Уменьшение силы трения между рабочими элементами;
  2. Охлаждение их поверхностей;
  3. Снижение рабочей температуры двигателя;
  4. Выведение металлической стружки и загрязняющих частиц за пределы рабочего пространства установки;
  5. Предотвращение скоротечного износа, разрушения и закоксовки деталей;
  6. Обеспечение требуемого давления рабочей жидкости для эффективной работы двс (изменение фаз газораспределительного механизма, регулировка гидравлическими компенсаторами рабочих зазоров клапанов).

Устройство системы смазки

Для чего предназначена данная система разобрались, теперь настало время изучить ее устройство. У каждого автомобиля – своя система смазки, поэтому ее конструктивные составляющие могут существенно отличаться друг от друга. Она может дополняться какими-то элементами, а может и вовсе не иметь нижеперечисленные компоненты, но, как правило, для современных систем характерно наличие следующих элементов:

  • Картер с поддоном. Поддон – это самая нижняя часть силовой установки. К картеру он прикрепляется при помощи болтов и уплотнительных прокладок и служит своего рода «хранилищем» для рабочей жидкости. В поддоне происходит ее охлаждение и «успокоение» — благодаря специальным перегородкам моторное масло перестает волноваться при движении транспортного средства по неровностям.
  • Фильтр. Фильтрующий элемент в системе смазки служит местом, куда рабочая жидкость «приносит» ухудшающий работу силовой установки мусор. Это может быть нагар, копоть, попавшая извне пыль, металлическая стружка и прочие загрязняющие вещества. После засорения фильтра, моторное масло начинает быстро терять свои свойства из-за чрезмерного количества грязевых частиц, что приводит к потере мощностных показателей всего автомобиля. Чтобы не допустить губительные для двс последствия, необходимо своевременно проводить замену рабочей жидкости и не забывать менять фильтрующие элементы.

  • Масляный насос. Без насоса работа механизма не была бы возможна: именно он создает требуемое давление внутри установки и «заставляет» рабочую жидкость воздействовать на механизмы. В автомобилях применяется два вида насосов – шестеренчатые и роторные. Первый вид агрегатов обеспечивает подачу масла с постоянным давлением, роторный – допускает изменение силы подачи. Внутри моторного отсека создается давление от 2 до 16 атмосфер.
  • Радиатор. Данный элемент системы смазки двигателя обеспечивает охлаждение моторного масла. Причем охлаждение может быть двух видов – жидкостное и воздушное.
  • Редукционные и перепускные клапаны. Эти элементы позволяют уменьшать давление, если его показатель превышает установленную норму. Устанавливаются данные элементы внутри силовой установки рядом с масляным насосом, фильтром и т.д. и активируются благодаря срабатыванию специальных датчиков. Например, при засорении фильтра перепускной клапан пускает рабочую жидкость в обход ему, чтобы не допустить остановку всего двигателя.
  • Датчики давления и температуры масла. Именно благодаря им бортовой компьютер узнает о работоспособности системы. Датчик давления устанавливается в центральной магистрали и осуществляет замер основного параметра. В случае отклонения его от нормы, на приборной панели автомобиля загорается индикатор.
  • Каналы смазки. Не трудно догадаться для чего используются данные элементы: они обеспечивают подачу моторной жидкости к взаимодействующим механизмам.
  • Главная магистраль. Осуществляет поступление масла от насоса к фильтру. Благодаря большому сечению магистраль сохраняет циркуляцию жидкости на нужном уровне. Также, благодаря магистрали осуществляется смазывание подшипников коленчатого вала.

В зависимости от конструктивных особенностей транспортного средства, современная смазочная установка может быть дополнена иными компонентами.

Виды систем смазок

Несмотря на то, что все приборы системы смазки выполняют одни и те же функции, она может быть трех видов:

  • система с разбрызгивающей подачей масла,
  • система с подачей жидкости под давлением,
  • комбинированная система.

Первый вид имеет достаточно простое устройство: здесь масло попадает на рабочие детали благодаря специальным черпакам, установленным на кривошипных головках шатунов. Захватываемая из поддона жидкость рассеивается по рабочей зоне в виде масляного тумана.

Второй вид системы подразумевает непрерывную подачу моторного масла на все элементы установки. Смазочный состав собирается в картере установки, а затем по специальным каналам подается на рабочий узел. После выполнения поставленных целей масло стекает в поддон картера. Если в первом типе системы отрегулировать количество масла не получается, то во втором такая регулировка вполне возможна. Несмотря на то, что система обеспечивает экономное и рациональное распределение технической жидкости, широкого распространения она не получила – слишком затратное и трудоемкое производство она предполагает.

Объединив технологии разбрызгивания и подачи масла под давлением, инженерам удалось создать комбинированный тип распределения смазки: на основные узлы конструкции, максимально подверженные износу, защитная жидкость подается под давлением, в то время, как остальная часть механизмов, эксплуатируемая в более спокойных условиях, орошается маслом путем разбрызгивания.

Комбинированная система предполагает применение мокрого и сухого картера. Под мокрым картером подразумевается его постоянное заполнение рабочей жидкостью. Простота и надежность принципа позволили ему получить массовое распространение: практически все стандартные автомобили оснащены подобной системой. Тем не менее, в ней присутствуют не совсем приятные недостатки: в случае попадания в картер воздуха или топливной смеси, масляный состав начинает пениться и терять смазочные свойства. В результате, двс остается без должного уровня защиты. Чтобы не допустить подобный неблагоприятный эффект, диагностика системы автомобиля на предмет ее разгерметизации должна проводиться регулярно.

Сухой картер обеспечивается благодаря наличию в силовой установке специального бачка, куда стекает вся отработанная жидкость. Здесь ее смешивание с воздухом и топливной смесью попросту невозможно. К преимуществам такой системы следует отнести стабильность ее работы в условиях прохождения транспортным средством препятствий с большим углом наклона. Принцип сухого картера применяется на гоночных, спортивных автомобилях и некоторых внедорожниках.

Принцип работы смазочной конструкции

Принцип работы системы смазки заключается в бесперебойной подаче рабочей жидкости ко всем элементам, подверженным механическому износу.

Схема работы смазочной системы выглядит следующим образом. Во время запуска силовой установки маслоприемник захватывает требуемое количество масла из поддона картера и направляет его в масляный насос. Насос в свою очередь задает жидкости силу и скорость, с которой она будет циклически циркулировать по системе. После насоса масло попадает в фильтр и проходит тщательное очищение. Как говорилось ранее, если данный элемент цепи загрязнен, то перепускной клапан пустит рабочую смазку в обход фильтрующего элемента. После него ГСМ направляется к подшипникам шатунов и коленвала, опорам и пальцам распредвала, к коромыслам привода клапанов. При наличии турбокомпрессора масло также распределяется на его вал.

Попадание рабочей смеси на внутренние стороны цилиндров рабочая смесь осуществляется посредством отверстий в головке шатуна. Здесь оно обеспечивает беспрепятственный ход маслосъемных и компрессорных колец, снижает износ стенок цилиндров. После смазывания элементов силовой установки отработанная жидкость возвращается обратно в поддон автомобиля, где под воздействием бесперебойно вращающегося кривошипно-шатунного механизма распыляется по остальным элементам системы.

Возможные неполадки в работе системы и способы их устранения

Некоторые моторные неполадки в системе смазки могут возникнуть неожиданно, даже если вы не так давно осуществляли ремонт автомобиля или проводили его техническое обслуживание. Перечислим основные проблемы и разберемся со способами их решения:

Вид неисправностиПричинаУстранение
Датчик давления масла не горит при включении зажигания1. Индикатор перегорел1. Замените лампочку датчика в приборной панели
2. Повреждение провода, окисление разъема2. Осмотрите место соединения и при необходимости произведите замену провода
3. Выход из строя датчика давления масла3. Замените датчик на новый
Индикатор давления масла горит на холостому ходу, при повышении оборотов отключаетсяНизкое давление масла из-за его перегрева. Система охлаждения работает неправильно«Погоняйте» автомобиль на повышенных оборотах в течение 15-20 минут, чтобы охладить двигатель; проведите диагностическое обследование работоспособности охлаждающей системы
Индикатор на приборной панели горит при повышенных оборотах мотораНеисправен редукционный клапанС помощью щупа проверьте уровень моторного масла в автомобиле, при необходимости замените редукционный клапан
Индикатор горит постоянно1. Слишком низкое количество масляной жидкости1. Проверьте уровень масла и долейте его при необходимости
2. Насос не работает, канал масляного насоса загрязнен2. Прочистите или замените насос
Большой расход маслаИзнос цилиндров, поршневых колец, маслосъемных колпачков, уплотнительных элементовПроизведите осмотр двигательной системы и устраните причину утечки

И напоследок

Система смазки двигательной установки защищает автомобиль от ежедневных перегревов и значительно повышает его ресурс. Поэтому важно держать ее в исправном состоянии. Для этого водитель должен своевременно проводить техническое обслуживание транспортного средства и устранять мелкие неисправности, которые в дальнейшем могут привести к дорогостоящему ремонту.

Система смазки ДВС

Система смазки ДВС предназначена для доставки нужного объема масляных жидкостей в зоны контакта соприкасающихся деталей. Основные функции смазочных материалов – это снижение износа узлов трения с минимальными энергетическими затратами.

Принцип действия

Масляная система автомобиля должна принудительно, под давлением, обеспечивать бесперебойную подачу смазочного материала к вращающимся элементам мотора. Давление поступающей смеси должно быть достаточным, чтобы обеспечить стабильное функционирование рабочих механизмов в узлах трения автомобиля.

Моторное масло снижает трение, возникающее между двумя подвижными объектами. Влияние трения можно снизить, если между движущимися плоскостями создать разделительную масляную пленку, которая защитит трущиеся детали от появления чрезмерных механических нагрузок. На величину и прочность защитного слоя влияет форма соприкасающихся деталей и санитарное состояние их поверхностей.

При соблюдении условий эксплуатации двигателя разделительный слой будет иметь достаточную плотность, чтобы предупредить непосредственный контакт поверхностей. Но в условиях экстремальных нагрузок, прочность и толщина пленки может снизиться, и детали начнут соприкасаться. Такие обстоятельства называют граничной смазкой.

Масло, имеющее нормативную вязкость, поможет снизить отрицательный эффект, и предотвратить износ конструкции. Кроме параметров вязкости на качество смазки влияет величина давления масляной жидкости и температурные параметры работы двигателя.

Показатели давления масла

Стандартную силу давления смазочных жидкостей возможно обеспечить только в случае достаточного объема масляной эмульсии в поддоне агрегата. Проверить уровень жидкости можно посредством металлического щупа, размещенного в направляющей трубке, возле блока цилиндров.

Давление смазки в системе регулируется датчиком, который в случае слабого напора отправляет сигналы электронному манометру, расположенному в салоне автомобиля. Устройство фиксирует и отражает на своей шкале существующую величину давления в системе. Рекомендуемые заводом изготовителем параметры – это 2–4 кг/см 2 .

Низкое давление смазки наблюдается в момент первого запуска и в случае работы мотора на холостом ходу, а высокое – при работе агрегата на повышенных оборотах. Недостаточная плотность смазочной жидкости не позволит сформировать в зонах контакта разделительную пленку, что может привести к интенсивному износу деталей.

Температура масла

Низкий или высокий температурный режим в любом случае отрицательно сказывается на защитных качествах масла. Холодное масло слишком густое. Это создает определенные трудности при перемещении эмульсии по каналам смазки. Перегретая смесь, наоборот, слишком жидкая для того, чтобы создать на трущихся поверхностях прочную разделительную пленку. Тонкий масляный слой или его отсутствие может привести к износу или поломке двигателя.

Автовладелец может своими силами рассчитать благоприятные термические условия для стабильной работы силового агрегата. Для этого нужно к температуре атмосферного воздуха добавить +60°C. В результате этой операции получаем среднее значение температуры, которое должен фиксировать датчик на приборной панели в салоне автомобиля.

Устройство системы смазки

Стабильная и бесперебойная подача масляной жидкости к трущимся поверхностям – основное условие, влияющее на долговечность двигателя. По принципу смазывания узлов трения, систему подачи смесей можно разделить на несколько способов:

  • принудительный;
  • разбрызгиванием;
  • комбинированный.

Принудительный способ заключается в доставке масляной жидкости в зоны контакта с помощью масляного насоса, под давлением. Смазка разбрызгиванием происходит посредством специальных форсунок, которые разделяют поток масла на мелкие капли. Капли, в форме масляного тумана, поступают в узлы трения и смазывают соприкасающиеся поверхности.

В современных автомобилях применяется комбинированная система смазки, которая совмещает в себе два предыдущих способа. Подшипники коленчатого и газораспределительного вала, стойки толкателей и коромысла ГРМ – смазываются принудительно. Остальные детали мотора обслуживаются методом разбрызгивания или самотеком.

Независимо от способа подачи смазочных материалов, системы смазки двигателя должны соответствовать следующим требованиям:

  1. Защищать элементы ДВС от преждевременного износа.
  2. Способствовать стабилизации теплового баланса мотора.
  3. Служить гидравлическим уплотнителем для компрессионных колец ЦПГ.
  4. Подавать частицы продуктов трения к фильтру, и выполнять надлежащую очистку загрязненного масла.
  5. Накапливать и удерживать твердые включения в картере двигателя до даты сервисного обслуживания.
  6. Проводить нейтрализацию вредных химических веществ, которые могут появляться в процессе сгорания топлива.
  7. Препятствовать коррозии и ржавлению металлических деталей.
  8. Обеспечивать необходимый объем смазочной жидкости для обслуживания газораспределительного механизма.

В зависимости от способа хранения рабочей жидкости в силовом агрегате, различают 2 вида смазочных систем:

  1. Мокрый картер. В этом случае масло хранится в нижней части мотора (в поддоне).
  2. Сухой картер. Здесь масляная жидкость заливается в отдельно стоящий бак-отстойник, устанавливаемый на некотором отдалении от корпуса агрегата.

Поддон предназначен для хранения и охлаждения масляной жидкости. Внутри картера находится металлическая, горизонтально расположенная перегородка, называемая успокоителем. Успокоитель служит для гашения колебаний масла во время движения автомобиля.

Кожух поддона крепится к нижней части двигателя через пробковый уплотнитель. Внизу корпуса, по центру, расположено сливное резьбовое отверстие со сливной пробкой.

Мокрый картер

Смазочная жидкость, продвигаясь через заливную горловину и сетчатый фильтровальный элемент, в верхней части клапанной крышки, поступает в картер мотора. Объем жидкости в поддоне проверяется металлическим щупом. В нижней части резервуара присутствует сливная пробка, в теле которой размещен магнитный фильтр, для вывода из загрязненного масла металлических включений. Внутри поддона, внизу, размещается маслоприемник.

Перекачивающее устройство (насос) подает жидкость в корпус фильтра тонкой очистки, а затем в масляную магистраль системы. Жидкость из масляной магистрали поступает в узлы трения, смазывает соприкасающиеся поверхности, и самотеком возвращается в картер двигателя.

Сухой картер

Система «сухой картер» применяется на автомобилях повышенной проходимости, кроссовых и спортивных моделях. Использование этой техники предусматривает экстремальные режимы вождения, подразумевающие скоростную езду по пересеченной местности, подъем и спуск на крутых склонах, участие в ралли и др.

Такие условия эксплуатации (подъем, спуск, резкие повороты и т.д.) могут вызвать осушение маслоприемника картера, и спровоцировать попадание воздуха в систему смазки. Такая манера езды может послужить причиной кратковременного прекращения подачи масла к подшипникам коленчатого вала, шатунным вкладышам и трущимся поверхностям ГРМ. Для стабилизации смазочного процесса при работе автомобиля в чрезвычайных ситуациях и предусмотрена схема подачи жидкости, называемая «сухой картер».

Емкость для содержания рабочей жидкости у такого типа моделей располагают в самом прохладном месте подкапотного пространства. Во избежание больших колебаний жидкости и ее вспенивания в момент раскачивания машины, в конструкции резервуара предусматривают успокоители смазки. Двигатели внутреннего сгорания при использовании схемы смазки «сухой картер» оборудуются, как минимум, двумя перекачивающими устройствами. Один механизм предназначен для забора смазки из поддона и подачи ее в накопительный резервуар, а второй – для подачи масла в контактные зоны мотора.

Приборы и оборудование

Все выпускаемые современной автомобильной промышленностью агрегаты оснащаются полно-поточной системой смазки. Ее структура, независимо от схемы подачи масла, предусматривает следующие приборы и механизмы:

  • картер;
  • маслоприемник;
  • масляная магистраль;
  • насос;
  • фильтр;
  • контроллер давления жидкости.

Работа масляного насоса

Все конструкционные разновидности перекачивающих устройств можно отнести к объемному типу механизмов. Привод помпы осуществляется при помощи зубчатой шестерни, расположенной на коленвале силового агрегата. Каждый оборот коленвала сопровождается подачей равного объема масляной жидкости.

При увеличении частоты оборотов привода – увеличивается количество поступающей в зоны контакта смазки, и повышается плотность в масляных магистралях системы. Перекачивающее оборудование, применяемое в современных моторах, делится на 2 типа – это насосы роторной и шестеренчатой конструкций с внутренней и внешней компоновкой зубьев.

Шестеренчатые модели с наружным зацепом включают в себя чугунный кожух, внутри которого плотно установлены две зубчатые детали. Ведущий орган насоса запрессован на центральном валу механизма. Центральный вал устройства в нижней части снабжен приводной шестерней, которая вступает в зацеп с такой же деталью на коленвалу мотора. С противоположных сторон кожуха находятся всасывающий и выпускной патрубки.

Поступающее во впускной патрубок масло, проходит по впадинам ведущего и ведомого органа механизма. При повороте рабочего вала устройства, выступы и впадины зубьев вступают в зацеп, и жидкость выдавливается из впадин в разгрузочную прорезь на стенках насоса. После этого, жидкость поднимается к выпускному патрубку, откуда перемещается в масляный канал силового агрегата.

Давление, выходящего из кожуха насоса масла, регулируется редукционным перепускным клапаном. Размещается устройство внутри емкости для содержания масляной смеси (поддон), в нижнем отделе блока цилиндров.

Структура перекачивающих устройств с внутренним зацепом рабочих органов состоит:

  • кожух;
  • ведомый элемент
  • ведущий;
  • редукционный клапан;
  • маслоприемник;
  • крышка корпуса.

Чугунный кожух механизма объединяет в себе две камеры – всасывающую и нагнетающую, разделенные небольшим выступом. Крепление ведущей шестерни предусматривается на рабочем валу устройства. В нижней части корпуса крепится маслоприемник с сеточкой. Крышку механизма изготавливают из алюминиевого композита. В крышке находится редукционный клапан с регулирующей пружиной.

При повороте шестерен друг относительно друга масляная жидкость из картера, через приемное устройство, доставляется в рабочую камеру насоса. Затем, при помощи ведомой шестерни жидкость подается в нагнетательный патрубок, откуда поступает в масляную магистраль. Если давление смазочного материала превысит допустимый уровень, срабатывает перепускной клапан и перенаправляет лишнюю смесь во всасывающую область механизма.

Роторный насос состоит из кожуха, внутри которого располагаются две детали – наружное кольцо в форме пятиконечной звезды и центральный вал с четырьмя овальными лопастями (ротор), установленный внутри кольца. За счет разного количества выступов на рабочих элементах насоса в корпусе механизма, во время вращения вала, создается разряжение, которое способствует всасыванию жидкости.

Выдавливание масла из корпуса происходит в момент захода лопасти ротора во впадину наружного кольца. Контроль выходного давления смазочной жидкости, как и в предыдущем варианте, выполняется редукционным клапаном.

В дополнение к масляным насосам в системе смазки предусмотрен маслоприемник, расположенный в нижней части картера двигателя. На входе в приспособление, для очистки масла, устанавливается металлическая сеточка. В зависимости от модели мотора устройства бывают двух видов – плавающие и свободные. Плавающие конструкции могут менять свое место расположения в зависимости от объема жидкости в картере.

Фильтр для масла

Во время работы мотора происходит загрязнение масла неорганическими взвесями, которые смазочные жидкости должны отводить от трущихся поверхностей и перемещать в поддон двигателя. При повторной подаче смазочного материала в систему смазки субстанции, с помощью фильтрующих элементов, очищают от ненужных включений.

Масляный фильтр устанавливают на напорной магистрали, после перекачивающего устройства. Такая компоновка прибора позволяет гарантировать качество масел, поступающих в рабочие секции двигателя.

Фильтры по принципу действия делятся на приборы тонкой и грубой очистки, а по конструкции внутренней части – на центробежные и щелевые. В щелевых механизмах качество очистки или фракция улавливаемых частиц зависит от величины зазора между рабочими элементами (поры, волокна, пластины).

Если фильтрация масляной жидкости выполняется через один слой материала, то такой способ называют поверхностным. В случае использования плотного фильтра, весь объем которого заполнен поролоном или пористым картоном – объемным.

Для защиты ДВС от пускового износа, и предотвращения риска работы мотора без смазки, фильтрующие элементы оборудуют дренажными клапанами, которые предупреждают самопроизвольный сток масла в поддон двигателя, в момент остановки силового агрегата.

Для грубой очистки масла в систему смазки устанавливают центрифуги. Фильтр состоит из неподвижного корпуса (статора), внутри которого находится подвижный элемент (ротор). Загрязненная смесь поступает в рабочую камеру через отверстия на центральном валу устройства.

При вращении ротора, находящаяся внутри смазка, с силой отбрасывается к стенкам статора, где твердые частицы прилипают к неподвижному кожуху, а очищенное масло, через отверстия в основании фильтра, стекает в поддон. Эффективность центробежного метода фильтрации масла зависит от скорости вращения ротора.

Масляные каналы

Смазочная жидкость с помощью насоса подается в фильтрующий элемент, из которого, под давлением, поступает в масляные каналы. Масляные каналы представляют собой горизонтально высверленные отверстия, которые пролегают по всей длине двигателя.

Системы смазки рядного агрегата оснащаются одной магистралью, V-образные модели – двумя.

Оборудованные в блоке цилиндров горизонтальные каналы способствуют быстрому поступлению смазочного материала к основным механизмам двигателя.

http://topmekhanik.ru/sistema-smazki-dvigatelya/

Система смазки двигателя: назначение, устройство, устранение неполадок


http://prem-motors.ru/sistema-smazki-dvs/

Образовательная платформа московских колледжей

Модуль

Устройство автомобилей

Занятие

Назначение, классификация, устройство и принцип действия жидкостной системы охлаждения и системы смазки ДВС

Материалы

Лекция «Назначение, классификация, устройство и принцип действия жидкостной системы охлаждения и системы смазки ДВС»

Скачать

Контроль знаний

Назначение, классификация, устройство и принцип действия жидкостной системы охлаждения и системы смазки ДВС

Система смазки


Система смазки автомобиля, также именуемая как смазочная система – одна из важнейших элементов современных двигателей внутреннего сгорания. Основная ее функция заключается в смазке элементов, подверженных трению в процессе работы. Кроме того, она также способствует более эффективному охлаждению, удалению продуктов сгорания и продлению срока жизни элементов двигателя, надежно защищает их коррозии.

К основным элементам смазочной системы относится: поддон картера двигателя с маслозаборником, специальный масляная помпа (насос), фильтр и радиатор масла. Каждый из этих элементов соединен между собой с помощью прочных трубок.

Поддон выполняет роль хранилища масла, уровень которого можно проверить с помощью специального щупа. Контроль за температурой масла осуществляется датчиками температуры и уровня.

Масляный насос осуществляет перекачку масла в системе. Он может работать от коленчатого вала двигателя, распредвала или от специального приводного вала. Чаще всего устанавливаются помпы шестеренного типа.


Функция масляного фильтра заключается в очистке масла от попадающего в него нагара и элементов износа рабочих элементов двигателя. Замену фильтра осуществляют одновременно с маслом двигателя.

В системе предусмотрен масляный радиатор, отвечающий за охлаждение масла. В нем циркулирует антифриз системы охлаждения.

Давление масла в системе контролируется при помощи специального датчика. Сигнал от него можно увидеть на специальном индикаторе, расположенном на приборной панели.

Если происходит критическое понижение давления – датчик может инициировать аварийное отключение двигателя.

Контроль за нормальными показателями давления осуществляется перепускными (редукционными) клапанами. Они расположены в рабочих органах системы, например в насосе.


Принцип работы смазочной системы

Во многих типах ДВС установлена система смазки комбинированного типа. В ней часть деталей смазывается путем нагнетания к ним масла под давлением, другие элементы смазываются разбрызгиванием.

Работа смазочной системы состоит из несколько последовательных, циклически повторяющихся этапов.

  1. Масляный насос перекачивает масло в систему, где оно под давлением перетекает в масляный фильтр. Там фильтруется от посторонних элементов, затем стекает к коренным и шатунным подшипникам (рейкам), опорам распредвала, к верхним опорам шатуна.
  2. Через расположенное в нижней части шатуна отверстие, масло равномерно наносится на рабочие площади цилиндров.
  3. Практически все остальные элементы двигателя смазываются путем разбрызгивания масла. Проникая через зазоры соединений, оно сталкивается с рабочими частями механизма газораспределения и кривошипно-шатунного механизма.
  4. Разбрызгиваясь на мелкие капельки, образуется масляный туман, который покрывает рабочие поверхности элементов двигателя.
  5. На заключительном этапе, масло стекает в картер поддона двигателя и процесс повторяется.


На современные спортивные машины устанавливаются моторы с системой смазки с сухим картером. В них, основная часть масла располагается в специальном бачке, куда нагнетается масляным насосом. Картер при этом остается «сухим». Данный тип смазочной системы выгодно отличается от традиционной тем, что вне зависимости от режима езды автомобиля и уровня наклона двигателя, масло всегда эффективно поступает к рабочим элементам системы.

Система смазки двигателя камаз 740 — Полезные статьи об автомобилях КАМАЗ

Система смазки двигателя КамАЗ 740 – это достаточно важный процесс, требующий особенной ответственности и внимания. В частности, необходимо соблюдать определенные правила, связанные с процедурой смазки. Качественную систему смазки двигателя КамАЗ проводят в Набережных Челнах.

Масло должно поступать к подшипникам внутри коленчатого вала из-за действия давления. Также осуществляется поступление масла к подшипникам, расположенным в распределительном валу, топливном насосном и компрессорном устройстве, втулках. Обязательно предусматривается масляная подача к сферическим штанговым опорам.

Смазываемые элементы

Система смазки двигателя камаз включает в себя сразу несколько элементов, которые подвергаются данной процедуре.

В частности, происходит смазка:

  • масляного насосного устройства,
  • масляного картера,
  • фильтров (не только центробежного, но и полнопоточного),
  • масляного радиатора,
  • масляных каналов внутри блока,
  • передней крышки,
  • внешнего маслопровода,
  • маслозаливной горловины,
  • клапанов, обеспечивающих нормальное функционирование системы,
  • контролирующих приборов.

Непосредственно из картера осуществляется подача масла в радиатор насосного устройства, работающего масла. Потом из нагнетающего элемента масло поступает в особенный элемент, очищающий масло. За очистку там оказывается ответственными пара фильтрующих элементов. Потом масло попадает в основную магистраль, а уже оттуда уходит к подшипникам внутри коленчатого вала. Также поступление масла осуществляется к штанговым наконечникам и втулкам.

Сборка двигателя камаз 740, кстати, должна осуществляться после смазки всех перечисленных элементов. Что касается шатунных подшипников, то к ним масло подходит по специальным отверстиям, расположенным внутри вала возле шейки. Когда масло снимается с цилиндровых стенок, происходит его отвод в устройство поршня и смазывается основание поршневого пальца.

Подача масла

Подача масла осуществляется под влиянием давления посредством каналов, расположенных на заднем покрытии двигательных цилиндров. После радиаторной решетки масло подается в устройство центробежного фильтра, оттуда – в радиатор и в устройство картера. Все другие части должны смазываться с помощью разбрызгивания или методики масляного тумана. Без таких процедур не должна проходить качественная сборка двигателя камаз.

Естественно, для качественной смазки необходимо знать устройство двигателя камаз и все тонкости проведения вышеуказанной процедуры.

Система смазки двигателя автомобиля. Состав и принцип работы

Конструкция двигателя внутреннего сгорания подразумевает наличие большого количества деталей, соприкасающихся друг с другом. Взаимодействие деталей посредством трения называется фрикциями, а сам процесс износа деталей имеет название фрикционный износ. Для того чтобы снизить фрикционный износ деталей двигателя, существует система смазки.

Состав системы

Система смазки может быть разной, в зависимости от типа двигателя. Для двигателя внутреннего сгорания используется комбинированная система смазки. Суть ее работы – разные детали смазываются по-разному, например, одни детали смазываются под давлением, а другие – распылением. Система смазки включает следующие компоненты:

Поддон картера.

Представляет собой емкость с моторным маслом, устанавливается на нижнюю часть блока цилиндров. Основной материал, из которого изготавливают поддон – алюминий или железо, а для того, чтобы в моторном масле не появлялась пена, монтируется специальный пеногаситель.

В современных автомобилях уровень масла контролируется при помощи датчиков, которые способны отключить двигатель при опасном снижении уровня моторного масла при условии, что датчик включен в систему управления двигателем.

Масляный насос.

Устройство, подающее моторное масло в систему смазки. В настоящее время устройство масляного насоса многообразно, но наиболее распространенным стал шестеренный масляный насос. Функционирует масляный насос при помощи цепной передачи вращающимся коленвалом.

Масляный фильтр.

Основная его задача – очищать моторное масло от ненужных примесей и продуктов, которые образуются в результате работы двигателя внутреннего сгорания. Находится масляный фильтр в непосредственной близости от масляного насоса. По конструкции представляет собой цилиндр, имеющий отверстия для забора грязного масла, а по краю или с противоположной стороны – отверстия для выхода отфильтрованного масла и последующего его поступления для смазывания деталей двигателя.

Внутри имеется перепускной клапан, поддерживающий давление масла в пределах требуемых показателей. Бывают масляные фильтры сменные, заменяемые при смене масла, и несменные, в которых необходимо менять лишь фильтрующую часть.

Указатель давления масла.

Установлен на панели приборов в салоне автомобиля, предупреждает об опасном снижении давления моторного масла.

Принцип работы циклический.

При старте двигателя моторное масло под давлением закачивается в систему масляным насосом, масляным фильтром очищается от инородных примесей, по распределительным каналам подается для смазки подшипников коленвала и поршневого кольца, а для смазывания цилиндров моторное масло подается при помощи специальных форсунок. Остальные детали двигателя, нуждающиеся в смазке, получают ее методом разбрызгивания газораспределительным механизмом. При разбрызгивании образуется «туман» из мельчайших частиц моторного масла, который оседает на деталях двигателя и смазывает их. Затем моторное масло стекает в поддон и цикл начинается снова.

Сухой картер

Бывает система смазки с сухим картером, в этом случае моторное масло находится в специальном баке, откуда закачивается насосом непосредственно в систему смазки. Такая система наиболее стабильна в самых разных режимах работы и не зависит от уровня моторного масла в баке. Применяется в основном на спортивных автомобилях.

Основы смазки двигателя

Смазка играет ключевую роль в продлении срока службы двигателя. Без масла двигатель очень быстро перегреется и заедает. Смазочные материалы помогают смягчить эту проблему и при правильном контроле и обслуживании могут продлить срок службы вашего двигателя.

С чего начинается смазка двигателя

Процесс смазки в двигателе внутреннего сгорания начинается в поддоне картера, обычно называемом масляным поддоном.Отсюда масло протягивается масляным насосом через сетчатый фильтр, удаляя более крупные загрязнения из массы жидкости. Затем масло проходит через масляный фильтр. Важно отметить, что не все фильтры работают одинаково.

Способность фильтра удалять частицы зависит от многих факторов, включая материал среды (размер пор, площадь поверхности и глубину фильтра), перепад давления в среде и скорость потока в среде. Масло перекачивается через каналы к различным компонентам двигателя, таким как кулачок, коренные подшипники, шток, поршни и т. Д.Затем сила тяжести вытягивает масло обратно на дно мотора, чтобы оно стекало обратно в поддон, и цикл повторяется.

Состав моторного масла

Чтобы в полной мере оценить влияние процесса смазки двигателя, вы должны понимать, как создаются масла. Все моторные масла состоят из двух компонентов: присадок и базового масла. Общий объем присадок в моторном масле может составлять от 20 до 30 процентов, в зависимости от марки, рецептуры и области применения. Эти добавки могут улучшать, подавлять или улучшать свойства базового масла.

Типичный пакет присадок в моторном масле будет включать детергент и диспергатор. Эти две добавки работают вместе, чтобы помочь избавить систему двигателя от отложений, вызванных сгоранием топлива и образующихся картерными газами. Диспергенты и детергенты - это мелкие частицы, которые имеют полярную головку и олеофильный хвост. Полярные головки притягиваются к загрязнениям в масле и окружают их, образуя структуру, называемую мицеллами.

Сажа - хороший пример отложений, которые контролируются детергентами и диспергаторами.Частицы сажи окружены частицами диспергатора, образуя мицеллы, и не позволяют им прикрепиться к металлическим поверхностям. В этом состоянии они перемещаются по масляной системе, пока не будут удалены фильтром.

Это также предотвращает процесс, известный как застывание. Во время застывания частицы сажи начинают накладываться друг на друга или превращаться в более крупные частицы. Более мелкие частицы сажи, которые могут проходить через компоненты, не нарушая пленку жидкости, могут застывать, образуя более крупные частицы, которые могут разрушить пленку и повредить поверхности.

В большинстве автомобильных двигателей используется всесезонное масло в той или иной форме. Этот тип масла имеет присадку, улучшающую индекс вязкости (VI). Типичный пример - 10W-30 или 5W-40. Эти улучшители ИВ представляют собой длинноцепочечные органические молекулы, которые меняют форму при изменении температуры окружающей среды.

В холодных условиях (запуск двигателя) эти молекулы прочно связаны. По мере нагрева масла они начинают вытягиваться. Это позволяет маслу легче течь при более низких температурах, но при этом сохранять приемлемую вязкость и, что более важно, смазочный слой в диапазоне рабочих температур.

Еще одна распространенная добавка - это противоизносная (AW) формула. Добавки AW имеют частицы, которые имеют форму, аналогичную детергентам и диспергаторам, но полярные головки этих молекул притягиваются к металлическим поверхностям. Прикрепившись к металлической поверхности, добавки AW образуют временный слой, который защищает находящиеся под ними поверхности от разрушения в граничных условиях. Диалкилдитиофосфат цинка (ZDDP) является распространенной формой этой добавки.

Нефть поломок

Моторные масла подвержены нескольким видам неисправностей.Загрязнение представляет собой серьезную проблему для двигателей. Загрязнения окружающей среды могут ускорить процесс окисления и вызвать преждевременное засорение фильтра. Загрязнение топлива может снизить вязкость масла, что приведет к возникновению граничных условий в движущихся частях двигателя. Загрязнение гликоля (антифриза) делает обратное, увеличивая вязкость, поэтому масло не течет в места, где требуется более жидкое масло. Перегрев и длительные интервалы замены масла также могут ускорить разложение масла и привести к его окислению и ухудшению смазывающих свойств.

Кроме того, сдвиг присадки может создать проблемы со смазкой двигателя. Со временем присадки, улучшающие ИВ, срезаются, снижая вязкость масла при рабочих температурах. AW и диспергаторы / детергенты ничем не отличаются. Они истощаются, а оставшиеся молекулы не столь эффективны. Затем необходима замена масла. Это может быть вызвано увеличенными интервалами замены и плохим обслуживанием.

Что касается двигателей, применяются те же принципы смазки.Смазочная пленка должна сохраняться для обеспечения надлежащих условий эксплуатации и максимального срока службы компонентов двигателя. Регулярная замена масла и поддержание необходимого уровня жидкости - ключ к общему здоровью и сроку службы двигателя.

(PDF) Тепловые аспекты проектирования систем смазки для двигателей внутреннего сгорания

ICTPM, Шанхай, 2000 16

8 ССЫЛКИ

[1] Andersson J., Пол Дж., Крус П. (1998), Дизайн целевых функций для оптимизации

многодоменных систем, Ежегодное зимнее собрание ASME, 15-20 ноября,

Анахайм, США

[2] Backé, W. , (1992), Servohydraulik, Umdruck zur Vorlesung, RWTH-Aachen,

Германия

[3] Барнс-Мосс, HW, (1975), Точка зрения конструктора, в двигателях пассажирских автомобилей,

Материалы конференции, Учреждение инженеров-механиков, Лондон, Великобритания

[4] Heywood, J.B. (1988), Основы двигателя внутреннего сгорания, McGraw Hill

[5] Hopsan (1991), Hopsan, Пакет моделирования, Руководство пользователя, Технический отчет

LITH-IKP-R-704, Div. жидкости и мех. Англ. Систем, департамент мех. Eng.,

Университет Линчёпинга, Швеция

[6] Янссон, А. (1994), Проектирование гидравлических систем - метод моделирования,

Диссертация, Университет Линчёпинга, Линчёпинг, Швеция

[7] Ланг, Орегон, (1966), Triebwerke schnellaufender Verbrennungsmotoren, Springer

Verlag

[8] Pohl, J., Крус, П., Палмберг, Ж. -О. (1999), Дизайн предохранительного клапана для системы смазки

двигателя внутреннего сгорания, 4. Международный симпозиум

по энергии жидкости, Токио

[9] Родермунд, Х. (1978), Berechnung der Temperaturabhängigkeit der Viskosität von

Mineralölen aus dem Viskositätsgrad, Schmiertechnik und Tribologie, vol 2

[10] Schilling, A., (1972), Automobile Engine Lubrication, Scientific Publication

[11] Sidders, J.А., Тилли, Д.Г., Чаппл, П.Дж. (1996), Прогнозирование теплогидравлических характеристик

в гидравлических системах, Journal of Systems and Control Engineering,

IMechE, UK

[12] Storck, K. (1998) , Анализ тепловых систем - теплопередача при формовании стекла и

Системы контроля температуры жидкости, Диссертация, Университет Линчёпинга, Линчёпинг,

Швеция

[13] Палмберг, Й.-О., (1988), Tryckstyrning, Report, Div. of Fluid and Mechanical

Engineering Systems, Университет Линчёпинга, Швеция

[14] Butenschön, H.-J., (1976), Das hydrodynamische Gleitlager endlicher Breite unter

instationärer Belastung, Диссертация, Технический университет Карлсруэ, Германия

ВЛИЯНИЕ РАБОТЫ ДВИГАТЕЛЯ НА СМАЗОЧНОЕ МАСЛО

Влияние работы двигателя на используемое в нем смазочное масло в значительной степени определяет способность масла поддерживать непрерывную смазку и, следовательно, двигатель работать эффективно. Работа двигателя оказывает на масло три основных эффекта: ( a ) полное разрушение части масла, ( b ) физические и химические изменения в масле и ( c ) загрязнение масла инородными телами.

Масло не изнашивается от трения, но разрушается в результате горения или разложения, вызванного воздействием высокой температуры сгорания топлива в цилиндрах или металлических частях камеры сгорания. Количество разрушенного таким образом зависит от ( a ) температур сгорания топлива, ( b ) температур металлических частей, ( c ) количества масла, подвергающегося этим температурам, ( d ) продолжительности времени такого воздействия. выдержка и ( e ) летучесть масла.

Количество масла, которое подвергается разрушающим температурам и, таким образом, расходуется, зависит от механического состояния двигателя, условий эксплуатации и вязкости масла. При разбрызгивании системы смазки цилиндров подается избыток масла, часть которого проходит над поршневыми кольцами и распространяется по верхним частям поршней, стенкам камеры сгорания и головкам клапанов, где оно постоянно подвергается воздействию пламени. горения и разрушается. Масло на стенках цилиндра частично покрывается юбками поршня и обновляется при каждом такте поршня, поэтому там происходит меньшее разрушение масла.Обычная практика использования масла высокой вязкости для уменьшения утечки через поршневые кольца, тем самым уменьшая расход масла, может легко зайти слишком далеко и привести к недостаточной смазке верхних стенок цилиндра и, как следствие, чрезмерному износу там. При работе двигателя со скоростью 1000 об / мин продолжительность рабочего такта составляет примерно 1/2000 мин. Или 1/33 сек., Во время которого может быть разрушена лишь небольшая часть масла на стенках цилиндра.

Смазочное масло должно быть преобразовано в газ, прежде чем оно может сгореть, поэтому его летучесть очень важна.Однако флэш-тест имеет небольшую ценность и может вводить в заблуждение при определении летучести, поскольку он не показывает летучесть всей массы. Прямогонные масла, состоящие из узкого диапазона фракций сырой нефти и имеющие прямую кривую перегонки, могут иметь немного более низкую температуру вспышки, чем смешанная нефть, но при этом содержать меньшее общее количество более летучих фракций, чем масло, имеющее более высокая температура воспламенения и, следовательно, будет иметь большую способность сопротивляться нагреванию.

Обычные изменения температуры не меняют вязкость масла навсегда, но удельная вязкость изменяется из-за относительно высокой температуры и загрязнения.Распределение масла по опорным поверхностям, способность масла поддерживать полное разделение поверхностей, внутреннее трение или сопротивление масла движению и эффективность масла в качестве поршневого уплотнения - все это функции его вязкости; поэтому важны изменения вязкости. Это вызвано постепенным расходом более легких фракций в результате окисления и крекинга, а также примесью воды, несгоревшего топлива, углерода, пыли и металлических частиц.

Избыточное количество топлива, использованного при запуске и прогреве холодного двигателя, является основной причиной разбавления топливом, загрязнение водой происходит из-за холодных поверхностей в картере, которые конденсируют водяной пар сгорания, пыль попадает в двигатель через карбюратор и сапун, а также металлические частицы быстрее всего изнашиваются с поверхностей подшипников при износе нового двигателя.Загрязнение топливом снижает вязкость масла, вода образует эмульсию, а с углеродом, пылью и металлическими частицами образует осадок. Все эти условия могут иметь пагубные последствия для двигателя.

Поршневой двигатель внутреннего сгорания - обзор

9.3.2 Компоненты двигателя

Поршневой двигатель внутреннего сгорания, используемый в подавляющем большинстве легковых автомобилей, значительно изменился за последнее столетие.Он содержит большое количество скользящих и роликовых контактов, все из которых рассеивают энергию и вызывают износ. Конструктору двигателя необходимо понимание трибологии, чтобы снизить эти эффекты до приемлемого уровня.

На рисунке 9.16 показана конструкция типичного четырехцилиндрового бензинового (бензинового) двигателя с прямым впрыском; базовая конструкция дизельного двигателя очень похожа. В стандартном четырехтактном цикле движение поршня вниз при такте всасывания втягивает воздух в цилиндр; в такте сжатия вверх воздух сжимается и смешивается с топливом, впрыскиваемым под высоким давлением; химическая реакция этой топливно-воздушной смеси, инициированная искрой в бензиновом двигателе или нагревом, вызванным сжатием в дизельном (воспламенении от сжатия), сопровождается расширением образовавшихся горячих продуктов сгорания, которые толкают поршень вниз в рабочий ход ; и в последующем восходящем такте выпуска продукты сгорания выбрасываются из цилиндра.Шатун соединяет поршень с коленчатым валом, так что, когда поршень совершает возвратно-поступательное движение в цилиндре, он заставляет коленчатый вал вращаться. Клапаны, скользящие по направляющим в головке блока цилиндров, контролируют впуск воздуха и выпуск выхлопных газов в нужных точках цикла; в этом примере есть два впускных клапана и два выпускных клапана на цилиндр. Клапаны открываются и закрываются за счет действия кулачков на одном или нескольких непрерывно вращающихся распределительных валах , которые воздействуют либо непосредственно на клапаны, либо опосредованно управляют ими через кулачковые толкатели и коромысла, вместе известные как клапанный механизм .Другие (но далеко не все) компоненты двигателя и его вспомогательного оборудования, через которые рассеивается энергия трения, включают роликовую цепь или зубчатый ремень, который приводит в действие распределительные валы, масляные, охлаждающие и топливные насосы, уплотнения, электрический генератор, насос гидроусилителя рулевого управления, компрессор кондиционера и соответствующие приводные ремни. Внутренние компоненты двигателя смазываются маслом, которое хранится в поддоне в нижней части двигателя и циркулирует в различных областях с помощью насоса. Как обсуждалось в разделе 4.3, автомобильная смазка с полным составом, используемая в двигателе, состоит из базового масла и нескольких присадок с различными функциями, обеспечивающих эффективное смазывание во всех трибологических контактах.

Рис. 9.16. Изображение в разрезе современного 4-цилиндрового бензинового (бензинового) двигателя с непосредственным впрыском топлива

(любезно предоставлено Daimler-Benz AG)

Преобладающий источник рассеяния энергии трения в двигателе (примерно половина всей энергии) связан с поршневым цилиндром контакт. Из оставшейся мощности, рассеиваемой за счет трения, примерно одна треть может быть отнесена на клапанный механизм, а две трети - на подшипники коленчатого вала.Как показано на рис. 9.17, зазор между поршнем и цилиндром закрыт набором из (обычно) трех колец, установленных в канавках поршня, которые прижимаются к отверстию цилиндра. Чтобы снизить расход смазочного материала, вызванный прохождением масла из картера двигателя (под поршнем) вверх мимо поршня в камеру сгорания, необходимо хорошее уплотнение, но тесный контакт имеет нежелательный эффект увеличения потерь на трение. Кольцо и геометрия канавки спроектированы таким образом, что высокое давление в камере сгорания создает дополнительную радиальную силу на два верхних кольца (известных как компрессионные кольца), увеличивая их контактное давление.Осевая нагрузка на шатун приводит к боковой нагрузке поршень-цилиндр, поскольку (почти для всего цикла) ось шатуна не параллельна оси цилиндра. Осевые нагрузки изменяются в зависимости от развиваемой мощности и частоты вращения двигателя, а также от положения в такте, при этом наибольшие силы возникают в ходе такта сгорания. Угол между осями шатуна и цилиндра также изменяется в зависимости от положения в ходе хода, причем наибольший угол приходится на середину хода; однако в середине хода поршня поршень также движется быстро, и смазка контакта кольцо-цилиндр может быть гидродинамической.В крайних точках хода, когда движение меняется на противоположное (так называемая верхняя мертвая точка и нижняя мертвая точка), скорость скольжения падает до нуля, и контакт подвергается смешанной смазке. Тогда толщина пленки может быть <0,2 мкм, что дает соотношение толщины пленки λ (см. Раздел 4.5) <1. Дополнительный скользящий контакт при гораздо более низком контактном давлении возникает между юбкой поршня и стенкой цилиндра, и здесь смазка гидродинамическая; есть также некоторый эффект сжатия пленки.

Рис. 9.17. Поршень в сборе и поршневое кольцо - контакты цилиндра

по Tung, S.C., McMillan, M.L., 2004. Обзор автомобильной трибологии текущих достижений и задач на будущее. Трибол. Int. 37, 517–536

Эффективная смазка, хорошее уплотнение и низкие потери на трение - все это желательно в контакте поршневое кольцо-цилиндр; пристальное внимание к геометрии колец и канавок, материалам всех компонентов и топографии поверхности отверстия (которая часто имеет диагональный рисунок канавок, образованный процессом хонингования на плато ) могут сыграть свою роль в повышении эффективности двигателя. и уменьшение износа.Типичные материалы для поршневых колец - серый чугун или чугун с шаровидным графитом для твердых колец, а также сталь для верхних компрессионных колец и маслосъемных колец. В некоторых случаях на них наносят покрытие, например гальваническое покрытие хромом или напыление молибдена пламенем для уменьшения износа. Гильзы цилиндров обычно изготавливаются из серого чугуна или алюминиевого сплава, в то время как сплав алюминия и кремния является наиболее распространенным материалом поршней.

В таблице 9.1 перечислены типичные трибологические параметры для бензинового двигателя, а на рис. 9.18 показана модифицированная кривая Стрибека, построенная в терминах отношения толщины пленки λ , которая указывает диапазон рабочих условий для различных компонентов двигателя.

Таблица 9.1. Типичные трибологические параметры для бензинового двигателя

Подшипник коленчатого вала Поршневое кольцо / гильза (верхнее компрессионное кольцо) Кулачок / толкатель
Минимальная толщина масляной пленки & lt; 1 мкм & lt; 0,2 мкм 0,1 мкм
Максимальная температура 180 ° C Канавка 200 ° C, гильза 120 ° C 150 ° C
Минимальная вязкость масла 2.5 мПа с 6,5 мПа с EHL
Максимальная скорость сдвига 10 8 с - 1 10 7 с - 1 - 1 - 1
Шероховатость поверхности композитного материала ( Ra ) 0,35 мкм 0,2 мкм 0,3 мкм
Максимальное давление 60 МПа 70 МПа типовая) 0.08 кВт на подшипник 0,15 кВт на кольцо 0,04 кВт на кулачок

данные Priest, M., Taylor, C.M., 2000. Трибология автомобильного двигателя - приближение к поверхности. Износ 241, 193–203

Рис. 9.18. Модифицированная диаграмма Стрибека, построенная в терминах отношения толщины пленки λ , показывающая типичные диапазоны режима смазки для различных компонентов двигателя

по Присту М., Тейлору К.М., 2000. Трибология автомобильного двигателя - приближение к поверхности.Износ 241, 193–203

Коленчатый вал поддерживается несколькими коренными подшипниками , а шатуны вращаются вокруг смещенных шатунов на подшипниках шатуна . Коленчатый вал обычно изготавливается из кованой стали или, для менее нагруженных двигателей, из чугуна с шаровидным графитом; Опорные поверхности стальных коленчатых валов обычно закалены или азотированы индукционным способом (см. раздел 7.3.2). Подшипники коленчатого вала являются примерами подшипников скольжения и представляют собой наиболее важный пример приложения с высокими напряжениями, обсуждаемого в разделе 9.2.2 выше. Хотя подшипники коленчатого вала подвергаются непрерывному вращательному движению, нагрузки на них не являются постоянными, а зависят от положения кривошипа во время цикла двигателя и различных сил на шатунах, которые зависят от мощности, вырабатываемой двигателем, и его скорости. Поэтому анализ толщины смазочной пленки и местного давления внутри подшипников является сложным. Как показано на рис. 9.18, режим смазки является преимущественно гидродинамическим, хотя может быть достигнута толщина пленки всего 1 мкм или даже меньше, что переводит контакт в смешанный режим, по крайней мере, на часть цикла.

Маленький конец шатуна гибко соединен с поршнем через полый цилиндрический поршневой палец (поршневой палец US , поршневой палец ), изготовленный из закаленной стали. Штифт может быть закреплен на шатуне и вращаться в колебательном движении в двух подшипниковых втулках внутри поршня, или, альтернативно, может быть закреплен в поршне и вращаться во втулке в шатуне, или в некоторых конструкциях может вращаться в обоих компонентах. Эти опорные подшипники с относительно низкими скоростями скольжения, высокими нагрузками и колебательным, а не постоянным вращением работают в условиях граничной или смешанной смазки.

Распределительный вал вращается в подшипниках скольжения с гидродинамической смазкой. Наиболее жесткие условия в клапанной системе возникают в областях контакта между кулачками и их толкателями, где высокая нагрузка и сосредоточенная геометрия контакта приводят к очень высоким контактным давлениям и к эластогидродинамической смазке (EHL), как обсуждалось в разделе 4.5. Как отмечалось для контактов поршень-цилиндр, трибологические условия наиболее жесткие при изменении точки контакта между кулачком и толкателем, когда скорость увлечения смазки падает до нуля.Для кулачков и сопряженных с ними компонентов требуются материалы с высоким пределом текучести, и обычно используются закаленные стали. Низкое трение и износ в контакте кулачок-толкатель зависят от присутствия в смазке модификаторов трения и противоизносных присадок (см. Раздел 4.6) и поверхностных покрытий, таких как алмазоподобный углерод (DLC - см. Раздел 7.4.3). также иногда используется для уменьшения трения в условиях плохой смазки.

Система смазки двигателя внутреннего сгорания.

Вы ездите на своей машине каждый день - было бы неплохо узнать, как это работает? А общее описание принципа работы двигателя внутреннего сгорания находится на www.howstuffworks.com ". Трибология горения. тут написан движок. Будут обрабатываться следующие детали:

Смазка система, цилиндр, поршень, поршневые кольца, кулачки / распределительный вал и шатунный подшипник.

Система смазки
Система смазки двигателя предназначена для подачи чистого масла в правильная температура и давление для каждой части двигателя. Масло всасывает поддон в насос, являющийся сердцем системы, чем проходит через масляный фильтр, и давление подается на коренные подшипники и манометр давления масла.Из коренных подшипников масло проходит через отверстия для подачи в просверленные каналы в коленчатом валу и на шатуне подшипники шатуна. Стенки цилиндров и подшипники поршневых пальцев смазываются масляной струей, распыляемой вращающимся коленчатым валом. Избыток соскребается нижним кольцом поршня. Кровоток или приток из главный питающий канал питает каждый подшипник распределительного вала. Еще одно кровотечение цепь привода ГРМ или шестерни на приводе распределительного вала.Затем излишки масла стекают. обратно в отстойник, где тепло распространяется в окружающий воздух.

Подшипники скольжения
Если шейки коленчатого вала изнашиваются, в двигателе будет пониженное давление масла. и полить маслом всю внутреннюю часть двигателя. Чрезмерный всплеск будет Вероятно, это приведет к выходу из строя колец и из-за того, что двигатель будет использовать масло. Изношенные подшипники Поверхности можно восстановить, просто заменив вкладыши подшипников.В хорошем Износ подшипников поддерживаемых двигателей наступает сразу после холодного пуска, потому что масляная пленка между подшипником и валом небольшая или отсутствует. На момент, когда в системе циркулирует достаточное количество масла, гидродинамический смазка проявляется и останавливает прогрессирование износа подшипников.

Кольца поршневые - цилиндр
Поршневые кольца обеспечивают скользящее уплотнение, предотвращающее утечку топлива / воздуха. смесь и выхлоп из камеры сгорания в масляный картер во время сжатие и горение.Во-вторых, они удерживают масло в поддоне от утечки. в зону горения, где он сгорит и потеряется. Большинство автомобилей, которые "сжигать масло" и нужно добавлять кварту каждые 1000 миль, чтобы сжигать его потому что кольца больше не закрываются должным образом.

Между поршневыми кольцами и стенкой цилиндра двигателя в хорошем состоянии преобладает гидродинамическая смазка, необходимая для минимального трения и носить. В верхней и нижней мертвой точке, где поршень останавливается для перенаправления, толщина пленки становится минимальной, и может существовать смешанная смазка.

Для обеспечения хорошей передачи напора от поршня к цилиндру оптимальная герметичность и минимум подгорания масла, желательна минимальная толщина пленки. Минимальная толщина пленки поддерживается за счет так называемого маслосъемного кольца. Этот кольцо расположено за поршневыми кольцами, так что излишки масла соскребает прямо вниз к поддону. Осталась масляная пленка на цилиндре стенка при прохождении этого кольца доступна для смазки следующих звенеть.Этот процесс повторяется для следующих друг за другом колец. По ходу вверх первое компрессионное кольцо смазывается маслом, оставшимся на цилиндре стена во время удара вниз.

Утечка топливовоздушной смеси и выхлопных газов из камеры сгорания в масляный поддон приводит к ухудшению качества масла. По этой причине, несмотря на частое пополнение масла, замена масла останется незаменимой или даже станет больше существенный.

Кулачки и ведомые .

>>

Заявка на патент США на ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, СИСТЕМУ СМАЗКИ И ФИЛЬТР МОТОРНОГО МАСЛА Заявка на патент (Заявка № 20200182109 от 11 июня 2020 г.)

ПЕРЕКРЕСТНАЯ ССЫЛКА НА СООТВЕТСТВУЮЩИЕ ЗАЯВКИ

Это национальная стадия заявки США № PCT / CN2016 / 106359, поданной 18 ноября 2016 г. Приоритет в соответствии с 35 U.S.C. § 119 (a) и 35 U.S.C. § 365 (b) испрашивается из заявки Китая №201610674143.X, поданной 15 августа 2016 г., раскрытие которой включено в настоящий документ посредством ссылки.

Область изобретения

Настоящая заявка относится к области технологии производства двигателей внутреннего сгорания, в частности к двигателю внутреннего сгорания, системе смазки и масляному сетчатому фильтру.

Уровень техники

Хорошо известно, что двигателю внутреннего сгорания требуется смазочное масло для смазки каждой пары движений во время работы, чтобы избежать сухого трения в каждой паре движений, тем самым обеспечивая надежную работу двигателя внутреннего сгорания.

Масляный поддон, канал для смазочного масла, масляный насос и масляный фильтр, предусмотренные перед масляным насосом, составляют систему смазки двигателя внутреннего сгорания. Когда двигатель внутреннего сгорания работает, масляный насос перекачивает моторное масло в соответствующее положение для смазки, а когда двигатель внутреннего сгорания останавливается, моторное масло выгружается в масляный поддон. Когда двигатель внутреннего сгорания возобновляет работу, масляный насос должен перекачивать необходимое смазочное масло из масляного поддона в положение смазки, в результате чего масляный насос потребляет больше мощности и требует больше времени для установления давления масла, особенно в Пусковая стадия двигателя внутреннего сгорания может вызвать плохую смазку.

Следовательно, техническая проблема, которую в настоящее время должны решить специалисты в данной области техники, состоит в том, чтобы уменьшить мощность, потребляемую масляным насосом при запуске двигателя внутреннего сгорания, и эффективно сократить время установления давления масла, чтобы в достаточной степени как можно быстрее смажьте двигатель внутреннего сгорания.

КРАТКОЕ ОПИСАНИЕ

Одной из целей настоящей заявки является создание масляного фильтра для уменьшения мощности, потребляемой масляным насосом при запуске двигателя внутреннего сгорания, и эффективного сокращения времени для установления давления масла, тем самым обеспечивая достаточную смазку двигатель внутреннего сгорания как можно быстрее.

Другой целью настоящей заявки является создание системы смазки, имеющей масляный фильтр.

Еще одной целью настоящей заявки является создание двигателя внутреннего сгорания, имеющего систему смазки.

Для достижения вышеуказанных целей масляный фильтр, предусмотренный в настоящей заявке, включает в себя канал для смазочного масла, а также впускное отверстие для масла и выпускное отверстие для масла, соответственно, предусмотренные на двух концах канала для смазочного масла. Масляный сетчатый фильтр дополнительно включает обратный клапан, который расположен на входе для масла и позволяет только смазочному маслу течь в канал для смазочного масла.

Предпочтительно масляный фильтр дополнительно включает в себя канал возврата масла под давлением, и канал возврата масла под давлением имеет один конец, сообщающийся с каналом для смазочного масла, а другой конец имеет канал возврата масла, позволяющий течь возвращающемуся смазочному маслу.

Предпочтительно масляный сетчатый фильтр дополнительно включает в себя клапан ограничения давления, предусмотренный на отверстии возврата масла, и клапан ограничения давления выполнен с возможностью открывать канал возврата масла под давлением в случае, когда давление возвращаемого смазочного масла достигает давления открытия клапан ограничения давления.

Предпочтительно, чтобы входное отверстие для масла было снабжено частью направления потока в форме усеченного конуса, а обратный клапан встроен в часть направления потока в форме усеченного конуса.

Корпус масляного фильтра предпочтительно имеет форму треугольника; корпус просверлен для образования первого прохода и второго прохода, первый проход проходит через два угла корпуса, а второй проход просверливается из оставшегося угла корпуса и сообщается с первым проходом, двумя концами первый канал закрыт резьбовыми заглушками, соответственно, выпускное отверстие для масла и отверстие для возврата масла соответственно открыты на боковой стенке первого канала, канал для смазочного масла определяется вторым каналом и участком первого канала, примыкающим к маслу. выпускной канал, а канал возврата масла под давлением определяется участком первого канала, примыкающим к каналу возврата масла.

Предпочтительно, чтобы первый канал и второй канал были соединены дугообразным переходным участком, а дугообразный переходный участок изогнут в направлении выхода масла.

Смазочная система в настоящей заявке, применимая к двигателю внутреннего сгорания, включает масляный насос и деформацию моторного масла в соответствии с любым из вышеупомянутых технических решений, при этом выходное отверстие для масла масляного фильтра сообщается с вход масляного насоса; и канал возврата масла масляного фильтра сообщается с каналом возврата масла двигателя внутреннего сгорания.

Предпочтительно, уплотнительные элементы предусмотрены между выпускным отверстием для масла и впуском масляного насоса, а также между каналом возврата масла и корпусом двигателя внутреннего сгорания.

Предпочтительно уплотнительные элементы представляют собой уплотнительные прокладки или уплотнительные кольца.

В системе смазки двигателя внутреннего сгорания в настоящей заявке используется система смазки согласно любому из вышеупомянутых технических решений.

Из приведенных выше технических решений можно видеть, что масляный фильтр в настоящей заявке включает в себя канал для смазочного масла, а также вход для масла и выход для масла, которые соответственно предусмотрены на двух концах канала для смазочного масла.Масляный сетчатый фильтр также обеспечивает обратный клапан на входе масла, а обратный клапан только позволяет смазочному маслу течь из масляного поддона в канал для смазочного масла.

Когда двигатель внутреннего сгорания останавливается, смазочное масло течет обратно из выпускного отверстия в масляный фильтр двигателя. Поскольку обратный клапан расположен на входе масла в масляный фильтр и пропускает только смазочное масло в канал для смазочного масла, из-за характеристики обратного потока обратного клапана обратный клапан возвращается в масляный фильтр. не может продолжать стекать обратно в масляный поддон из впускного отверстия для масла, и смазочное масло временно хранится в масляном сетчатом фильтре.Таким образом, время установления давления масла эффективно сокращается, когда двигатель внутреннего сгорания возобновляет работу, и смазочное масло может быстрее достигать соответствующих положений смазки, тем самым обеспечивая достаточную смазку двигателя внутреннего сгорания как можно быстрее.

Поскольку в системе смазочного масла в настоящей заявке используется вышеуказанный масляный фильтр, система смазочного масла также имеет преимущество короткого времени установления давления масла.

Поскольку двигатель внутреннего сгорания в настоящей заявке использует вышеупомянутую систему смазки, двигатель внутреннего сгорания имеет соответствующие преимущества вышеупомянутой системы смазки, которые здесь не повторяются.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

РИС. 1 представляет собой схематический вид, показывающий направление потока смазочного масла в масляном сетчатом фильтре на начальной стадии запуска двигателя внутреннего сгорания согласно варианту осуществления настоящей заявки;

РИС.2 представляет собой схематический вид, показывающий направление потока смазочного масла в масляном сетчатом фильтре, когда канал возврата масла под давлением открыт в соответствии с вариантом осуществления настоящей заявки;

РИС. 3 - схематический вид, показывающий направление потока смазочного масла в масляном сетчатом фильтре, когда двигатель внутреннего сгорания останавливается, согласно варианту осуществления настоящей заявки; и

ФИГ. 4 - вид сверху масляного фильтра согласно варианту осуществления настоящей заявки.

ИНФОРМАЦИОННЫЕ НОМЕРА

1 канал для смазочного масла, 2 канала для возврата масла под давлением, 3 вход для масла, 4 выход для масла, 5 обратный канал для масла, 6 клапан ограничения давления, 7 обратный клапан, 8 пробка в форме корки, 9 корпус, 10 винт кольцо, 12фильтровый экран.

ПОДРОБНОЕ ОПИСАНИЕ

Одной из основных целей настоящей заявки является создание масляного фильтра для уменьшения мощности, потребляемой масляным насосом при запуске двигателя внутреннего сгорания, и эффективного сокращения времени установления давления масла, тем самым как можно быстрее обеспечить достаточную смазку двигателя внутреннего сгорания.

Еще одна суть настоящей заявки состоит в том, чтобы предоставить систему смазки, имеющую масляный фильтр.

Еще одной целью настоящей заявки является создание двигателя внутреннего сгорания, имеющего систему смазки.

Чтобы дать возможность специалисту в данной области техники лучше понять решения настоящей заявки, настоящее приложение теперь будет проиллюстрировано более подробно ниже вместе с чертежами и конкретными вариантами осуществления.

Ссылаясь на фиг. 1 - фиг. 3, масляный фильтр согласно этому варианту осуществления настоящей заявки включает канал для смазочного масла 1 , вход для масла 3 и выход для масла 4 , соответственно, предусмотренные на двух концах канала для смазочного масла 1 . По сравнению с традиционным уровнем техники масляный фильтр в настоящей заявке дополнительно обеспечивает обратный клапан 7 на входе масла 3 , а обратный клапан 7 только позволяет смазочному маслу течь в канал для смазочного масла 1 в масляном фильтре.

Как показано на фиг. 3, когда двигатель внутреннего сгорания останавливается, смазочное масло течет обратно из выпускного отверстия для масла 4 в масляный фильтр. Поскольку обратный клапан 7 расположен на впускном отверстии для масла 3 масляного фильтра и позволяет смазочному маслу течь только в канал для смазочного масла, из-за характеристики перекрытия обратного потока обратного клапана 7 смазочное масло, возвращаемое в масляный фильтр, не может продолжать стекать обратно в масляный поддон из впускного отверстия для масла 3 , и смазочное масло временно хранится в масляном фильтре.Таким образом, время установления давления масла эффективно сокращается, когда двигатель внутреннего сгорания возобновляет работу, и смазочное масло может быстрее достигать соответствующих положений смазки, тем самым обеспечивая достаточную смазку двигателя внутреннего сгорания как можно быстрее.

Разумеется, на входе масла 3 должна быть предусмотрена сетка фильтра 12 . Чтобы дополнительно оптимизировать технические решения в вышеупомянутых вариантах осуществления, масляный фильтр в настоящей заявке дополнительно снабжен каналом для возврата масла под давлением 2 .Как показано на фиг. 1 - фиг. 3, канал возврата масла под давлением 2 имеет один конец, сообщающийся с каналом для смазочного масла 1 , а другой конец имеет канал возврата масла 5 , позволяющий возвращающемуся смазочному маслу течь внутрь.

Нетрудно понимать, что в реальном рабочем процессе смазочное масло в канале возврата масла под давлением 2 будет сливаться со смазочным маслом, текущим в канал для смазочного масла 1 от впускного отверстия для масла 3 , что эффективно увеличивает скорость потока и давление на выходе масла 4 масляного фильтра.А поскольку выходное отверстие для масла 4 масляного фильтра сообщается с входом масляного насоса, масляный фильтр может эффективно увеличивать давление на входе масляного насоса, снижать потребление энергии масляным насосом и улучшать качество топлива. экономия.

Можно видеть, что в вариантах осуществления настоящей заявки давление на входе масляного насоса увеличивается за счет улучшения масляного фильтра, что исключает идею использования масляного насоса переменного рабочего объема со сложной конструкцией.Цель снижения энергопотребления масляного насоса была достигнута за счет простой конструкции и низкой стоимости.

Для эффективного увеличения давления на входе масляного насоса технические решения вышеупомянутых вариантов осуществления дополнительно улучшены в этом варианте осуществления. В этом варианте осуществления клапан ограничения давления 6 дополнительно предусмотрен на канале возврата масла 5 . Как показано на фиг. 1 - фиг. 3, давление возвращаемого смазочного масла достигает давления открытия клапана ограничения давления 6 , клапан ограничения давления 6 открывается, тем самым открывая канал возврата масла под давлением 2 .Как показано на фиг. 1, на начальной стадии запуска двигателя внутреннего сгорания смазочного масла в двигателе внутреннего сгорания все еще недостаточно, в это время нет возврата смазочного масла в канал возврата масла 5 или очень мало возвратного смазочного масла, и давление возвращающегося смазочного масла недостаточно для открытия клапана ограничения давления 6 , поэтому в это время все смазочное масло в масляном сетчатом фильтре поступает из впускного отверстия канала для смазочного масла 1 .По мере увеличения скорости вращения двигателя внутреннего сгорания количество масла, перекачиваемого масляным насосом, увеличивается, и соответственно увеличивается давление масла в главном масляном канале двигателя внутреннего сгорания; и когда давление возврата масла достигает давления открытия клапана ограничения давления 6 , избыточное смазочное масло в двигателе внутреннего сгорания течет в канал возврата масла под давлением 2 через канал возврата масла 5 и попадает во впускное отверстие. масляного насоса вместе со смазочным маслом, вытекающим из впускного отверстия для масла 3 , как показано на ФИГ.2. Таким образом, давление на входе масляного насоса эффективно увеличивается, давление на выходе масляного насоса также снижается, объемный КПД масляного насоса увеличивается, а энергопотребление масляного насоса сохраняется.

Как показано на фиг. 1 - фиг. 3, на впускном отверстии для масла 3 дополнительно предусмотрен участок направления потока в форме усеченного конуса, позволяющий смазочному маслу плавно поступать в канал для смазочного масла 1 . Конечно, обратный клапан 7 также может быть встроен в часть 8 направления потока в форме усеченного конуса, что делает конструктивную компоновку всего устройства более компактной и разумной.

Корпус 9 масляного фильтра в вариантах осуществления настоящей заявки имеет форму треугольника, как показано на фиг. 1 - фиг. 4. Масляный канал в масляном сетчатом фильтре образован следующим образом.

Корпус 9 просверлен для образования первого прохода и второго прохода, первый проход проходит через два угла треугольного корпуса 9 , а второй проход просверлен из третьего угла для сообщения с первый проход.Два конца первого канала закрыты резьбовыми пробками 10 , а выходное отверстие для масла 4 и отверстие для возврата масла 5 соответственно открыты на боковой стенке корпуса 9 . Канал для смазочного масла 1 определяется вторым каналом и участком первого канала, примыкающим к выпускному отверстию для масла 4 , а канал возврата масла под давлением 2 определяется участком первого канала, смежным с порт возврата масла 5 .Можно видеть, что масляный канал внутри масляного фильтра может быть обработан методом механической обработки, и, конечно, масляный канал внутри масляного фильтра также может быть обработан литьем.

Чтобы полностью использовать импульс самого смазочного масла и избежать прямого столкновения между двумя потоками смазочного масла, в этом варианте осуществления первый канал и второй канал соединены дугообразной переходной секцией, так как показанный на фиг. 1 - фиг. 3, а переходная секция дугообразной формы изогнута к выходному отверстию для масла 4 .

Смазочная система в настоящей заявке применяется к двигателю внутреннего сгорания и включает масляный насос и масляную деформацию согласно любому из вышеуказанных вариантов осуществления. Выходное отверстие для масла 4, масляного фильтра сообщается с входом масляного насоса, а канал возврата масла 5, масляного фильтра сообщается с каналом возврата масла двигателя внутреннего сгорания.

В системе смазки взаимодействие между масляным насосом и масляным сетчатым фильтром в вышеупомянутых вариантах осуществления эффективно увеличивает давление на входе масляного насоса, снижает энергопотребление масляного насоса и улучшает экономию топлива.

Кроме того, чтобы избежать «состояния всасывания воздуха» или утечки масла из масляного насоса, в этом варианте осуществления между выходным отверстием для масла 4 и входом масляного насоса, а также между отверстием возврата масла предусмотрены уплотнительные элементы. 5 и корпус ДВС. Уплотнительные элементы могут иметь разные формы, например уплотнительные прокладки или уплотнительные кольца. В этом варианте осуществления уплотнительные элементы представляют собой уплотнительные кольца 11 , как показано на фиг. 1 - фиг. 3.

Кроме того, в настоящей заявке предоставляется двигатель внутреннего сгорания.В системе смазки двигателя внутреннего сгорания используется система смазки вышеуказанных вариантов осуществления. Следует отметить, что двигатель внутреннего сгорания включает, помимо прочего, дизельный двигатель и бензиновый двигатель.

Двигатель внутреннего сгорания также имеет преимущество хорошей экономии топлива за счет использования вышеупомянутой системы смазки.

Двигатель внутреннего сгорания, система смазки и масляный фильтр согласно настоящей заявке описаны подробно.Принцип и варианты осуществления настоящей заявки проиллюстрированы здесь конкретными примерами. Приведенное выше описание примеров предназначено только для того, чтобы помочь понять метод и сущность настоящей заявки. Следует отметить, что для специалиста в данной области некоторые модификации и улучшения могут быть внесены в настоящую заявку без отклонения от принципа настоящей заявки, и эти модификации и улучшения также считаются входящими в объем настоящей заявки, определенные формулой изобретения.

Поршни двигателя внутреннего сгорания - x-engineer.org

Поршень является составной частью двигателя внутреннего сгорания. Основная функция поршня - преобразовывать давление, создаваемое горящей топливовоздушной смесью, в силу, действующую на коленчатый вал. Легковые автомобили имеют поршни из алюминиевого сплава, в то время как грузовые автомобили также могут иметь поршни из стали и чугуна.

Поршень является частью кривошипно-шатунного механизма (также называемого кривошипно-шатунным механизмом ), который состоит из следующих компонентов:

  • поршень
  • поршневые кольца
  • шатун
  • коленчатый вал

Изображение: Привод коленчатого вала двигателя (кривошипно-шатунный механизм) Предоставлено: Rheinmetall

Поршень также выполняет второстепенные функции двигателя :

  • способствует рассеиванию тепла , образующемуся при сгорании
  • обеспечивает герметичность камеры сгорания, предотвращает утечки газа из него и проникновение масла в камеру сгорания
  • направляет движение шатуна
  • обеспечивает непрерывную смену газов в камере сгорания
  • создает переменного объема в камере сгорания

Изображение: поршни Kolbenschmidt
Кредит: Kolbenschmidt

Форма поршня в основном зависит от типа двигателя внутреннего сгорания.Поршни бензиновых двигателей обычно легче и короче по сравнению с поршнями дизельных двигателей. Геометрия поршня имеет множество тонкостей из-за сложности его рабочей среды, но основными частями поршня являются:

  • поршень головка , также называемая верхняя часть или головка : верхняя часть поршня который вступает в контакт с давлением газа в камере сгорания
  • кольцевой ремень : верхняя средняя часть поршня, когда поршневые кольца расположены
  • выступ штифта : нижняя средняя часть поршня который содержит поршневой палец
  • юбка поршня : область под кольцевым ремнем

Изображение: оси поршневого пальца и юбки

Изображение: Основные детали поршня
Кредит: [3]

где:

  1. верх поршня
  2. верхняя фаска
  3. кольцевой ремень
  4. распорки
  5. стопорный зажим пальца
  6. выступ штифта
  7. pis тонный штифт
  8. поршневые кольца
  9. юбка поршня

Поршень соединен с шатуном через поршневой палец (7).Штифт позволяет поршню вращаться вокруг оси штифта. Штифт удерживается в поршне фиксатором пальца (5).

После днища поршня доходит до кольцевого ремня (также называемого кольцевой зоной) (3). Большинство поршней имеют три кольцевых канавки, в которые устанавливаются поршневые кольца. Верхнее кольцо называется компрессионным кольцом , среднее - скребковым кольцом , а нижнее - кольцом контроля масла . Компрессионное кольцо должно герметизировать камеру сгорания, чтобы предотвратить утечку внутренних газов в блок двигателя.Маслоуправляющее кольцо соскребает масло со стенок цилиндра, когда поршень находится на рабочем или выпускном такте. Среднее кольцо выполняет комбинированную функцию обеспечения сжатия в цилиндре и удаления излишков масла со стенок цилиндра.

Юбка поршня (8) удерживает поршень в равновесии внутри цилиндра. Обычно он покрывается материалом с низким коэффициентом трения, чтобы уменьшить потери на трение. В отверстии под палец или втулки (6) поршня находится поршневой палец (7), который соединяет поршень с шатуном.

Геометрические характеристики поршня

Поршни должны правильно работать в широком диапазоне температур, от -30 ° C до 300-400 ° C. В то же время он должен быть достаточно легким, чтобы иметь низкую инерцию и обеспечивать высокие обороты двигателя. Ниже представлена ​​пара геометрических характеристик поршня.

Овальность поршня

Из-за процесса сгорания температура внутри цилиндров двигателя достигает сотен градусов Цельсия.Поршень является одним из основных компонентов, который поглощает часть выделяемого тепла и отводит его в моторное масло. Поскольку ось поршневого пальца содержит больше материала, чем ось юбки, тепловое расширение вдоль оси пальца немного выше, чем тепловое расширение вдоль оси юбки. По этой причине поршень имеет овальную форму, диаметр по оси пальца на 0,3-0,8% меньше диаметра по оси юбки [6].

Изображение: Овальность поршня

Коническая форма поршня

Форма поршня не идеальна для цилиндра.При низкой температуре зазор между поршнем и цилиндром двигателя больше по сравнению с высокими температурами. Кроме того, зазор не является постоянным по длине поршня, он меньше вокруг верхней части поршня по сравнению с областью юбки поршня. Это необходимо для большего теплового расширения головки поршня, поскольку она содержит больший объем металла.

Изображение: Зазор поршня (коническая форма)

Изображение: Тепловое расширение поршня (если цилиндрическая форма)

Смещение поршневого пальца

Поршень перемещается на 3 градуса внутри цилиндра свободы, 1 первичный и 2 вторичных:

  • вдоль вертикальной оси цилиндра, между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ) (основная, ось Y)
  • вокруг Ось пальца (вторичная, α - угол)
  • вдоль оси юбки (вторичная, ось x)

Первичное движение создает крутящий момент на коленчатом валу, это желательно с механической точки зрения.Вторичные движения происходят из-за комбинации нескольких факторов: двунаправленного движения шатуна и зазора между поршнем и цилиндром. Оба вторичных движения вызывают трение о стенки цилиндра, а также шум, вибрацию (удар поршня).

Изображение: Осевое усилие поршня и смещение пальца

Когда коленчатый вал вращается по часовой стрелке, левая сторона цилиндра называется осевой стороной (TS) , а противоположная сторона известна как противодействующая упорная сторона (ATS). .Удары поршня могут происходить с обеих сторон цилиндра. Удар поршня возбуждает блок цилиндров и проявляется в виде поверхностных вибраций, которые в конечном итоге излучаются в виде шума в непосредственной близости от двигателя [9]. Еще одно неудобство заключается в том, что при движении поршня через ВМТ и ВТК на коленчатый вал создается повышенная нагрузка, поскольку поршень совмещен с центром вращения коленчатого вала.

Смещение поршневого пальца - это несоосность между центром отверстия поршневого пальца и центром коленчатого вала.За счет этого в конструкции улучшаются шумовые характеристики двигателя из-за ударов поршня в ВМТ. Это основная проблема NVH (шумовая вибрация и резкость) для инженеров-технологов, которые хотят устранить тревожные шумы везде, где они могут. Вторая причина - повышение мощности двигателя за счет уменьшения внутреннего трения в TS и ATS.

Смещение пальца снижает механическое напряжение, возникающее в соединительной штанге, когда она достигает ВМТ или НМТ, потому что шатун не должен хлопать поршнем в противоположном направлении в конце хода.Это смещение заставляет стержень перемещаться по дуге в ВМТ и НМТ.

Механические нагрузки на поршень

Поршень является компонентом двигателя внутреннего сгорания (ДВС) (ДВС) , который должен выдерживать наибольшие механические и термические нагрузки. Из-за поршня мощность ДВС ограничена. В случае очень высокой термической или механической нагрузки поршень выходит из строя первым (по сравнению с блоком цилиндров, клапанами, головкой блока цилиндров). Это связано с тем, что поршень должен быть компромиссом между массой и устойчивостью к механическим и термическим нагрузкам.

Циклическое нагружение поршня из-за [6]:

  • сила газа от давления в цилиндре
  • сила инерции от колебательного движения поршня и
  • поперечная сила от опоры силы газа наклонным шатуном, а сила инерции колеблющегося шатуна

определяет механическую нагрузку .

Вертикальные силы, действующие на поршень, состоят из: сил давления, , создаваемых расширяющимися газами, и сил инерции, , создаваемых собственной массой поршня [10].

\ [F_ {p} = F_ {gas} + F_ {ineria} \]

Силы инерции намного меньше сил давления и имеют наибольшую интенсивность, когда поршень меняет направление, в ВМТ и НМТ.

Изображение: Напряжение поршня по Мизесу и механическая деформация
Авторы и права: [7]

Изображение: Зависимость вертикальных сил поршня от угла поворота коленчатого вала
Кредиты: [7]

Вышеуказанные силы поршня рассчитываются с использованием передовых методов анализа методом конечных элементов для алюминиевого поршня, используемого в легковых автомобилях с дизельным двигателем [7].

Процесс сгорания имеет разные характеристики для дизельного и бензинового ДВС. В дизельном двигателе пиковое давление газа при сгорании может достигать 150 - 160 бар. В бензиновом двигателе максимальное давление ниже 100 бар. Из-за более высокого давления поршни дизельного двигателя должны выдерживать более высокие механические нагрузки.

Чтобы работать без сбоев в таких суровых условиях, поршни дизельных двигателей конструируются более тяжелыми, прочными и имеют большую массу.Недостатком является более высокая инерция, более высокие динамические силы, поэтому максимальная частота вращения двигателя ниже. Одна из причин, по которой дизельные двигатели имеют более низкую максимальную скорость (около 4500 об / мин) по сравнению с бензиновыми двигателями (около 6500 об / мин), - это более тяжелые механические компоненты (поршни, шатуны, коленчатый вал и т. Д.).

Тепловые нагрузки на поршень

Головка поршня находится в прямом контакте с горящими газами в камере сгорания, поэтому подвергается высоким термическим и механическим нагрузкам .В зависимости от типа двигателя (дизельный или бензиновый) и типа впрыска топлива (прямой или непрямой) головка поршня может быть плоской или содержать чашу .

Тепловая нагрузка от температуры газа в процессе сгорания также является циклической нагрузкой на поршень. Он действует в основном во время такта расширения на поршне со стороны камеры сгорания. В других тактах, в зависимости от принципа работы, тепловая нагрузка на поршень уменьшается, прерывается или даже имеет охлаждающий эффект во время газообмена.Как правило, передача тепла от горячих дымовых газов к поршню происходит в основном за счет конвекции, и лишь небольшая часть является результатом излучения.

Изображение: Рабочие температуры поршня
Кредиты: [3]

Тепло, выделяемое при сгорании, частично поглощается поршнем. Большая часть тепла передается через площадь кольца поршня (около 70%). Юбка поршня отводит 25% тепла, а остальное передается на поршневой палец, шатун и масло.Более высокая частота вращения двигателя означает более высокую температуру поршня . Это происходит потому, что накопленное тепло не успевает рассеяться между двумя последовательными циклами сгорания. В то же время более высокая нагрузка на двигатель означает более высокую температуру поршня, потому что при этом сгорает больше воздушно-топливной смеси, которая выделяет больше тепла.

Изображение: Распределение температуры в поршне бензинового двигателя
Кредит: [6]

Изображение: Распределение температуры в поршне дизельного двигателя с каналом охлаждения
Кредит: [6]

Изображение: Тепловая нагрузка поршня
Кредит: [7]

Что касается такта расширения, продолжительность действия тепловой нагрузки от сгорания очень мала.Следовательно, только очень небольшая часть составляющей массы поршня, вблизи поверхности на стороне сгорания, следует за циклическими колебаниями температуры. Таким образом, почти вся масса поршня достигает квазистатической температуры, которая, однако, может иметь значительные локальные изменения.

Охлаждение поршня

По мере увеличения удельной мощности в современных двигателях внутреннего сгорания поршни подвергаются возрастающим тепловым нагрузкам. Поэтому эффективное охлаждение поршня требуется чаще, чтобы обеспечить безопасность эксплуатации.

Изображение: 2009 Ecotec 2.0L I-4 VVT DI Turbo (LNF) Головка поршня и масляная форсунка
Кредит: GM

Температуру поршня можно снизить за счет циркуляции масла в средней части поршня. Это может быть достигнуто с помощью маслоструйных устройств, установленных на блоке цилиндров, которые впрыскивают моторное масло через отверстие, когда поршень находится близко к нижней мертвой точке (НМТ).

Компания Tenneco Powertrain разработала новый стальной поршень для дизельных двигателей с «герметичной на весь срок службы» охлаждающей камерой в головной части, что позволяет поршням безопасно работать при температурах в головке более чем на 100 ° C выше действующих ограничений.

Изображение: технология охлаждения поршня EnviroKool
Кредит: Tenneco

Для формирования коронки EnviroKool внутри поршня с помощью сварки трением создается цельный охлаждающий канал, который затем заполняется высокотемпературным маслом и инертным газом. Эта камера постоянно закрыта приварной заглушкой. Согласно Tenneco Powertrain, технология EnviroKool позволяет преодолеть температурные ограничения обычных открытых галерей, в которых в качестве теплоносителя используется смазочное масло.

Типы поршней

Геометрия поршня ограничена из-за кубатуры ДВС. Поэтому основной способ повышения механического и термического сопротивления поршня - увеличение его массы. Это не рекомендуется, потому что поршень с большой массой имеет большую инерцию, которая преобразуется в высокие динамические силы, особенно при высоких оборотах двигателя. Сопротивление поршня можно улучшить за счет оптимизации геометрии, но всегда будет компромисс между массой, механическим и термическим сопротивлением.

На первый взгляд поршень кажется простым компонентом, но его геометрия довольно сложна:

Изображение: Техническое описание дизельного поршня
Кредит: Kolbenschmidt

Изображение: Техническое описание бензинового поршня
Кредит: Kolbenschmidt

Условные обозначения:

  1. диаметр чаши
  2. днище поршня
  3. камера сгорания (чаша)
  4. кромка днища поршня
  5. верхняя площадка поршня
  6. посадочная поверхность паза компрессионного кольца
  7. 5 выемка под кольцо
  8. стороны канавки
  9. канавка маслосъемного кольца
  10. отверстие возврата масла
  11. выступ поршневого пальца
  12. удерживание на расстоянии канавки
  13. канавка для стопорного кольца
  14. расстояние до ступицы поршня
  15. ступенчатое расстояние до ступицы поршня
  16. диаметр поршня 90 ° C относительно отверстия под поршневой палец 90 578
  17. отверстие поршневого пальца
  18. глубина стакана
  19. юбка
  20. зона кольца
  21. высота сжатия поршня
  22. длина поршня
  23. канал маслоохладителя
  24. опора кольца
  25. втулка болта
  26. измерительное окно короны
  27. Как видите, между дизельными и бензиновыми поршнями есть существенные различия.

    Поршни дизельного двигателя должны выдерживать более высокие давления и температуры, поэтому они больше, крупнее и тяжелее. Они могут быть изготовлены из алюминиевых сплавов, стали или их комбинации. Поршень дизеля содержит часть камеры сгорания в головке поршня. Из-за формы поперечного сечения головки поршня поршень дизельного двигателя также называют поршнем с головкой омега.

    Поршни бензиновых двигателей легче, предназначены для более высоких оборотов двигателя.Они изготавливаются из алюминиевых сплавов и обычно имеют плоскую головку. Бензиновые двигатели с непосредственным впрыском (DI) имеют специальные головки, позволяющие направлять поток топлива качающимся движением.

    Ниже вы можете увидеть несколько изображений дизельных и бензиновых (бензиновых) двигателей в высоком разрешении.

    Изображение: LS9 6.2L V-8 SC поршень (алюминий, бензин / бензиновый двигатель с непрямым впрыском)
    Кредит: GM

    Изображение: Ecotec 2.0L I-4 VVT DI Turbo (LNF) поршень (алюминиевый, бензиновый / бензиновый двигатель с прямым впрыском)
    Кредит: GM

    Изображение: Поршень дизельного двигателя автомобиля с кольцами (алюминий, дизель)
    Кредит: Kolbenschmidt

    Изображение: Поршень из моностали (сталь, дизель) )
    Кредит: Tenneco

    Материалы поршней

    Большинство поршней для автомобильной промышленности изготавливаются из алюминиевых сплавов .Это потому, что алюминий легкий, обладает достаточной механической прочностью и хорошей теплопроводностью. Существуют приложения для тяжелых условий эксплуатации, коммерческие автомобили, в которых используются поршни из стали , которые более устойчивы к более высоким давлениям и температурам в камере сгорания.

    Алюминиевые поршни изготавливаются из литых или кованых жаропрочных алюминиево-кремниевых сплавов. Есть три основных типа алюминиевых поршневых сплавов. Стандартный поршневой сплав представляет собой эвтектический сплав Al-12% Si, содержащий дополнительно ок.По 1% каждого из Cu, Ni и Mg [3].

    Основными алюминиевыми сплавами для поршней являются [3]:

    • эвтектический сплав (AlSi12CuMgNi): литой или кованый
    • заэвтектический сплав (AlSi18CuMgNi): литой или кованый
    • специальный эвтектический сплав (только AlSi2125Cu4). алюминиевый сплав имеет более низкую прочность, чем чугун, поэтому необходимо использовать более толстые секции, поэтому не все преимущества легкого веса этого материала реализуются. Кроме того, из-за более высокого коэффициента теплового расширения алюминиевые поршни должны иметь больший рабочий зазор.С другой стороны, теплопроводность алюминия примерно в три раза выше, чем у железа. Это, вместе с большей толщиной используемых секций, позволяет алюминиевым поршням работать при температурах примерно на 200 ° C ниже, чем чугунные [8].

      В некоторых случаях прочность и износостойкость поршней из алюминиевого сплава недостаточны для удовлетворения требований по нагрузке, поэтому используются черные материалы (например, чугун, сталь). Существует несколько методов использования черных металлов в производстве поршней:

      • в качестве местного армирования, вставок из черных металлов (т.е.g., держатели колец)
      • в виде удлиненных частей композитных поршней (например, днища поршня, болтов)
      • поршней, полностью изготовленных из чугуна или кованой стали

      Изображение: композитный поршень для тяжелого двигателя - поперечное сечение
      Кредит: [8]

      Изображение: Поршень композитной конструкции для судовых дизельных двигателей
      Кредит: Warstila

      Для поршней и поршней используются два типа черных металлов компоненты [6]:

      • чугун :
        • аустенитный чугун для держателей колец
        • чугун с шаровидным графитом для поршней и юбок поршней
      • сталь
        • хром-молибденовый сплав (42578Mo)
        • хромомолибден-никелевый сплав (34CrNiMo6)
        • молибден-ванадиевый сплав (38MnVS6)

      чугун обычно имеют содержание углерода> 2%.Поршни в высоконагруженных дизельных двигателях и другие высоконагруженные компоненты двигателей и конструкции машин преимущественно изготавливаются из сферолитического чугуна M-S70. Этот материал используется, например, для изготовления цельных поршней и юбок поршней в композитных поршнях [6].

      Сплавы железа, обозначенные как стали, обычно имеют содержание углерода менее 2%. При нагревании они полностью превращаются в ковкий (пригодный для ковки) аустенит. Поэтому сплавы железа отлично подходят для горячей штамповки, такой как прокатка или ковка.

      Поршневые технологии

      Существует несколько передовых поршневых технологий, каждая из которых имеет целью увеличить механическое и / или термическое сопротивление, снизить коэффициент трения или общую массу (сохраняя в то же время механические и термические свойства).

      Ниже вы можете найти примеры современных поршней, производимых на заводе Kolbenschmidt , каждый из которых отличается уникальными технологиями.

      Изображение: Поршень бензинового двигателя в облегченной конструкции LiteKS® с держателем кольца
      Кредит: Kolbenschmidt

      Изображение

      Изображение: Поршень дизеля с охлаждающим каналом, втулкой болта и держателем кольца
      Кредит: Kolbenschmidt

      Изображение: Шарнирно-сочлененный поршень дизеля с кованой верхней стальной частью и алюминиевой юбкой
      Кредит: Kolbenschmidt

      3

      Изображение: Литые держатели колец из чугуна многократно увеличивают долговечность первой кольцевой канавки дизельных поршней.Kolbenschmidt является лидером в разработке соединения Alfin с держателем кольца
      Кредит: Kolbenschmidt

      Изображение: Канавки под кольцо с твердым анодированием предотвращают износ и микросварку поршней для бензиновых двигателей
      Кредит: Kolbenschmidt

      Поршни KS Kolbenschmidt имеют специальное покрытие LofriKS®, NanofriKS® или графит на юбке поршня. Они уменьшают трение внутри двигателя и обеспечивают хорошие характеристики при аварийной работе. Покрытия LofriKS® также используются по акустическим причинам.Их использование сводит к минимуму шум поршня. NanofriKS® является дальнейшим развитием испытанного и испытанного покрытия LofriKS® и дополнительно содержит наночастицы оксида титана для повышения износостойкости и долговечности покрытия. ®) гарантируют надежную работу при использовании в алюминиево-кремниевых поверхностях цилиндров (Alusil®)
      Кредит: Kolbenschmidt

      Изображение: Отверстия поршневого пальца специальной формы (Hi-SpeKS®) повышают динамическую нагрузочную способность станины поршневого пальца, тем самым увеличивая долговечность поршня
      Кредит: Kolbenschmidt

      Ниже вы можете найти примеры современных поршней, производимых компанией Tenneco Powertrain (бывший Federal Mogul) , каждый из которых отличается уникальными технологиями.

      Изображение: Поршень Elastothermic® (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)

      Характеристики: поршень
      с охлаждением по каналу улучшает мощность и расход топлива в бензиновых двигателях уменьшенного размера. около 30 ° C
      - снижение температуры первой кольцевой канавки примерно на 50 ° C, следовательно, уменьшение отложений углерода и износа канавок и колец для увеличения срока службы; низкий расход масла и удар по
      - снижение риска неконтролируемого возгорания, например, при низкой скорости предварительного нагрева. зажигание

      Кредит: Tenneco Powertrain (Federal Mogul)

      Изображение: Алюминиевые поршни дизельного двигателя

      Характеристики:
      - оптимизированное расположение каналов для максимального охлаждения может привести к снижению температуры обода барабана до 10%
      - улучшенная боковая заливка методы значительно улучшают конструктивную устойчивость (даже при тонкостенных конструкциях)
      - реструктуризация обода камеры сгорания и дно стакана могут увеличить срок службы до 100%

      Кредит: Tenneco Powertrain (Federal Mogul)

      Изображение: Поршни для дизельных двигателей из моностали (стальные поршни для дизельных автомобилей большой грузоподъемности или промышленного применения)

      Поршень Monosteel® обеспечивает прочность и охлаждающую способность, чтобы удовлетворить самые жесткие требования к двигателям на рынках тяжелых и промышленных двигателей, включая новое поколение давлений срабатывания двигателя, необходимых для дорожных правил Евро VI и выше.

      Прочная конструкция, состоящая из сварных с помощью инерционной сварки кованых стальных секций, образующих большие охлаждающие галереи, позволяет поршням Monosteel выдерживать возрастающие механические нагрузки. Эволюция Monosteel включает в себя последние разработки для промышленных двигателей с большим диаметром цилиндра, а также использование тонкостенных легких поковок и отливок для дизельных двигателей легковых автомобилей.

      Основные характеристики продукта:
      - большая закрытая структурная галерея с превосходным охлаждением обода чаши и кольцевой канавки, уменьшающим деформацию канавки и улучшающим контроль масла и газового уплотнения
      - профилированное отверстие под палец без втулки
      - юбка по всей длине для устойчивого поршня динамика, снижение риска кавитации гильзы и улучшение кольцевого уплотнения.
      - процесс обеспечивает гибкость материала с возможностью выбора материала коронки для уменьшения коррозии или окисления и / или вариантов материала юбки для повышения технологичности.

      Кредит: Tenneco Powertrain (Federal Mogul)

      Изображение: Поршни с покрытием EcoTough® (алюминиевый поршень для бензиновых / бензиновых легких или тяжелых автомобилей)

      Поршень с покрытием EcoTough® обеспечивает важные преимущества, которые помогают удовлетворить потребности клиентов в более эффективные конструкции двигателей, в том числе сниженный расход топлива и выбросы CO 2 . Он сочетает в себе низкий износ и низкое трение в одном применении и снижает расход топлива на 0,8% по сравнению с обычными покрытиями поршней.

      Ключевые преимущества:
      - совместим с существующей и усовершенствованной отделкой внутренних отверстий цилиндров и может быть беспрепятственно введен в серийное производство двигателей в качестве рабочих изменений
      - состав обеспечивает большую толщину, чем поршни с обычным покрытием, обеспечивая дополнительную защиту
      - соответствует строгим экологическим стандартам ; не содержит токсичных растворителей.
      - запатентованное усовершенствованное покрытие юбки поршня с твердыми смазочными материалами и армированием углеродными волокнами, специально разработанное для тяжелых условий эксплуатации с бензином.
      - Снижение трения в силовом цилиндре (поршень + кольца) на 10% по сравнению сстандартные покрытия, повышение экономии топлива до 0,4% / CO 2 сокращение в европейских испытаниях ездового цикла
      - уменьшение износа на 40% по сравнению со стандартными бензиновыми покрытиями, повышенная надежность современных бензиновых двигателей с наддувом DI
      - EcoTough® - это запатентованное покрытие FM

      Кредит: Tenneco Powertrain (Federal Mogul)

      Изображение: Поршень DuraBowl® (алюминиевый поршень для дизельных легких или тяжелых автомобилей)

      Усиление поршня DuraBowl® Частичное переплавление кромки чаши :
      - чрезвычайное улучшение структуры алюминиевого материала, созданное локализованным переплавом с использованием технологии TIG.
      - до 4 раз улучшенная долговечность в двигателях с высокой удельной мощностью по сравнению с поршнями без переплавки барабана.Допускает форму камеры сгорания, подвергающуюся высоким нагрузкам.
      - Технология FM DuraBowl® расширяет пределы алюминиевых поршней в самых сложных условиях за счет увеличения усталостной прочности (циклов) поршня

      Авторы и права: Tenneco Powertrain (Federal Mogul)

      Изображение: Elastoval II сверхлегкие поршни (алюминиевый поршень для бензиновых / бензиновых легких транспортных средств)

      Технология бензиновых поршней Avanced Elastoval® II основана на:
      - глубоких карманах под короной
      - наклонных боковых панелях
      - облегченной конструкции опоры пальца
      - тонких стенках 2.5 мм
      - оптимизированная площадь юбки и гибкость
      - Высокоэффективный сплав FM S2N

      Характеристики и преимущества включают:
      - снижение веса на 15% по сравнению с бензиновыми поршнями предыдущего поколения
      - обеспечивает удельную мощность до 100 кВт / л
      - оптимизировано характеристики шума и трения
      Совместимость с опцией держателя альфинового кольца для повышения пикового давления в цилиндре и устойчивости к детонации

      Кредит: Tenneco Powertrain (Federal Mogul)

      Часто задаваемые вопросы о поршнях

      Для чего используются поршни?

      Поршни используются в двигателях внутреннего сгорания для передачи усилия на шатун и коленчатый вал, создавая крутящий момент двигателя.Поршни преобразуют давление газа из камеры сгорания в механическую силу.

      Что такое поршень и как он работает?

      Поршень - это компонент двигателя внутреннего сгорания, сделанный из алюминия или стали, используемый для преобразования давления газа из камеры сгорания в механическую силу, передаваемую на шатун и коленчатый вал.

      Из чего сделан поршень?

      Поршень может быть изготовлен из цветных металлов, алюминия (Al) или черных металлов, например, из чугуна или стали .

      Какие бывают два типа поршневых колец?

      Два типа поршневых колец: компрессионные кольца и масляные кольца.

      Какие два основных типа поршневых двигателей?

      Двумя основными типами поршневых двигателей являются: дизельные, поршневые двигатели и бензиновые (бензиновые), поршневые двигатели. Функция материала, два основных типа поршня: алюминиевый поршень и стальной поршни.

      Каков срок службы поршней?

      Поршень должен служить в течение всего срока службы автомобиля, если условия эксплуатации являются номинальными (нормальная смазка, регулярное обслуживание двигателя, отсутствие чрезмерной нагрузки, отсутствие чрезмерной температуры). В нормальных условиях эксплуатации поршень должен прослужить не менее 300000 км до 500000 км и более.

      Что вызывает отверстия в поршнях?

      Обычно аномально высокие температуры вызывают плавление поршней, или детонация двигателя может вызвать трещины в поршнях.Неисправные форсунки могут подавать чрезмерное количество топлива в цилиндры, что может вызвать аномально высокую температуру сгорания и частичное оплавление поршней.

      Как узнать, повреждены ли поршни?

      Если поршень поврежден, наиболее вероятными симптомами являются: потеря мощности из-за потери сжатия, чрезмерный дым в выхлопе или необычный шум двигателя.

      Можно ли починить сломанный поршень?

      Сломанный поршень не подлежит ремонту, его необходимо заменить.Поршни имеют очень жесткие геометрические допуски, которые, скорее всего, не будут соблюдены после ремонта. Кроме того, их механические и термические свойства будут изменены после ремонта, что приведет к дальнейшим повреждениям. Сломанный поршень может вызвать серьезные повреждения блока цилиндров, шатуна, клапанов и т. Д. И должен быть немедленно заменен.

      Можно ли водить машину с неисправным поршнем?

      Вы можете ездить с неисправным поршнем, но это не рекомендуется. Повреждение поршня может привести к значительному выходу из строя блока цилиндров, коленчатого вала, шатунов, клапанов и т. Д.Если не заменить поврежденный поршень, это может привести к полному отказу двигателя.

      Повредит ли мой двигатель удар поршня?

      Удар поршня повредит двигатель, оставьте без присмотра. Удар поршня в течение длительного времени приведет к повреждению гильзы цилиндра и самого поршня.

      Уходит ли поршень при нагревании?

      Поршень частично уходит, когда двигатель прогрет. Удар поршня вызван чрезмерным износом гильзы цилиндра или самого поршня.Когда двигатель нагревается, поршень имеет тепловое расширение, и зазор между поршнем и цилиндром уменьшается, что приводит к уменьшению ударов поршня.

      Могу ли я ехать с хлопком поршня?

      Можно ездить с хлопком поршня, но долго водить не рекомендуется. Удар поршня вызовет износ самого поршня и гильзы цилиндра. Удар поршня также может вызвать трещины в поршне, что может привести к полному отказу двигателя, если его оставить без присмотра.

      Что вызывает износ юбки поршня?

      Износ юбки поршня вызван недостаточной смазкой гильзы цилиндра маслом.В нормальном рабочем состоянии система смазки разбрызгивает масло на цилиндры, чтобы избежать прямого контакта между юбкой поршня и цилиндром. При неисправности системы смазки или недостаточном уровне масла на стенках цилиндра будет недостаточно масла, и юбка поршня будет значительно изнашиваться.

      Ссылки

      [1] Клаус Молленхауэр, Хельмут Чоеке, Справочник по дизельным двигателям, Springer, 2010.
      [2] Хироши Ямагата, Наука и технология материалов в автомобильных двигателях, Woodhead Publishing in Materials, Кембридж, Англия, 2005 .
      [3] The Aluminium Automotive Manual, European Aluminium Association, 2011.
      [4] Heisler, Heinz, Vehicle and Engine Technology, Society of Automotive Engineers, 1999.
      [5] QinZhaoju et al., Поршневая термомеханическая муфта дизельного двигателя моделирование и многопрофильная оптимизация проектирования, Примеры в теплотехнике, Том 15, ноябрь 2019 г.
      [6] Испытания поршней и двигателей, Mahle GmbH, Штутгарт, 2012 г.
      [7] Скотт Кеннингли и Роман Моргенштерн, Тепловые и механические нагрузки в Область чаши сгорания легковых дизельных поршней из AlSiCuNiMg; Пересмотрено с акцентом на расширенный анализ методом конечных элементов и инструментальные методы тестирования двигателей, Federal Mogul Corporation, SAE Paper 2012-01-1330.

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *