Принцип работы соленоида
Линейный электромагнитный соленоид: принцип работы и типы
В данной статье мы подробно поговорим про линейный соленоид, опишем принцип его работы, разберем конструкции линейного и вращательного соленоида, а так же вы узнаете как снизить энергопотребление соленоида.
Описание и принцип работы соленоида
Линейный соленоид работает на том же основном принципе, что и электромеханическое реле, описанное в предыдущем уроке, и точно так же, как и реле, они также могут переключаться и управляться с помощью транзисторов или полевых МОП-транзисторов. Линейный соленоид — это электромагнитное устройство, которое преобразует электрическую энергию в механическое толкающее или тянущее усилие или движение.
Линейный соленоид в основном состоит из электрической катушки, намотанной вокруг цилиндрической трубки с ферромагнитным приводом или «плунжером», который может свободно перемещать или скользить «ВХОД» и «ВЫХОД» в корпусе катушек. Соленоиды могут использоваться для электрического открывания дверей и защелок, открытия или закрытия клапанов, перемещения и управления роботизированными конечностями и механизмами и даже для включения электрических выключателей только путем подачи питания на его катушку.
Соленоиды доступны в различных форматах, причем наиболее распространенными типами являются линейный соленоид, также известный как линейный электромеханический привод (LEMA) и вращающийся соленоид .
Оба типа соленоидов, линейный и вращательный доступны в виде удержания (с постоянным напряжением) или в виде защелки (импульс ВКЛ-ВЫКЛ), при этом типы защелки используются в устройствах под напряжением или при отключении питания. Линейные соленоиды также могут быть разработаны для пропорционального управления движением, где положение плунжера пропорционально потребляемой мощности.
Когда электрический ток протекает через проводник, он генерирует магнитное поле, и направление этого магнитного поля относительно его северного и южного полюсов определяется направлением потока тока внутри провода. Эта катушка проволоки становится « электромагнитом » со своими собственными северным и южным полюсами, точно такими же, как у постоянного магнита.
Сила этого магнитного поля может быть увеличена или уменьшена либо путем управления количеством тока, протекающего через катушку, либо путем изменения количества витков или петель, которые имеет катушка. Пример «электромагнита» приведен ниже.
Магнитное поле, создаваемое катушкой
Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит, и плунжер, который находится внутри катушки, притягивается к центру катушки с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.
Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.
Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера. Линейные соленоиды доступны в двух основных конфигурациях, которые называются «тягового типа», так как он тянет подключенную нагрузку к себе, когда они находятся под напряжением, и «толкающего типа», которые действуют в противоположном направлении, отталкивая его от себя при подаче питания. Как притягивающие, так и толкающие типы обычно имеют одинаковую конструкцию, с разницей в расположении возвратной пружины и конструкции плунжера.
Конструкция линейного соленоида вытяжного типа
Линейные соленоиды полезны во многих устройствах, которые требуют движения открытого или закрытого типа (например, внутри или снаружи), таких как дверные замки с электронным управлением, пневматические или гидравлические регулирующие клапаны, робототехника, управление автомобильным двигателем, ирригационные клапаны для полива сада и даже для дверного звонка. Они доступны как открытая рама, закрытая рама или герметичные трубчатые типы.
Вращательный соленоид
Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях).
Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.
Обычно доступные ротационные соленоиды имеют перемещения 25, 35, 45, 60 и 90 o, а также многократные перемещения к определенному углу и от него, такие как самовосстановление в двух положениях или возврат в нулевое вращение, например, от 0 до 90- до -0 ° , самовосстановление в 3 положениях, например от 0 ° до +45 ° или от 0 ° до -45 °, а также фиксация в 2 положениях.
Вращающиеся соленоиды производят вращательное движение, когда под напряжением, обесточено, или изменение полярности электромагнитного поля изменяет положение ротора с постоянными магнитами. Их конструкция состоит из электрической катушки, намотанной вокруг стальной рамы с магнитным диском, соединенным с выходным валом, расположенным над катушкой.
Когда катушка находится под напряжением, электромагнитное поле генерирует множество северных и южных полюсов, которые отталкивают соседние постоянные магнитные полюса диска, заставляя его вращаться на угол, определяемый механической конструкцией вращающегося соленоида.
Вращающиеся соленоиды используются в торговых автоматах или игровых автоматах, для управления клапанами, затворами камер со специальными высокоскоростными, низкоэнергетическими или регулируемыми позиционирующими соленоидами с высоким усилием или крутящим моментом, такими как те, которые используются в точечно-матричных принтерах, пишущих машинках, автоматах или в автомобилях.
Электромагнитное переключение
Обычно соленоиды, линейные или вращающиеся, работают с приложением постоянного напряжения, но их также можно использовать с синусоидальными напряжениями переменного тока, используя двухполупериодные мостовые выпрямители для выпрямления питания, которые затем можно использовать для переключения соленоида постоянного тока. Малые соленоиды типа DC могут легко управляться с помощью транзисторных или полевых МОП-транзисторов и идеально подходят для использования в роботизированных устройствах.
Однако, как мы видели ранее с электромеханическими реле, линейные соленоиды являются «индуктивными» устройствами, поэтому требуется некоторая электрическая защита через катушку соленоида для предотвращения повреждения полупроводникового переключающего устройства высокими обратными ЭДС. В этом случае используется стандартный «Диод маховика», но вы также можете использовать стабилитрон или варистор малого значения.
Снижение энергопотребления соленоида
Одним из основных недостатков соленоидов, особенно линейного соленоида, является то, что они являются «индуктивными устройствами», изготовленными из катушек с проволокой. Это означает, что соленоидная катушка преобразует часть электрической энергии, используемой для их работы, в «нагрев» из-за сопротивления провода.
Другими словами, при длительном подключении к источнику электропитания они нагреваются, и чем дольше время, в течение которого питание подается на соленоидную катушку, тем горячее становится. Также, когда катушка нагревается, ее электрическое сопротивление также изменяется, позволяя течь большему току, повышая ее температуру.
При постоянном входном напряжении, подаваемом на катушку, катушка соленоидов не имеет возможности остыть, потому что входная мощность всегда включена. Чтобы уменьшить этот самогенерируемый эффект нагрева, необходимо уменьшить либо количество времени, в течение которого катушка находится под напряжением, либо уменьшить количество тока, протекающего через нее.
Один из способов потребления меньшего тока заключается в подаче подходящего достаточно высокого напряжения на электромагнитную катушку, чтобы обеспечить необходимое электромагнитное поле для работы и посадки плунжера, но затем один раз активировать для снижения напряжения питания катушек до уровня, достаточного для поддержания плунжера, в «сидячем» или закрытом положении.
Одним из способов достижения этого является последовательное подключение подходящего «удерживающего» резистора с катушкой соленоида, например:Здесь контакты переключателя замыкаются, замыкая сопротивление и передавая полный ток питания непосредственно на обмотки электромагнитных катушек. После подачи питания контакты, которые могут быть механически связаны с плунжером электромагнитного действия, размыкаются, соединяя удерживающий резистор R H последовательно с катушкой соленоида. Это эффективно соединяет резистор последовательно с катушкой.
Используя этот метод, соленоид может быть подключен к его источнику напряжения на неопределенный срок (непрерывный рабочий цикл), так как мощность, потребляемая катушкой, и выделяемое тепло значительно уменьшаются, что может быть до 85-90% при использовании подходящего силового резистора. Однако мощность, потребляемая резистором, также будет генерировать определенное количество тепла, I 2 R (закон Ома), и это также необходимо учитывать.
Рабочий цикл соленоида
Другим более практичным способом уменьшения тепла, выделяемого катушкой соленоидов, является использование «прерывистого рабочего цикла». Прерывистый рабочий цикл означает, что катушка многократно переключается «ВКЛ» и «ВЫКЛ» на подходящей частоте, чтобы активировать механизм плунжера, но не дать ему обесточиться во время периода ВЫКЛ. Прерывистое переключение рабочего цикла является очень эффективным способом уменьшения общей мощности, потребляемой катушкой.
Рабочий цикл (% ED) соленоида — это часть времени «ВКЛ», когда на электромагнит подается напряжение, и это отношение времени «ВКЛ» к общему времени «ВКЛ» и «ВЫКЛ» для одного полного цикла операций. Другими словами, время цикла равно времени включения плюс время выключения. Рабочий цикл выражается в процентах, например:
Затем, если соленоид включен или включен на 30 секунд, а затем выключен на 90 секунд перед повторным включением, один полный цикл, общее время цикла включения / выключения составит 120 секунд, (30 + 90) поэтому рабочий цикл соленоидов будет рассчитываться как 30/120 сек или 25%. Это означает, что вы можете определить максимальное время включения соленоидов, если вам известны значения рабочего цикла и времени выключения.
Например, время выключения равно 15 секундам, рабочий цикл равен 40%, поэтому время включения равно 10 секундам. Соленоид с номинальным рабочим циклом 100% означает, что он имеет постоянное номинальное напряжение и поэтому может быть оставлен включенным или постоянно включен без перегрева или повреждения.
В этом уроке о соленоидах мы рассматривали как линейный соленоид, так и вращающийся соленоид как электромеханический привод, который можно использовать в качестве выходного устройства для управления физическим процессом. В следующем уроке мы продолжим рассмотрение устройств вывода, называемых исполнительными механизмами, и устройства, которое снова преобразует электрический сигнал в соответствующее вращательное движение, используя электромагнетизм. Тип устройства вывода, которое мы рассмотрим в следующем уроке — это двигатель постоянного тока.
Лучшие решения для управления соленоидом
Соленоиды используются во многих устройствах для обеспечения линейного или вращательного приведения в действие механических систем.Хотя управление соленоидом может быть таким же простым, как включение и выключение нагрузки (например, выключатель), часто более высокая производительность может быть получена с помощью специализированной интегральной микросхемы (ИС) для его управления.
В этой статье мы рассмотрим, как система управления электропривода влияет на электромеханические характеристики соленоидов. Будет сравниваться две различные схемы: простой коммутатор и драйвер регулирования тока. Также будут рассмотрены технологии энергосбережения, которые ограничивают рассеивание мощности в соленоиде.
Принцип работы соленоида
Самая примитивная конструкция соленоида представляет собой катушку, создающую магнитное поле. Устройства, которые мы называем соленоидами, состоят из катушки и движущегося сердечника из железа или другого материала. При подаче тока в катушку сердечник втягивается и приводит в движение механический объект, соединенный с сердечником. Простой соленоид показан ниже:
Для приведения в движение сердечника на катушку подается напряжение. Поскольку индуктивное сопротивление катушки довольно велико для ускорения процессов срабатывания на катушку подают повышенное напряжение. Втягивающая сила сердечника пропорциональна току.
Для удержания механического устройства в активной зоне необходим гораздо меньший ток. Если ток в катушке после доведения механического устройства до конечной точки не уменьшить, то это вызовет значительно больший нагрев соленоида.
Для решения этой проблемы можно использовать драйвер постоянного тока. Ток можно контролировать по времени для обеспечения минимальных тепловых потерь при максимально необходимом удерживающем моменте.
Испытательная установка
Чтобы сравнить электромеханические характеристики различных схем привода соленоида, была создана простая тестовая установка с использованием сервоусилителя, подключенного к соленоиду с изгибом для измерения движения соленоида. Движение, наряду с напряжением и током, было зафиксировано с помощью осциллографа. Для управления соленоидом использовалась MPS MPQ6610 IC.
Простые драйверы для соленоидов
Самый простой способ управлять соленоидом — включить и выключить ток. Это часто делается с помощью переключателя MOSFET с низкой стороны и токового защитного диода (рисунок ниже). В этой схеме ток ограничен только напряжением питания и постоянным сопротивлением соленоида.
Электромеханические характеристики простого привода соленоида ограничены. Поскольку полное напряжение и ток применяются в течение 100% времени, ток втягивания ограничивается постоянной мощностью рассеяния соленоида. Большая индуктивность катушки ограничивает скорость нарастания тока при включении соленоида.
В тесте измерялось движение, напряжение и ток соленоида включаемого с помощью простого переключателя (рисунок ниже). В этом случае время включения соленоида (15 Ом, рассчитанного на 12 В) занимало 30 мс, чтобы приводить в действие механический привод и рассеивать мощность 10 Вт.
Если вы задаетесь вопросом о «впадине» в текущей форме волны, то это уменьшение тока связано с обратной ЭДС, создаваемой движущимся сердечником соленоида. Обратная ЭДС увеличивается по мере того, как сердечник разгоняется до тех пор, пока соленоид не втянется и не остановится.
Высокопроизводительный драйвер соленоида
В большинстве применений полный ток необходим только для втягивания соленоида. После завершения движения уровень тока в соленоиде может быть снижен, что приводит к экономии энергии и значительно меньшему количеству тепла, выделяемого в катушке. Это также позволяет использовать более высокое напряжение питания, что обеспечивает форсировку тока втягивания, чтобы сделать процесс втягивания сердечника соленоида более быстрым и обеспечить большую силу втягивания.
Мощный полумост MPS MPQ6610 вместе с несколькими внешними компонентами может выполнить эту задачу (рисунок ниже). MPQ6610 рассчитан на 60 В и 3 А и доступен в небольших пакетах TSOT и SOIC.
Результирующие сигналы возбуждения показаны на рисунке ниже. Желтая линия — это сигнал OUT, управляющий соленоидом, а зеленый — ток соленоида. Первоначально полное напряжение питания 24 В (в этом случае приводится в движение соленоид). После задержки ток уменьшается путем широтно-импульсной модуляции выхода. Время втягивания сокращается до 16 мс, а рассеиваемая мощность удержания значительно ниже (около 600 мВт вместо 10 Вт).
Эта схема работает следующим образом:
Первоначально входной сигнал низкий. Это разряжает C1-D1 и удерживает контакт ISET с низким значением Q1.
Входной сигнал нарастает, что позволяет MPQ6610 «нарастить» выходной сигнал до высокого уровня, применяя полное напряжение питания к соленоиду. C1 начинает заряжаться через R1. Ток поступает из штыря ISET, пропорционального току, протекающему в соленоиде. С зарядом C1 напряжение на штыре ISET может увеличиться.
Предполагая, что в соленоиде имеется достаточный ток, напряжение на шине ISET продолжает расти, пока не достигнет своего порога регулирования тока (1,5 В). На этом этапе MPQ6610 начинает регулировать ток соленоида. Регулируемый ток удержания устанавливается значением R2.
Время задержки (когда соленоид приводится в 100% рабочий цикл) устанавливается значениями R1 и C1. Для стандартного логического уровня 3,3 В время составляет приблизительно 0,33 × RC. Для примера выше, с R1 = 100 кОм и C1 = 2,2 мкФ, 0,33 × RC = 75 мс.
Выводы
Представленные в этой статье измерения показывают, что улучшенная производительность и значительно более низкое потребление энергии могут быть достигнуты с использованием управляющего током драйвера для управления соленоидами. Небольшие драйверы на интегральных микросхемах, такие как MPS MPQ6610, могут обеспечить это преимущество производительности по низкой цене и занимать очень небольшую площадь на печатной плате.
И кому интересно как работает соленоид:
Устройство и принцип работы соленоидов АКПП
АКПП любой формации представляет собой достаточно сложный механизм, просто изобилующий разного рода деталями. Одни из них являются лишь вспомогательными в работе устройства, а другие – настоящей основой. Именно к категории последних относятся соленоиды, отвечающие за переключение передач и управление режимами коробки. Более подробно о принципах функционирования и общей концепции данных элементов АКПП поговорим сегодня. Интересно? Тогда обязательно ознакомьтесь с приведённой ниже статьёй.
Соленоид АКПП – это специальное устройство, которое отвечает за движение масла внутри гидроблочного механизма. Управляется оно электронным блоком управления АКПП и, по сути, представляет собой обычный электромеханический клапан. Именно соленоиды стали наиболее распространёнными «управленцами» переключения передач и режимов работы в современных автоматических коробках передач. Если в роботизированных и вариаторных КПП заменить данные узлы чем-то возможно, то вот в гидравлических АКПП они стали основой управления, поэтому вряд ли будут вытеснены в течение ближайших десятилетий.
youtube.com/embed/ctQ7h6ZnZp8″/>
Стоит отметить, что соленоид в коробке переключения передач далеко не один – их множество, которые зачастую объединены в целые блоки. Ранее функции контроля движения масла по каналам АКПП возлагались на механические клапанные механизмы, однако развитие автомобильной электроники спровоцировало замену таких устройств на более удобные соленоиды. Если быть точнее, то первый соленоид был установлен в конструкцию автомата лишь в середине 80-х годов в США, после чего получил широкое распространение в этой сфере применения.
Повторимся, любой соленоид – это электромеханическое устройство, которое, честно говоря, очень простое по своей конструкции. Основная функция данного механизма заключается в перекрытии подачи масла по тому или иному каналу АКПП посредством его запирания специальным стержнем. Последний, к слову, выполнен из металла и попросту скользит в проводящей ток спирали (электричество в ней течёт постоянно, пока заведён мотор автомобиля). Нарастание тока движет стержень к концу спирали, то есть запирает канал подачи масла, снижение – к его началу, соответственно, усиливая подачу смазки. Движение стержня любого соленоида организовано при помощи специальных механизмов – запирающих и возвратных пружин.
Все соленоиды АКПП собраны в её элементе под названием «гидроблок» (в народе – блок соленоидов). Гидроблок, к слову, представляет собой плиту, разделённую на многочисленные каналы и имеющую в конструкции множество датчиков, клапанов. Такая организация позволяет автомату осуществлять возложенные на него обязанности, которые заключаются в автоматическом переключении передач. Соленоиды в этой системе играют немаловажную роль и находятся под управлением ЭБУ, направляющем им сигналы по открытию или закрытию конкретного канала гидроблока.
Виды соленоидов
Как стало ясно из предыдущего пункта статьи, управление АКПП без соленоидов представить сложно. В зависимости от того, по какому принципу работают данные механизмы, принято выделять несколько поколений установок. На сегодняшний день выделяются три основных вида соленоидов:
- Первый – стандартный электромеханический клапан, работающий по принципу «полностью отрыть канал подачи масла или же полностью закрыть его». Соответственно, при открытом положении такого соленоида по каналу гидроблока свободно протекает трансмиссионная жидкость, а при закрытом — масло не течёт;
- Второй – соленоид, представленный электромагнитным клапаном. Такие механизмы одно время были очень популярны в сфере автомобилестроения, так как могли точно организовать работу АКПП. Несмотря на это, низкая надёжность электромагнитных соленоидов сильно подорвала их популярность, поэтому в масштабном автомобилестроении они практически не используются. Главная фишка данных устройств заключается в том, что стержень может не только полностью открыть или закрыть канал подачи масла, но и сделать это частично, мягко регулируя подачу трансмиссионной жидкости;
- Третий – соленоид, представленный усовершенствованным электромагнитным клапаном. Данный механизм имеет в своей конструкции не просто запирающий/открывающий канал стержень, а тонко работающий гидравлический клапан. Работа подобных соленоидов основана на том, что контроль движения масла осуществляется при помощи шарового клапана. По сути, такое устройство позволяет организовать тонкую настройку работы АКПП, но при этом является заметно надёжней второго типа соленоидов, поэтому во время своего появления получило широкое применение. Более того, новейшие соленоиды имеют в конструкции фильтрующий элемент, который при пропускании через него трансмиссионной жидкости отсеивает лишний мусор и существенно продлевает срок службы коробки.
С течением времени конструкция автомата становилась всё более и более сложной, поэтому усложнялись и принципы работы соленоидов АКПП, из-за чего они подвергались усиленной модернизации. Основные совершенствования касались того, чтобы переложить на клапан дополнительные функции по типу сброса давления в конкретном блоке сцепления коробки или заблокировать муфту гидротрансформатора.
Типы соленоидов в современных коробках
Идеи автомобильных инженеров позволили достичь подобных задач. Теперь многочисленные типы соленоидов не только отвечают за переключение передач, но и тонко управляют режимами работы АКПП. Сегодня стандартный автомат имеет в конструкции 6 типов соленоидов:
- Соленоид EPC-формации или клапан линейного давления. Данный соленоид является важнейшим в конструкции АКПП и всегда стоит в гидроблоке первым. Основной функцией линейного соленоида является контроль подачи масла в конкретный канал. Нагрузка на данный механизм высока, поэтому он ломается чаще всего и подлежит первоочередной проверке;
- Соленоид TCC-формации или клапан, блокирующий муфту гидротрансформатора. Данное устройство, как правило, включается при работе мотора на высоких оборотах и частично отвечает за повышение КПД мотора. При «слабой» езде этот соленоид не работает;
- Соленоид Shift-формации или клапан-шифтовик. Располагается за линейным клапаном, имеет сложную структуру и выполняет важнейшую функцию всего гидроблока – переключает передачи посредством отточенной подачи трансмиссионной жидкости по соответствующим каналам;
- Управляющий соленоид. Пожалуй, наиболее простое устройство во всём гидроблоке, ибо имеет лишь одну несложную функцию – контроль за работой всех остальных соленоидов. Функционирование управляющего клапана очень схоже с тем, как работает транзистор любой микросхемы;
- Соленоид проскальзывания. Подобный клапан организует плавность перехода с одной передачи на другую, то есть, переводя работу автомата в режим проскальзывания;
- Соленоид охлаждения. Этот же механизм пускает нагретое масло АКПП в отделы охлаждения, что необходимо для стабильной работы коробки.
Важно понимать, что для каждой пары сцепления (передачи) имеется не один соленоид, а сразу несколько из отмеченных выше. Стабильная и беспроблемная работа АКПП возможна лишь при нормальной работе всех клапанов гидроблока, поэтому относиться к ним нужно с должным уровнем ответственности.
О неисправностях соленоидов АКПП и их ремонте
Неисправный соленоид – это одна из главных причин некорректной работы и перехода АКПП в аварийный режим. Несмотря на высокую надёжность современных клапанов гидроблока, по своей сущности эти устройства являются расходниками, поэтому требуют периодической замены. Если ситуация не слишком запущена, проблему может решить обычная замена масла в АКПП. Поменять соленоид вполне можно собственноручно, однако прежде всего важно диагностировать его неисправность.
Это интересно: Технические характеристики 4G69 2,4 л/165 л. с.Для проверки любого клапана гидроблочной плиты придётся осуществлять его «прозвонку». Необходимо это по одной простой причине: неисправный соленоид теряет нормальное для себя сопротивление, если быть точнее, оно повышается. Как проверить соленоид? Очень просто, процедура диагностики клапанов не представляет собой ничего сложного и заключается в исполнении следующих операций:
- Снимите гидроблок с коробки, который зачастую располагается на днище узла, реже – сбоку;
- Отсоедините контакты каждого соленоида от соответствующих разъёмов блока управления;
- Прозвоните каждый клапан. Норма сопротивления на его конках определяется для каждого типа в индивидуальном порядке. Так, например, для соленоидов EV-1 норма сопротивления находится в пределах 65-66 Ом (при 20 градусах по Цельсию). Для других клапанов нормальные показатели, соответственно, свои.
Примечание! На современных коробках имеются функции самодиагностики, поэтому для определения того, какой именно соленоид неисправен, достаточно подключиться к бортовому компьютеру автомобиля. Если подобная мера не возможна, то придётся проводить диагностику традиционным «прозвоном» своими руками, после чего уже ремонтировать нужный элемент узла.
Допустим, неисправный клапан выявлен – что требуется дальше? Естественно, ремонт соленоида или их группы. К сожалению, разобрать клапан, промыть его и собрать обратно не выйдет, придётся полностью менять элемент гидроблока. Стоимость его не особо высока, поэтому бояться процедуры ремонта не стоит. Зачастую замена соленоидов в АКПП проводится так:
- Гидроблок снимается с коробки;
- От клапана отсоединяются все разъёмы;
- Откручивают крепления соленоида, и он снимается с гидроблока;
- После этого на место старого клапана устанавливается новый, к нему присоединяются все разъёмы;
- Затем гидроблок устанавливается обратно на КПП. Ремонт окончен.
Как видите, особых сложностей в устройстве соленоидов автомата и их ремонте нет. Разобраться и с тем, и с другим вполне поможет представленный сегодня материал. Надеемся, он был для вас полезен и дал ответы на интересующие вопросы. Удачи на дорогах и в ремонте авто!
Соленоиды. Виды и устройство. Работа и особенности
Цилиндрическая обмотка, которая имеет длину, значительно больше ее диаметра, называется соленоидом. В переводе с английского, это слово обозначает – подобный трубе, то есть, это катушка, похожая на трубу.
Устройство и принцип действия
Соленоидом также можно назвать катушку индуктивности, которая намотана проводом на каркас в виде цилиндра. Такие катушки могут быть намотаны как одним, так и несколькими слоями. Так как длина обмотки намного больше диаметра, то при подключении постоянного напряжения на эту обмотку, внутри катушки образуется магнитное поле.
Часто соленоидами называют электромеханические устройства, содержащие катушку, внутри которой имеется ферромагнитный сердечник. Такие устройства выполнены в виде втягивающих реле автомобильного стартера, различных электроклапанов. Втягивающим элементом такого своеобразного электромагнита является сердечник из ферромагнитного материала.
Если в устройстве соленоида нет сердечника, то при подключении постоянного тока вдоль обмотки образуется магнитное поле. Индукция этого поля равна:
Где, N – количество витков в обмотке, l – длина катушки, I – ток, протекающий по соленоиду, μ0 — вакуумная магнитная проницаемость.
На концах соленоида величина магнитной индукции в два раза ниже, по сравнению с внутренней частью, так как две части соленоида совместно образуют двойное магнитное поле. Это применимо к длинному или бесконечному соленоиду, в сравнении с диаметром каркаса обмотки.
По краям соленоида магнитная индукция равна:
Так как соленоиды являются катушками индуктивности, следовательно, соленоид может запасать энергию в магнитном поле. Эта энергия равна работе, совершаемой источником, для образования тока в обмотке.
Этот ток образует в соленоиде магнитное поле:
Если ток в катушке изменяется, то возникает ЭДС самоиндукции. В этом случае напряжение на соленоиде определяется:
Индуктивность соленоида определяется:
Где, V – объем катушки соленоида, z – длина проводника катушки, n – количество витков, l – длина катушки, μ0 — вакуумная магнитная проницаемость.
При подключении к проводникам соленоида переменного напряжения, магнитное поле будет создаваться тоже переменным. Соленоид имеет сопротивление переменному току в виде комплекса двух составляющих: активной и реактивной. Они зависят от индуктивности и электрического сопротивления проводника катушки.
Виды соленоидов
По назначению соленоиды разделяют на два класса:
- Стационарные. То есть, для магнитных полей стационарного вида, которые долго держатся при некоторых значениях.
- Импульсные. Для создания импульсных магнитных полей. Они могут существовать только в краткий период времени, не больше 1 с.
Стационарные способны создать поля не более 2,5х105 Э. Соленоиды импульсного типа могут создать поля 5х106 Э. Если при создании поля соленоиды не подвергаются деформации и не слишком греются, то магнитное поле прямо зависит от проходящего тока: Н = k*I, где k – постоянная величина соленоида, поддающаяся расчету.
Стационарные делятся:
- Резистивные.
- Сверхпроводящие.
Резистивные соленоиды производят из материалов, обладающих электрическим сопротивлением. В связи с этим вся подходящая к ним энергия переходит в теплоту. Чтобы избежать теплового разрушения устройства, необходимо отвести лишнее тепло. Для этих целей применяют криогенное или водяное охлаждение. Для этого требуется вспомогательная энергия, сравнимая с требуемой энергией для питания соленоида.
Сверхпроводящие соленоиды производят из сплавов, обладающих свойствами сверхпроводимости. Их электрическое сопротивление равно нулю при различных температурах во время эксперимента. При функционировании сверхпроводящего соленоида теплота выделяется только в подходящих проводниках и источнике напряжения. Источник питания в этом случае можно исключить, так как соленоид функционирует в короткозамкнутом режиме. При этом поле может существовать без расхода энергии бесконечно долго при условии сохранения сверхпроводимости.
Устройства для создания мощных магнитных полей включают в себя три главные части:
- Соленоид.
- Источник тока.
- Система охлаждения.
При проектировании соленоида берут во внимание величины внутреннего канала и мощности источника питания.
Создание устройства с резистивным соленоидом для образования стационарных полей является глобальной научно-технической задачей. В мире, в том числе и в нашей стране, существует всего несколько лабораторий с подобными устройствами. Применяются соленоиды различных конструкций, эксплуатация которых осуществляется около тепловой границы.
Для обслуживания таких устройств необходим персонал, состоящий из работников высокой квалификации, работа которых дорого ценится. Большая часть финансов расходуется на оплату электрической энергии. Эксплуатация и обслуживание таких мощных соленоидов со временем окупается, так как ученые и исследователи различных областей науки, из разных стран могут получать важнейшие результаты для развития науки.
Наиболее сложные и важные задачи можно решить путем применения сверхпроводящих соленоидов. Этот способ более эффективный, экономичный и простой. Для примера можно назвать создание мощных стационарных полей сверхпроводящими соленоидами. Наиболее оригинальное свойство сверхпроводимости – это отсутствие электрического сопротивления у некоторых сплавов и металлов при температуре ниже критического значения.
Явление сверхпроводимости позволяет производить соленоид, не имеющий диссипации энергии при прохождении электрического тока. Однако, образованное поле имеет ограничение в том, что при достижении некоторого значения критического поля свойство сверхпроводимости разрушается, и электрическое сопротивление возобновляется.
Критическое поле повышается при снижении температуры от 0 до наибольшего значения.
Еще в 50-х годах прошлого века открыты сплавы, у которых критическая температура находится в интервале от 10 до 20 К. При этом они имеют свойства очень мощных критических полей.Технология создания таких сплавов и производство из них материалов для катушек соленоидов очень трудоемка и сложна. Поэтому такие устройства имеют высокую стоимость. Однако их эксплуатация недорогая и простая в обслуживании. Для этого необходим только источник питания низкого напряжения небольшой мощности и жидкий гелий. Мощность источника понадобится не выше 1 киловатта. Устройство таких соленоидов состоит из катушки, выполненной из меди и сверхпроводника многожильным проводом, лентой или шиной.
Существует возможность снижения энергетических затрат на создание еще более мощных полей. Эта возможность реализуется в нескольких ведущих странах, в том числе и в России. Такой способ основан на применении комбинации из водоохлаждаемого и сверхпроводящего соленоидов. Его еще называют гибридным соленоидом. В этом устройстве интегрируются наибольшие достижимые поля обоих типов соленоидов.
Водоохлаждаемый соленоид должен находиться внутри сверхпроводящего. Создание гибридного соленоида является объемной и сложной научно-технической проблемой. Для ее решения требуется работа нескольких коллективов научных учреждений. Подобное гибридное устройство эксплуатируется в нашей стране в Академии наук. Там соленоид со сверхпроводящими свойствами имеет массу 1,5 тонны. Обмотка выполнена из специальных сплавов ниобия с цинком и титаном. Обмотка водоохлаждаемого соленоида выполнена медной шиной.
Похожие темы:Соленоиды АКПП (Электромагнитные клапана),
Соленоиды автоматической трансмиссии – это электромагнитные клапаны-регуляторы, контролирующие поток трансмиссионной жидкости. Управление ими осуществляется электронным блоком или модулем Mechatronic.
Что представляет собой соленоид
Соленоиды относятся к одной из разновидностей катушек индуктивности и представляют собой магнитный стержень с медной обмоткой внутри, по которой передается ток, толкающий электромагнитный стержень в направлении движения рабочей жидкости. При изменении электрического напряжения стержень начинает движение в обратном направлении. Это простые соленоиды.В современных коробках-автомат используется электронная схема для управления соленоидами и потоком масла в АКПП с применением широтно-импульсной модуляции. Количество каналов, которые обслуживают данные соленоиды, может достигать пяти. Так называемые интеллектуальные соленоиды конструктивно более сложные и дорогостоящие, но обладают целым рядом положительных моментов, одним из которых является значительно меньшая изнашиваемость гидравлической плиты.
Месторасположение соленоидов – это каналы гидравлического блока, по которым циркулирует трансмиссионная жидкость. Электромагнитные клапаны управляют потоком масла в АКПП, направляя его к определенным узлам сцепления для переключения передачи, а также в маслоприемник системы охлаждения.
Типы соленоидов по исполняемым функциям
По назначению клапаны-регуляторы классифицируются на:
- EPC или LPC – соленоиды, которые регулируют линейное давление, отвечают за давление рабочей жидкости во всем гидравлическом блоке;
- ТСС (SLU) – управляет блокировкой гидравлического трансформатора, контролирует принудительное включение и процесс блокировки муфты узла;
- Shift – регулирует переключение скоростей автоматической трансмиссии, обычно их количество равно количеству передач.
Соленоиды постоянно модернизируются, приобретая новые, более специфические функции.
Интеллектуальные соленоиды
Соленоиды последних поколений позволили оптимизировать работу гидроблока. Огромной популярностью пользуются клапаны-регуляторы, которые не только открывают и закрывают канал для передвижения рабочей жидкости, но и регулируют ее количество. Блок управления посылает электрический импульс к магнитному сердечнику соленоида, после чего происходит открытие клапана.
Конструкторы не только изменили принцип работы соленоидов, но и усовершенствовали их конструкцию, которая заметно упростилась, не потеряв в надежности. Были выпущены 3-х, 4-х, 5-ти канальные клапаны-регуляторы для подачи давления сразу по нескольким направлениям.
Такие соленоиды практически решили проблему изнашивания каналов гидравлической плиты, которая всегда считается самым дорогостоящим узлом любой автоматической трансмиссии.
Первыми признаками проблем в блоке соленоидов служат толчки при переключении передач. Затягивать с решением не следует, так как плохо регулируемая подача масла ATF приведет к износу пакетов фрикционов.
Замену или ремонт электромагнитных клапанов лучше доверить опытному мастеру. Восстановление подлежат соленоиды с несущественным загрязнением, а вот с изношенными втулками следует полностью заменить.
Устройство и принцип работы АКПП HONDA CR-V первого поколения
Содержание:
1. Гидротрансформатор
2. Механическая часть
3. Гидравлическая система
4. Электрическая система
5. Работа АКПП в различных режимах
6. Блокировка гидротрансформатора
7. Неисправности АКПП и методы их диагностики
Классическая АККП состоит из гидротрансформатора и механической КПП с гидравлическим управлением. В интернете сейчас можно найти достаточно много материалов, в которых подробно рассказывается об устройстве и принципах работы гидротрансформатора, про планетарные редукторы, тормозные ленты и фрикционы. Главное преимущество КПП на спаренных планетарных редукторах в том, что для изменения передаточного числа достаточно затормозить или отпустить всего один элемент, а это значительно упрощает схему гидравлического управления. Применение электроники для управления АКПП позволяет не сильно усложняя гидравлическую схему существенно расширить её функциональные возможности, создавать многоступенчатые АКПП и улучшить комфортность их работы.
Компания Honda устанавливает на свои автомобили АКПП собственных разработок. Основное отличие их в том, что в механической части не используются планетарные редукторы, а применена схема прямой передачи крутящего момента через зубчатые пары с многодисковыми мокрыми сцеплениями. Такое устройство предъявляет повышенные требования к гидравлической схеме управления, т.к. для корректного переключения передач необходимо выключить одно сцепление, включить другое и при этом чётко синхронизировать эти два процесса. Поэтому в АКПП автомобилей Honda довольно сложная гидравлическая схема с электронным управлением.
Данная статья посвящена устройству и принципу работы АКПП типов M4TA, S4TA, SDMA, MDMA, MDLA, которые устанавливались на Honda CR-V первого поколения. Конструктивно схожи с ними следующие типы АКПП: A4RA, B4RA, B46A, M4RA, BDRA, S4RA, BMXA, SLXA (CIVIC 96-2000 г. в.)
S4XA, SKPA (ORTHIA).
1. Гидротрансформатор
Гидротрансформатор представляет собой полый жестяной тор (отсюда и жаргонное название «бублик»), внутри которого находятся нагнетающая (насосная) и ведомая (турбинная) крыльчатки, а полость между ними заполнена рабочей жидкостью. Нагнетающая крыльчатка объединена с корпусом, который соединён с маховиком коленчатого вала двигателя. Ведомая крыльчатка шлицами соединена с первичным валом коробки передач. Между ними находится крыльчатка статора (в некоторых источниках статор называют ротором). Статор через обгонную муфту условно соединён с корпусом коробки передач, т.е. может вращаться в направлении вращения корпуса и крыльчаток, и неподвижен при попытке повернуть его в обратном направлении. Нагнетающая крыльчатка создаёт потоки жидкости и по внешней стенке корпуса направляет их на ведомую крыльчатку. Эти потоки давят на ведомую крыльчатку и приводят её в движение. Лопастями ведомой крыльчатки жидкость направляется внутрь гидротрансформатора где попадает на статор и давит на него в направлении противоположном направлению вращения крыльчаток. В этих условиях статор оказывается неподвижен, своими лопастями он разворачивает потоки жидкости по направлению вращения крыльчаток и усиливает их. потоки жидкости в гидротрансформатореДалее жидкость вновь подхватывается нагнетающей крыльчаткой и направляется на ведомую. По мере сравнивания скоростей вращения ведомой и нагнетающей крыльчаток давление на лопасти ведомой крыльчатки уменьшается (ведь скорость потока жидкости относительно лопастей всё меньше и меньше). При полном сравнивании скоростей нагнетающей и ведомой крыльчаток давление на лопасти ведомой крыльчатки равно нулю, а значит для передачи хоть какого ни будь крутящего момента, ведомая крыльчатка должна всегда отставать от нагнетающей. А тут ещё и неподвижный статор! В закрытом корпусе, где всё вместе с жидкостью вращается, он стоит и тормозит всю эту карусель (это как на корабле на полном ходу взять и застопорить винт). Вот поэтому его и поставили через обгонную муфту – на малой скорости ведомой крыльчатки он помогает, усиливая потоки жидкости, а когда скорости сравниваются и потоки уже не давят на статор – он начинает вращаться вместе со всеми и не мешает. Таким образом: чем выше разница в скоростях вращения нагнетающей и ведомой крыльчаток, тем бОльший крутящий момент прикладывается к ведомой крыльчатке (и к трансмиссии). Т.е. при одинаковых оборотах двигателя, чем медленнее вращается ведомая крыльчатка тем бОльший крутящий момент передаётся на неё, а чем выше скорость вращения ведомой крыльчатки тем передаваемый момент меньше. А это практически то же, что происходит в обычной коробке передач: при включении шестерёнок с понижающим передаточным числом, на выход передаются низкие обороты и высокий крутящий момент, а при включении повышающей передачи – высокие обороты и маленький момент. Только в отличие от зубчатой передачи, гидротрансформатор способен менять передаточное число плавно и самостоятельно, плюс он допускает полную остановку ведомой крыльчатки (читай трансмиссии) при сохранении вращения ведущей стороны (двигателя). Выходит гидротрансформатор — идеальная «коробка передач», сам автоматически плавно меняет передаточное число и допускает нейтраль, то что и нужно автомобилю! Но нет. .. Рабочий диапазон гидротрансформатора слишком мал для применения в автомобиле в чистом виде. Например: для того что бы разгонять легковой автомобиль хотя бы до 100 км/ч просто с гидротрансформатором обычный двигатель должен развивать обороты свыше 15000 об/мин. Поэтому гидротрансформаторы применяются в сочетании с механическими коробками передач с автоматическим переключением. Вот тут они подходят полностью – на холостом ходу снижают крутящий момент до минимума, увеличивают крутящий момент в начале движения и обеспечивают бесступенчатое выравнивание оборотов и крутящего момента при переключениях передач.
Есть у гидротрансформаторов и другой недостаток – конфигурация лопастей крыльчаток такова, что крутящий момент передаётся только в одном направлении (от двигателя к трансмиссии) и только при условии, что нагнетающая крыльчатка вращается быстрее ведомой. Таким образом при равномерном движении, когда автомобиль катится по инерции или ускоряется при движении под уклон, связь между двигателем и трансмиссией фактически отсутствует. Для устранения этого недостатка в Хондах как и во всех современных АКПП применяется принудительная блокировка гидротрансформатора, о которой будет рассказано ниже.
в начало
2. Механическая часть.
Механическая часть как в обычной МКПП состоит из двух валов — ведущего и ведомого, на которых размещены четыре зубчатые пары с разными передаточными числами.
Главное отличие от обычной механической коробки в том, что одна из шестерёнок в каждой паре имеет постоянную связь со своим валом, а другая связана со своим валом через «мокрое» многодисковое сцепление. Каждое такое сцепление представляет собой пакет чередующихся ведущих и ведомых фрикционных дисков. Одни диски (назовём их нечетными) соединены с валом на котором находятся, другие (чётные) соединены со своей шестерней. В выключенном (разомкнутом) состоянии четные и нечётные диски свободно вращаются относительно друг друга. При этом ведущий вал может вращаться, а ведомый при этом быть неподвижным (автомобиль стоит на месте).
2.1 Передача крутящего момента.
При включении сцепления пакет сжимается, диски оказываются плотно прижатыми к друг другу и шестерня этого пакета оказывается жёстко связанной со своим валом, а поскольку другая шестерня её пары постоянно связана со своим валом, обеспечивается жёсткая связь между ведущим и ведомым валами с передаточным числом равным передаточному числу включённой зубчатой пары. Во время движения включённым оказывается одно из сцеплений, остальные в этот момент выключены. Если все сцепления выключены — это «нейтраль».
Включение сцеплений обеспечивается за счёт гидравлического цилиндра с кольцевым поршнем. При подаче рабочей жидкости в цилиндр под давлением, поршень сдвигается и сжимает диски. Автоматическое включение и выключение сцеплений обеспечивает сложная гидравлическая система управления с электронной «надстройкой».
2.2 Задняя передача.
На ведомом валу рядом с ведомой шестерней 4-й передачи находится шестерня заднего хода (ведомая), она через реверсную шестерню соединена с ведущей шестерней заднего хода объединённой с ведущей шестерней 4-й передачи. Ведомая шестерня 4-й передачи и шестерня заднего хода не закреплены на ведомом валу, но между ними находится прямозубая втулка жёстко зафиксированная на валу, а на ней кольцевая прямозубая муфта. При перемещении муфты в сторону шестерни 4-й передачи, муфта сцепляет последнюю со втулкой и тем самым фиксирует её на ведомом валу — теперь при включении сцепления 4-й передачи включается 4-я передача. При перемещении муфты в сторону шестерни задней передачи, на валу фиксируется шестерня задней передачи. Теперь при включении сцепления 4-й передачи крутящий момент будет передаваться от ведущего вала через сцепление 4-й передачи на объединённые ведущие шестерни 4-й и задней передач, далее через реверсную шестерню (за счёт которой изменяется направление вращения) на ведомую шестерню заднего хода и далее на ведомый вал. Ведомая шестерня 4-й передачи при этом свободно вращается на ведомом валу. Т.е. задняя передача реализована на сцеплении 4-й передачи! Переключающая муфта перемещается при помощи вилки с гидравлическим поршневым приводом. В положениях селектора «P» и «R» включена реверсивная шестерня, в остальных положениях включена прямая шестерня 4-й передачи. Этим объясняется щелчок, часто издаваемый коробкой при включении режима «D» («D4») после режима «R», и включении «R» после того как осуществлялось движение вперёд.
2.3 Особенности первой передачи.
Выше было сказано, что во время движения включено одно из сцеплений, остальные — выключены. На Хондах более поздних поколений так и есть, но у описываемых АКПП есть исключение. Это исключение — первая передача. Ведомая шестерня первой передачи объединена с однонаправленной (обгонной) муфтой, которая передаёт вращение от ведомой шестерни на вторичный вал, и свободно прокручивается, если вторичный вал начинает вращаться быстрее первичного. Наличие этой муфты позволяет держать сцепление первой передачи включённым даже при переключении на высшие передачи. Т.е. переключение на 2-ю передачу осуществляется путём включения сцепления 2-й передачи, которая начинает обгонять 1-ю передачу, оставшуюся включённой. Для чего это сделано? Достоверно не знаю, но предполагаю, что хондовские инженеры таким образом упростили задачу по синхронизации переключения с 1-й передачи на 2-ю, что бы сделать его наиболее комфортным (на высших передачах переключения меньше заметны). Очевиден недостаток такой схемы: при движении только на первой передаче связь двигателя с трансмиссией будет односторонняя, торможение двигателем будет невозможно. Для устранения этого недостатка конструкторы добавили в коробку дополнительный вал с дополнительной (удерживающей) 1-й передачей со своим сцеплением, которая включается параллельно с 1-й передачей и только в положении селектора «1». Таким образом в режиме «1» дополнительная 1-я передача обеспечивает непрерывную связь двигателя и трансмиссии, кроме того дополнительная 1-я передача усиливает основную 1-ю передачу, что может быть нелишним при движении по бездорожью или буксировке. На некоторых сериях АКПП (такую я видел на модели CIVIC с правым рулём) дополнительная 1-я передача отсутствует.
2.4 Режим «P» — паркинг.
Т.к. при неработающем двигателе ни одна передача не может быть включена, да и в гидротрансформаторе отсутствует жёсткая связь с двигателем, обязательным атрибутом любой АКПП является принудительная блокировка трансмиссии — режим «паркинг».
На вторичном валу вместе с обгонной муфтой 1-й передачи жёстко закреплено зубчатое колесо блокировки. Рядом на отдельной оси находится подпружиненный рычаг с зубом, пружина стремится отвести рычаг от колеса. На оси селектора режимов находится кулачок, который при повороте нажимает на рычаг. Кулачок двойной — внешняя часть кулачка не жёстко соединена с осью, а через пружину. Работает это всё так: при перемещении ручки селектора в положение «P» трос привода через рычаг поворачивает ось селектора внутри коробки. Ось поворачиваясь в крайнее положение поворачивает кулачок, который нажимает на рычаг и прижимает его зуб к колесу. Если зуб при этом попадает в вырез на колесе, кулачок защёлкивается на выступе рычага — вторичный вал заблокирован. Если зуб не попадает в вырез, то рычаг не перемещается до упора и кулачок остаётся не защёлкнутым, но пружина кулачка продолжает давить на рычаг. При скатывании автомобиля трансмиссия поворачивается, поворачивается и вторичный вал до совмещения зуба блокировочного рычага с вырезом, рычаг доходит до конца, кулачок доворачивается и защёлкивается — вторичный вал вновь заблокирован. При снятии с «паркигна» происходит обратное: ось селектора поворачивается из крайнего положения, поворачивает кулачок, он освобождает рычаг, который под действием своей пружины выходит из зацепления с блокировочным колесом.
2.5 Система смазки.
И ещё одна важная вещь, о которой нужно знать: система смазки. Что при движении происходит с пакетами дисков в выключенных сцеплениях? То же самое, что и при движении на нейтрали: чередующиеся диски вращаются относительно друг друга, в каждом пакете со своей скоростью. С учётом того, что между соседними дисками зазор составляет менее 0,1 мм, трение между ними неизбежно. Что бы из-за трения диски не изнашивались во время холостого вращения, в пакеты дисков принудительно под давлением подаётся ATF для смазки — диски как бы павают в жидкости. Смазка подаётся через каналы в валах непрерывно, пока работает двигатель и насос качает. Если подачи ATF в пакеты не будет, диски очень быстро придут в негодность (подтверждено на практике). По этой причине буксировка автомобиля с АКПП допустима только с заведённым двигателем!
в начало
3. Гидравлическая система.
На рисунке представлена схема гидравлической системы управления АКПП при положении селектора в режиме «N».
В полном размере схемы можно посмотреть по ссылкам:
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «P»
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «R»
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «N»
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «D» 1-я передача
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «D» 2-я передача
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «D» 3-я передача
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «D» 4-я передача
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «2»
Схема гидравлической системы АКПП типов M4TA, SDMA, MDMA в режиме «1»
Сердце системы — насос «ATF pump». Конструктивно это обычный шестерёнчатый масляный насос, приводится от корпуса гидротрансформатора т.е. напрямую от двигателя. Насос засасывает ATF через маслозаборник, который является и фильтром.
После насоса в магистрали стоит регулятор давления. Он выполняет две функции: устраняет зависимость выходного давления насоса от оборотов двигателя, поддерживает рабочее давление в заданных рамках, и автоматически поднимает рабочее давление при увеличении нагрузки на трансмиссию (резкое ускорение, буксирование и т.д.).
При описании гидротрансформатора упоминалось, что статор условно соединён с корпусом АКПП, на самом деле через втулку он соединён с рычагом-коромыслом, которое давит на подпружиненный золотник клапана регулятора давления. Чем больше разница скоростей насосной и ведомой крыльчаток, тем сильнее давление потоков жидкости на статор и тем сильнее коромысло нажимает на золотник. Золотник нажимает на пружины клапана регулятора давления и тем самым смещает его в сторону увеличения давления.
После запуска двигателя ATF находится в постоянном движении. Основной потребитель — гидротрансформатор, т.к. для него ATF — это «рабочее тело» непосредственно передающее крутящий момент. В процессе работы «тело» разогревается, поэтому возникает необходимость отвода излишнего тепла из ATF. Таким образом, во время работы двигателя ATF непрерывно циркулирует по следующему пути: картер — маслозаборник/фильтр — насос — регулятор давления — гидротрансформатор — радиатор(теплообменник) — картер.
*На использовании этой циркуляции основан метод полной замены ATF. Путь жидкости разрывается перед возвратом в картер. Заводится двигатель. В картере АКПП при этом предварительно залита свежая ATF, а старая сливается в постороннюю ёмкость. Процесс может быть автоматизирован при помощи специальной установки.
Управляющая гидравлическая система выполняет следующие задачи:
— включение нужной передачи путём подачи жидкости в рабочий цилиндр сцепления;
— управление скоростью нарастания давления в цилиндре в зависимости от скорости движения автомобиля;
— синхронизация включения следующей передачи с моментом выключения предыдущей передачи;
— управление подачей жидкости в гидротрансформатор для управления блокировкой;
— управление вилкой переключения задней и 4-й передачи.
Основу гидравлической системы составляют переключающие и регулирующие плунжеры. Переключающие плунжеры перемещаются под действием давления жидкости с одного и/или с двух торцов плунжера. Перемещаясь из одного положения в другое, плунжер открывает или закрывает каналы. На одном плунжере может быть несколько нормально открытых и/или нормально закрытых каналов. Регулирующие плунжеры могут менять проходное сечение каналов в зависимости от давления с одной стороны или разницы давлений с двух сторон плунжера. Т.к. жидкости несжимаемы, во избежание гидроудара и разрушения деталей системы в неё добавлены гидроаккумуляторы — цилиндры с подпружиненым поршнем. Гидроаккумуляторы включены в каналы подачи давления в цилиндры сцеплений. Полость обратной стороны гидроаккумулятора может заполняться жидкостью и давление в ней может регулироваться, что позволяет управлять ёмкостью гидроаккумулятора и временем нарастания давления в цилиндре. Ещё в системе есть шариковые односторонние клапаны и жиклёры. Для электронщиков всё это напомнит электрическую схему: шариковые клапаны — диоды, жиклёры — резисторы, гидроаккумуляторы — конденсаторы, плунжеры – транзисторные ключи, логические элементы «И» «ИЛИ» «НЕ», компараторы и т.д.
Питание гидросистемы осуществляется из точки после регулятора давления «Regulator valve».
Это контур рабочего давления «Line pressure». Помимо контура рабочего давления в системе существуют ещё два контура пониженного давления: контур управляющего давления «modulator pressure» и контур линейного (изменяющегося) давления «linear pressure».
Контур управляющего давления образован вторым регулятором давления «modulator valve«, и предназначен для управления положениями плунжеров.
В этом контуре находятся два электрических клапана управления переключением (shift control solenoid valve A, B) и два электрических клапана управления блокировкой гидротрансформатора (lock-up control solenoid valve A, B).
Работу электрических клапанов можно пояснить на таком примере:
Красным цветом показана магистраль управляющего давления. Магистраль раздваивается на две части. После раздвоения в каждой из двух магистралей стоит жиклёр, который ограничивает поток жидкости. Одна магистраль «давит» на плунжер справа, другая слева. В каждой из сторон стоит клапан, который закрывает выход из магистрали в картер.
Если клапан «а» открыт, а клапан «б» закрыт, то жидкость из магистрали клапана «а» сливается в картер и в этой магистрали после жиклёра давление будет ниже, чем в магистрали клапана «б», которой закрыт. Соответственно плунжер сместится влево и откроет канал «1».
Если клапан «а» закрыт, а клапан «б» открыт, то всё происходит наоборот: плунжер смещается вправо, закрывает канал «1» и открывает канал «2»… В реальности каждый плунжер ещё имеет пружину, которая определяет его положение при одинаковом давлении с двух сторон.
Контур линейного давления («linear pressure«) образован электромагнитным клапаном управления давлением (линейным соленоидом – «linear solenoid«. На вход клапана подаётся управляющее давление «modulator pressure«, а давление на выходе изменяется по командам PCM. Эта магистраль участвует в работе регулирующих плунжеров и предназначена для управления давлением в цилиндрах сцеплений во время переключения передач.
Назначение остальных элементов:
«Manual valve» — это шток селектора режимов, управляемый непосредственно от оси селектора через рычаг. Он стоит в «начале» всей гидросистемы после регулятора давления и распределяет направления потоков жидкости в зависимости от выбранного режима АКПП.
«1-2 Shift valve«, «2-3 Shift valve» и «3-4 Shift valve» – плунжеры переключений. Они меняют своё положение в зависимости от состояния электромагнитных клапанов переключения и обеспечивают подключение нужного цилиндра сцепления к контуру рабочего давления.
«Servo valve» – исполнительный сервопривод вилки переключения зубчатых пар задней и 4-й передачи. В штоке организован канал подачи жидкости для включения сцепления 4-й передачи в режиме заднего хода, канал этот остаётся закрытым пока поршень не переместится в положение «заднего хода». Таким образом организована защита от включения сцепления до переключения зубчатых пар при включении задней передачи. В положениях селектора «P» и «R» вилка переключения находится в положении «реверс». В положениях селектора «D»,»D3″,»2″,»1″ вилка находится в положении прямой передачи. В положении селектора «N» давление с привода вилки снимается и она остаётся в том положении, в котором была до этого. Для управления поршнем используется плунжер управления сервоприводом «Servo control valve«. Тут нужно ещё упомянуть об одной «защите от дурака». Подача давления на сервопривод для включения задней передачи осуществляется через «1-2 Shift valve», положение которого управляется электромагнитными клапанами переключения. Если при движении вперёд на скорости более 6 миль/ч (10 км/ч) включить селектор в положение «R», PCM включает обратную комбинацию shift control solenoid valve и переключение вилки на задний ход не происходит.
«Lock up shift valve«, «lock up control valve» «lock up timing valve» – плунжеры управления блокировкой гидротрансформатора, о ней будет рассказано ниже.
«2-nd orifice control valve» и «3-4 orifice control valve» – плунжеры сброса давления с цилиндров сцеплений при переключениях передач. Они отрывают канал для сброса давления с того цилиндра, который выключается.
«CPB valve» – этот плунжер управляется линейным соленоидом. Он синхронизирует момент выключения сцепления предыдущей передачи с началом включения сцепления следующей передачи.
«CPC valve» – о нём стоит рассказать поподробнее. Этот плунжер работает как регулятор давления в момент включения передачи. С одной стороны у него выходное давление, а с другой пружина и давление линейного соленоида. Он обеспечивает плавное включение сцепления, причём скорость нарастания давления в исполнительном цилиндре регулируется линейным соленоидом по сигналу управления от PCM. В конце включения передачи плунжер полностью открывается. Чем он заслуживает особого внимания? Во первых это единственный плунжер, пружина которого настраивается. Настраивается она на заводе и руководство по ремонту предписывает его не трогать. Во вторых эта пружинка – частая проблема АКПП данного типа выпущенных до 98 года включительно (М4ТА, SDMA) на многих машинах она ломалась и тогда возникали толчки, удары или пробуксовки при переключениях. В АКПП выпущенных с 99 года (MDMA) параметры этой пружинки изменили (увеличили толщину проволоки, длину, количество витков и глубину посадочного отверстия в плунжере) и проблема больше не возникала.
в начало
4. Электрическая система.
4.1 Состав системы. Контроль исправности.
Конструктивно блок управления АКПП (PCM) объединён с блоком управления двигателем (ECM).
PCM анализирует сигналы датчиков и управляет гидравлической системой при помощи электромагнитных клапанов. Кроме того PCM осуществляет контроль исправности системы управления АКПП. При обнаружении неисправности на приборной панели автомобиля моргает индикатор «D» (или «D4») и в память записывается соответствующий код неисправности (DTC). О методах диагностики электрической части подробно можно прочитать в статье Диагностика электронных систем.
Датчик положения селектора представляет собой многопозиционный переключатель и находится непосредственно на коробке передач. В зависимости от положения штока селектора переключатель замыкает на «массу» один контактов приходящих к нему проводов. Если одновременно будут замкнуты два и более контакта или не замкнут ни один, то PCM воспринимает это событие как неисправность датчика положения селектора. Кроме того в датчике есть отдельная контактная группа для блокировки стартера, которая «разрешает» запуск двигателя только в положениях селектора «P» и «N».
Датчик положения ДЗ — это переменный резистор включённый по схеме потенциометра. Напряжение на выходе датчика зависит от угла поворота ДЗ. Ход ДЗ меньше чем рабочий ход датчика, поэтому если напряжение на входе от датчика равно нулю или напряжению питания датчика (обрыв или замыкание), то PCM фиксирует это как неисправность датчика.
Датчик температуры двигателя представляет собой терморезистор. Его неисправность определяется по выходу сопротивления за пределы возможных значений.
PCM и ECM (блок управления двигателем используют общие датчики положения ДЗ и температуры двигателя.
Датчики скорости первичного и вторичного валов — это датчики Холла установленные около зубцов одной из шестерён валов. Сигнал на выходе датчиков — синусоида, частота которой зависит от скорости вращения вала. Неисправность датчика скорости вала PCM различает только по отсутствию синусоиды, т.е. эти датчики анализируются только в движении!
Датчик скорости автомобиля — самостоятельное устройство, имеющее отдельное питание и формирующее импульсы отрицательной полярности, частота которых зависит от скорости вращения дифференциала. Когда автомобиль остановлен, на выходе датчика напряжение покоя — 5В. Если на входе от датчика скорости при включённом зажигании отсутствует напряжение или импульсы, то фиксируется неисправность датчика скорости.
Клапаны управления переключением «shift control solenoid valve A», «shift control solenoid valve B», и клапаны управления блокировкой гидротрансформатора «lock-up control solenoid valve A», «lock-up control solenoid valve B» управления представляет собой соленоид с подпружиненной иглой, которая закрывает выходное отверстие. При подаче напряжения на обмотку клапана игла открывает отверстие. Даже когда клапаны закрыты PCM поддерживает небольшое напряжение на обмотках клапанов и контролирует ток через них. Таким образом PCM способен обнаруживать обрыв или замыкание обмотки клапана и/или его проводки сразу после включения зажигания.
Линейный соленоид «linear solenoid» (по другому ещё называется электромагнитным клапаном управления давлением) в качестве исполнительного элемента имеет подпружиненный плунжер, который смещаясь изменяет проходное сечение управляемого канала. PCM изменяет напряжение на обмотке соленоида и контролирует силу тока в обмотке. Т.к. сила тока в обмотке пропорциональна силе сжатия пружины плунжера, по силе тока PCM определяет положение плунжера. Однако такой метод является косвенным и при механической неисправности соленоида PCM не способен обнаружить это. Поэтому PCM диагностирует только электрическую неисправность линейного соленоида — обрыв или замыкание.
Важно запомнить: в данном семействе АКПП PCM не способен обнаруживать механическую неисправность клапанов управления и вообще исправность гидравлической системы, т.е. если клапан заклинил — блок управления этого не «увидит». Единственный способ контроля неэлектрической части на исправность это оценка результата действия всего агрегата — т.е. определение разницы скоростей первичного и вторичного валов и вычисление по ним реального передаточного числа. Контроль исправности системы блокировки гидротрансформатора может быть произведён по скорости вращения первичного вала и скорости вращения коленчатого вала двигателя. Поэтому среди неисправностей обнаруживаемых PCM есть только две, относящихся к механической и гидравлической части:
Р0740 (40) — неисправность системы управления блокировкой ГТ. Это может быть как механическая неисправность клапанов, неполадки в гидравлической системе или в самом гидротрансформаторе.
Р0730 (41) — неисправность системы управления переключением передач. Это так же может быть вызвано механической неисправностью клапанов управления переключением, неполадками в гидравлической системе. Фактически это означает несоответствие реального передаточного числа тому, которое должно быть при включённой передаче.
При обнаружении данных неисправностей, индикатор «D» не моргает, а гаснет (!), одновременно с этим зажигается индикатор MIL (чек енжин). Продолжение движения с данными неисправностями чревато серьёзными последствиями для АКПП.
4.2 Управление переключением передач.
Из описания гидравлической системы мы помним, что подача жидкости в цилиндры сцеплений осуществляется плунжерами переключении, положение которых зависит состояния электромагнитных клапанов управления переключениями. PCM открывает и закрывает клапаны в соответствии с заложенным алгоритмом и в зависимости от комбинации включается нужная передача. Важно понимать, что именно «мозг» даёт команду на включение той или иной передачи. Гидравлика не может это сделать самостоятельно. Если же такое происходит, то это существенная неисправность в гидравлической системе. Что будет если к примеру оба клапана переключений заклинили в закрытом положении? Смотрим таблицу: оба клапана ВЫКЛ – соответствует 4-й передаче. Значит при включении режима «D4» («D») будет постоянно включена 4-я передача, независимо от того, какую команду даёт PCM, причём последний не «увидит» этого, т.к. не способен диагностировать механическую неисправность клапана.
В режимах «D4» («D») «D3» («over drive off») PCM выбирает моменты переключений с текущей передачи на повышающую или понижающую по программе, выраженной следующими графиками:
График условий переключения на повышающие передачи
График условий переключения на понижающие передачи
Как видно из графиков момент переключения на повышающую передачу в первую очередь зависит от скорости. Однако в зависимости от степени открытия ДЗ, момент переключения на повышающую передачу отодвигается в сторону более высоких скоростей. Т.е. чем сильнее нажимать на педаль газа, тем позднее происходят переключения на повышающие передачи.
Примерно такая же закономерность для переключения на понижающие передачи, только моменты переключений смещены в сторону более низких скоростей. Однако при бОльшем открытии ДЗ моменты переключений так же сдвигаются в сторону более высоких скоростей. Таким образом одна и та же скорость автомобиля при небольших углах открытия ДЗ удовлетворяет условиям переключения на повышающую передачу, но при повышении угла открытия ДЗ начинает удовлетворять условиям переключения на понижающую передачу. На этом основана работа так называемой системы «kick-down», хотя на самом деле такой системы в этих АКПП нет, это всего лишь алгоритм, заложенный в PCM.
в начало
5. Работа АКПП в различных режимах.
Теперь, когда все системы рассмотрены отдельно, можно представить как это всё работает в совокупности.
Режим «P». Шток селектора (manual valve) подаёт рабочее давление в канал управления задней передачей и каналы управления сервопривода вилки переключения задней передачи — вилка переключает 4-ю передачу в положение «реверс». Канал подачи давления в контур управления передачами «вперёд» закрыт. Клапаны управления переключением выключены (ВЫКЛ — ВЫКЛ), что в при данном положении селектора не соответствует ни одной из передач. Все сцепления выключены. Выходной вал заблокирован системой «паркинга».
Режим «R». Система паркинга разблокирует выходной вал. Шток селектора (manual valve) подключает цилиндр сцепления 4-й передачи к контуру управления задней передачей, подаёт рабочее давление в контур управления задней передачей и каналы управления сервопривода вилки переключения задней передачи — вилка переключает 4-ю передачу в положение «реверс». Клапан управления переключением А включён (ON), клапан В выключен (OFF). Рабочее давление подаётся в цилиндр сцепления 4-й передачи. Крутящий момент от первичного вала передаётся через включённое сцепление 4-й передачи и дополнительную шестерню заднего хода на вторичный вал. Осуществляется движение задним ходом.
Режим «N». Шток селектора (manual valve) закрывает каналы управления задней передачей, каналы управления передачами «вперёд» также закрыты. С сервопривода вилки переключения задней передачи давление отключено — вилка остаётся в положении занимаемом ей до переключения в режим «N» благодаря пружинному фиксатору на штоке вилки. Клапаны управления переключением выключены (OFF — OFF). Ни одно сцепление не включено. Коробка передач находится в нейтральном состоянии. Первичный вал вращается вместе с гидротрансформатором и коленчатым валом двигателя. Вторичный вал остановлен, если автомобиль стоит или вращается вместе с трансмиссией, если автомобиль катится.
Тут необходимо сделать небольшое отступление и акцентировать внимание на положении вилки переключения задней передачи: в режиме нейтрали она остаётся в том положении, которое занимала до включения этого режима. Т.е. переключение вилки в положение задней передачи происходит при включении режима «R» из режима «N» после «D», а переключение в положение 4-й передачи при включении режима «D» из режима «N» после «R». Таким образом можно многократно переводить селектор из положения «D» в «N» и обратно — переключения вилки при этом не будет. То же самое при включении режима «R» — можно многократно переключаться между режимами «N», «R» и «P», и переключения вилки не будет. Всё это вполне логично: зачем при включении нейтрали после движения вперёд переключать шестерёнки в положение заднего хода, если следующим действием вполне вероятно будет снова движение вперёд? Однако замечено, что многие водители даже при короткой остановке, например перед светофором, переключают селектор из положения «D» в положение «P», проходя при этом включение задней передачи, а потом совершают обратный «манёвр». Зачем? Конечно запас прочности у «железок» достаточно высок, да и задняя передача включиться за короткое всемя не успевает — гидравлика на холостом ходу не допускает резких включений, но всё равно ничего хорошего для АКПП эти действия не приносят.
Режим «D4″(«D») 1-я передача. Шток селектора (manual valve) открывает контур управления переключением передач, отсюда же исходит прямой канал включения первой передачи и канал управления сервоприводом вилки переключения задней передачи. Включается сцепление первой передачи и остаётся включённым всё время пока включены режимы движения вперёд. Поршень сервопривода вилки переключения задней передачи перемещается в положение «вперёд», ведомая шестерня задней передачи разъединяется, а ведомая шестерня 4-й передачи соединяется со вторичным валом. (Если предыдущее включение режима «N» осуществлялось из режима «D», то вилка уже находится в положении «вперёд). Клапаны управления переключением (shift control solenoid valve) включаются и выключаются принимают состояния соответствующие первой передаче. Начинается движение вперёд.
Режим «D4″(«D») 2-я передача. По мере увеличения скорости автомобиля PCM включает клапаны управления переключением в состояния, соответствующие 2-й передаче и снижает давление на выходе линейного соленоида. Плунжеры управления переключениями 1-2 и 2-3 подключают к магистрали рабочего давления цилиндр 2-й передачи. Давление в этой магистрали регулируется плунжером «CPC valve» который в свою очередь управляется давлением линейного соленоида. PCM увеличивает давление на выходе линейного соленоида, причём скорость увеличения этого давления зависит от скорости движения автомобиля, величины открытия ДЗ. Процесс заканчивается переключением плунжера «CPB valve», он «шунтирует» «CPC valve» обеспечивая подачу в цилиндр полного рабочего давления. Движение осуществляется на 2-й передаче, которая «обгоняет» 1-ю.
Режим «D4″(«D») 3-я передача. При дальнейшем увеличении скорости, когда наступают условия для переключения на 3-ю передачу, PCM включает клапаны управления переключением в состояния, соответствующие 3-й передаче и снижает давление на выходе линейного соленоида. Плунжер переключения 2-3 меняет своё положение, отключает цилиндр 2-й передачи от магистрали рабочего давления и переключает его на клапан сброса давленияи, а к магистрали рабочего давления подключается цилиндр 3-й передачи. Плунжер «CPB valve» возвращается в исходное состояние, сбрасывает давление с цилиндра 2-й передачи и снижает рабочее давление в канале, к которому подключился цилиндр 3-й передачи. Далее плунжер «CPC valve» увеличивает давление в этом канале, обеспечивая плавное включение 3-й передачи, после чего «шунтируется» плунжером «CPB valve». Переключение ср 2-й на 3-ю передачу произведено.
Режим «D4″(«D») 3-я передача. Переключение с 3-й на 4-ю передачу происходит аналогичным образом: по команде PCM клапаны переключений «А» и «В» принимают состояние 4-й передачи, плунжер переключения 3-4 меняет своё положение, переключает цилиндр 3-й передачи на контур сброса давления, а к рабочему давлению подключает цилиндр 4-й передачи. Плунжер «CPB valve» вновь занимает исходное положение синхронизируя сброс давления в цилиндре 3-й передачи и начало нарастания давления в цилиндре 4-й передачи. Плунжер CPC valve» управляет включением сцепления, после чего вновь «шунтируется» «CPB valve», который перемещается во «включённое» положение в конце процесса переключения.
Переключения с верхних на нижние передачи происходят аналогично.
Режим «D3» отличается от режима «D4″(«D») только тем, что алгоритмически запрещено включение 4-й передачи. При переключении из режима «D4» в «D3» шток «manual valve» перемещается, но не переключает никакие каналы. Изменяется только сигнал датчика положения селектора (до 98 г.в. включительно), после рестайлинга в 99 г. режим «D3» убрали и заменил его кнопкой «O/D off» на ручке селектора.
Режим «2». Состояние гидравлической системы отаётся таким же как и в режимах «D4» («D») и «D3». Клапаны управления переключением (shift control solenoid valve) включены (ON ON), что соответствует включению второй передачи. Осуществляется движение только на второй передаче.
Режим «1». Шток селектора (manual valve) в дополнение к каналам, открытым в режимах «D»(«D4″,»D3»), «2», открывает канал управления включением сцепления дополнительной первой передачи — включается дополнительная первая передача. Клапаны управления переключением находятся в состояниях, соответствующих включению первой передачи. Осуществляется движение на первой усиленной передаче.
в начало
6. Блокировка гидротрансформатора.
Конструкция механизма блокировки такова: к ведомой крыльчатке присоединён диск с фрикционным слоем, который может прижиматься к стенке корпуса гидротрансформатора.
Если жидкость подаётся в гидротрансформатор в полость между диском и стенкой, диск не соприкасается с корпусом и ведомая крыльчатка вращается за счёт гидропотоков. Если жидкость подводится со стороны крыльчаток, то диск прижимается к стенке корпуса и фиксирует ведомую крыльчатку относительно корпуса гидротрансформатора, обеспечивая жёсткую связь двигателя и трансмиссии. Блокировка применяется только в режимах «D4» («D») и «D3» («over drive off»), при равномерном движении, при движении на предельно низких оборотах двигателя и при торможении двигателем. Именно из-за неё иногда возникает ложное ощущение включения «пятой» передачи.
Блокировка может быть полной и частичной. Управление блокировкой осуществляет PCM посредством электромагнитных клапанов управления блокировкой гидротрансформатора (lock-up control solenoid vavle) и линейного соленоида. Частичная брокировка включается, когда не требуется полностью заблокировать ведомую крыльчатку, а только «подогнать» или «притормозить» её. Клапан «A» включает блокировку. Клапан «В» совместно с линейным соленоидом задаёт её интенсивность.
При разгоне, переключениях передач и прочих манёврах блокировка гидротрансформатора выключена. Электромагнитные клапаны управления блокировкой «А» и «В» выключены, состояние линейного соленоида в данной ситуации не имеет значения. Плунжер включения блокировкои «lock-up shift valve» находится в исходном положении и направляет жидкость в порт 94 гидротрансформатора, т.е. в полость между стенкой и диском блокировки. Этим же плунжером порты 90 и 91 подключены на «выход» — жидкость из них направляется в теплообменник радиатора и оттуда сливается в картер АКПП.
Если в движении приотпустить педаль газа так, что бы автомобиль двигался по инерции или же начинал сбавлять скорость, т.е. когда скорость вращения коленвала двигателя незначительно превышает или наоборот меньше скорости вращения первичного вала АКПП включается частичная блокировка гидротрансформатора. Электромагнитный клапан управления блокировкой «А» открыт, плунжер включения блокировки перемещается из исходного положения и переключает порты гидротрансформатора: на 91 подаётся жидкость, 90 и 94 становятся выходами. Порт 94 направляется на плунжер управления блокировкой «lock-up control valve», который управляет давлением в полости между диском блокировки и корпусом. Давление из полости между ведомой крыльчаткой и статором (порт 90) направляется на плунжер синхронизации блокировки «lock-up timing valve», он в закрытом состоянии (при низком давлении линейного соленоида) перенаправляет это давление на плунжер управления блокировкой и это давление становится управляющим. Электромагнитный клапан «В» совершает частые включения и выключения и это заставляет плунжер управления блокировкой «lock-up control valve» находиться в промежуточном положении, отклонение от которого зависит от величины давления из порта 90. Плунжер управления поддерживает давление в полости между диском блокировки и корпусом так, что бы диск не прижимался к корпусу полностью: если плунжер смещается влево (по схеме) то давление падает и диск прижимается, это вызывает рост давления на другом выходе (порт 90), которое смещает «lock-up control valve» и он поднимает давление на выходе возрастает и ототвигает диск от корпуса.
При равномерном движении по прямой, когда скорости вращения коленвала двигателя и первичного вала коробки передач сравниваются, включается полная блокировка.
Электромагнитный клапан управления блокировкой «А» открыт, плунжер включения блокировки как и в случаве частичной блокировки поддерживает порты гидротрансформатора: 91 как вход, 90 и 94 как выходы. Электромагнитный клапан блокировки «В» находится в постоянном положении ВКЛ, линейный соленоид поднимает давление. Выход через порт 90 направляется открытым плунжером «lock-up timing valve» в теплообменник радиатора. Плунжер управления блокировкой «lock-up control valve» открывает порт 94 «в картер», диск блокировки полкостью прижимается к корпусу.
в начало
7. Неисправности АКПП и методы их диагностики.
Для начала небольшое отступление… Я хочу что бы все понимали: АКПП — очень сложный ЗАКРЫТЫЙ агрегат, в котором сочетаются и электрические и гидравлические и механические процессы. Именно поэтому, несмотря на то, что мы знаем устройство АКПП и знаем как оно всё должно там внутри работать, мы не можем однозначно знать, что в данный момент там происходит на самом деле. Если в коробке что то происходит не так как надо, мы это можем увидеть только по внешним признакам, но мы не можем заглянуть внутрь работающей коробки. Разобрав агрегат и заглянув внутрь, мы сможем увидеть последствия неисправности, но можем так и не увидеть саму неисправность, т.к. неисправность может проявляться только в работе. И это основная сложность диагнострирования неисправностей АКПП.
7.1 «Аварийный режим».
В описаниях АКПП в Интернете часто упоминается, что при неисправности она переключается в некий «аварийный» режим, при котором постоянно по умолчанию включена не то 2-я не то 3-я передача (а где то я читал про 5-ю передачу) и это позволяет доехать до сервиса. Не буду утверждать за все Хонды, но с уверенностью могу сказать: в данных АКПП «Аварийного режима» не существует!
Во первых: включение передач осществляется за счёт давления жидкости и работы гидравлики в её состав включён насос, имеющий постоянный прямой привод от двигателя через корпус гидротрансформатора. Насос работает всё время пока работает двигатель. Если насос не даёт рабочего давления — ни одно из сцеплений не включится. Т.е. нет давления — «вечная нейтраль». И машина уже никуда не стронется с места.
Во вторых: как уже говорилось при описании электрической системы управления, в этом «семействе» хондовских АКПП, электрика способна диагностировать только саму себя, но даже обнаружив неисправность она только информирует водителя об этом и продолжает функционировать в обычном режиме. Т.е. при неисправности электрической части, АКПП продолжает «ехать» столько, сколько позволяет неисправность.
7.2 Методы диагностики АКПП
Для диагностики у нас есть всего три метода:
1) Самодиагностика электрической части (диагностика PCM).
Об этом уже довольно подробно говорилось выше, повторю главное: PCM способен 100%-но диагностировать только электрическую составляющую агрегата. При обнаружении неисправности на приборной панели начинает моргать индикатор «D». В этом случае необходимо произвести диагностику, подробно о которой можно узнать в статье Диагностика электрических систем. Механические неполадки могут обнаруживаться PCM только в виде несоответсвия скоростей первичного и вторичного валов или первичного вала с коленчатым валом двигателя (при блокировках ГТ). Обнаружение PCM неисправностей Р0740 (40) или Р0730 (41) — достаточное условие для паники и прекращеня дальнейшего движения своим ходом. Однако эти неисправности обнаруживаются только у последних выпусков Honda с данным семейством АКПП и не у всех моделей (например у CR-V первого поколения — только 99-01 г.в. для рынков Америки). Поэтому часто неисправность обнаруживается только тогда, когда уже водитель чувствует , что «с машиной что то не то».
2) Диагностика по совокупности внешних признаков.
Для сервисов производитель разработал таблицы симптомов неисправностей, в которых на каждую проблему даётся перечень возможных неисправностей. Далено не всегда эта таблица даёт внятные ответы на вопросы: «Что случилось?» и » Что делать?». Например: коробка «встала» — включаем любую передачу, жмём газ, двигатель ревёт, а машина стоит. Обратимся к сервис-мануалу, разделу симптомов неисправностей:
Симптом: Engine runs, but vehicle does not move in any gear (двигатель работает, но автомобиль не едет ни на одной передаче)
Возможные проблемы:
1 Low AFT (низкий уровень ATF)
2 ATF pump worn or binding (насос ATF изношен или заедает)
3 Regulator valve stuck or regulator valve spring worn (клапан регулятора давления заклинил или пружина клапана изношена)
5 Mainshaft worn/damaged (первичный вал изношен или повреждён)
6 Shift cable broken/out of adjustment (трос селектора повреждён или неотрегулирован)
7 Final gear worn/damaged (выходная (главная) передача изношена или повреждена)
35 Drive plate defective or transmission misassembled (фрикционные диски деформированы или неправилно собраны)
37 ATF strainer clogged (засорен фильтр ATF)
Ну и что? Уровень ATF проверили, трос селектора в порядке (это по индикатору режимов на приборной панели видно). Вам стало легче? Все остальные проблемы проверяются только при полной разборке аграгата.
Понимание процессов, происходящих внутри АКПП, на мой взгляд больше поспособствует поиску неисправности, чем заводская таблица. К тому же практика показала, что большинство неисправностей из этого перечня не происходят никогда, зато «железо» иногда подкидывало такие сюрпризы, о которых составители этаблицы видимо и не подозревали. Но на всякий случай иметь «на вооружении» этот метод надо.
3) Проверка давления.
Пожалуй это самый информативный способ оценить происходящее в АКПП.
На корпус выведены контрольные точки для подсоединения манометров. Точки закрыты пробками с резьбой М8х1,25 мм.
Для диагностики необходимы спец. иструменты 07406-0070300 и 07406-0020400.
Если есть знакомый токарь, то инструмент можно сделать самостоятельно: в магазине покупаем 4 манометра со шлангамм из маслостойкой резины, а у токаря заказываем штуцеры под шланг с резьбой М8х1. 25 на конце.
Ещё нужен ассистент — помощник, который будет сидеть за рулём и по команде заводить мотор и щёлкать селектором, не забывая при этом нажимать педаль тормоза.
Самая простая проверка — проверка линейного (рабочего) давления. Для этого подсоениняем манометр к контролькой точке сверху. Заводим двигатель. Давление должно быть в пределах 780-880 кПа (8-9 кгс/см2) Руководсто предписывает проверку проводить при 2000 об/мин., но поверьте моему опыту: исправная АКПП будет держать давление и при оборотах холостого хода. «Усталая» коробка склонна на холостом ходу ронять давление примерно до 7 кгс/см2, но если поднять обороты двигателя хотя бы выше 1000 об/мин. давление быстро восстанавливается до нормы. Это свидетельствует о том, что в гидравлике уже намечаются проблемы — возможно засорен фильтр-маслозаборник (в этом случае недостаток давления наблюдается на холодном агрегате, в при прогреве давление восстанавливается) или в системе много паразитных утечек (тогда обычно недостаток давления наблюдается на горячем агрегате), хотя такая коробка может ещё проездить достаточно долго. Если же на холостом ходу линейное давление падает ниже 6 кгс/см2, то можно смело констатировать, что у АКПП серьёзные проблемы и капитальный ремонт не за горами. Затем пробуем включать разные режимы — линейное давление должно удерживаться в любых положениях селектора.
Для дальнейшей проверки колёса машины необходимо оторвать от земли, поэтому нужен подъёмник. Можно поднять переднюю часть автомобиля (опоры должны быть надёжными, ведь если машина соскочит с опоры — проверка может закончиться несчастным случаем), и у полноприводных моделей отсоединить от коробки передач карданный вал. Манометры подключаются к контрольным точкам 1-й, 2-й, 3-й и 4-й передач. Далее заводим двигатель и проверяем давления в сцеплениях передач в различных положениях селектора (небольшие скачки стрелок в момент переключения селектора не должны пугать):
«R» — манометр 4-й передачи должен показать рабочее давление, остальные — ноль.
«N» — на всех передачах давления не должно быть.
«D» «D4» «D3» — рабочее давление должно быть на 1-й передаче, на остальных — ноль. Если помимо 1-й передачи присутствует рабочее давление на какой либо другой передаче, то необходимо проверять электромагнитные клапаны управления переключением — электрическую неисправность должна показать самодиагностика, если электричести клапаны исправны, то возможно их заклинивание (клапаны нужно снять и проверить их отдельно). Если клапаны исправны, то возможно заклинивание плунжеров в гидравлической системе (это уже разбирать коробку). Присутствие в этом режиме небольшого давления (1-1.5 кгс/см2) на 4-й передаче свидетельствует об износе втулок в первичном валу — жидкость через одну из втулок интенсивно протекает из канала 1-й передачи в канал 4-й. Можно при этом удерживая тормоз слегка «газануть», если давление протечки подскакивает до 2-3 кгс/см2 — дело плохо, эта коробка долго не проездит.
«2» — рабочее давление должно быть на 1-й и 2-й передачах одновременно.
«1» — рабочее давление должно быть на 1-й передаче и 1-й дополнительной (если подключили манометр на эту точку).
Далее совершаем «пробную поездку» в различных режимах. Например включаем D, отпускаем тормоз и делаем плавный разгон до 4-й передачи, смотрим по манометрам: в какой последовательности включаются передачи, какие давления на пакетах соответствующих передач (не забываем при этом, что первая передача включена постоянно). Нарушение последовательности включения передач, чаще всего вызывается неисправностью электромагнитных клапанов переключения (напоминаю, что электрическая неисправность клапанов обнаруживается блоком управления (PCM), а механическую неисправность надо проверять вручную). Если клапаны исправны, то проблема в гидравлической системе (при этом я исхожу, что перед возникновением неисправности шальные руки не копались в электрике и не перепутали провода калапанов «А» и «В» местами).
Обращаем внимание на скорость нарастания давления на передачах при переключениях: обычно давление плавно поднимается примерно до 7-7.5 кгс/см2 затем скачком поднимается до рабочего (это включается плунжер «CPB»). Слишком медленное нарастание давления на какой либо передаче, когда давление поднимается до слишком низкого уровня (5-6 кгс/см2) перед скачком, свидетельствует об утечке в контуре данной передачи. При езде это может выражаться пробуксовками (кратковременными подскакиваниями оборотов двигателя) при переключениях передач.
Отдельно обращаем внимание на 4-ю передачу: если в режиме «R» в сцеплении 4-й передачи был недостаток давления, а при движении на 4-й передаче в режиме «D» давление в норме — это признак небольшой утечки в данном контуре (вообще в данном контуре при движении задним ходом давление часто немного меньше, чем при движении вперёд на 4-й, но если давление в режиме «R» существенно ниже (6 кгс/см2 и меньше), то такой автомобиль наверняка уже испытывает проблемы при движении задним ходом и скорый ремонт неизбежен).
7.3 «Куда пропадает давление» (лирическое отступление)
В такой сложной системе всё как в жизни — единство и борьба двух противоположностей, как Инь и Янь, как свет и тьма.
Оппонент первый — насос. Насос работает в связке с регулятором давления. Регулятор (как и в большинстве гидравлических систем) работает по принципу органичения давления, т.е. при превышении заданного уровня клапан открывается и стравливает давление. Это я пишу, что бы было ясно следуюшее: для поддержания рабочего давления на требуемом уровне, производительность насоса должна быть выше номинальной либо на уровне номинальной, но не ниже. Номинальной производительностью можно считать производительность насоса при оборотах холостого хода двигателя.
Какие факторы влияют на производительность насоса?
— зазоры в шестернях насоса. Чем больше их износ, тем больше зазор и тем ниже производительность, т.к. часть жидкости просачивается из полости нагнетания обратно в полость всасывания, или через неплотности начинается подсос воздуха. * Из практики: все насосы на ремонтируемых мной коробках были в норме, зазоры в допусках. Поэтому этот фактор я бы признаю несущественным, но исключать его полностью нельзя.
— состояние фильтра-маслозаборника. Чем хуже проходимость сетки для ATF, тем хуже наполняется жидкостью полость всасывания насоса, и тем больше подсос воздуха через неплотности. Забитая сетка существенно снижает производительность насоса, а иногда сводит её до нуля.
— состояние ATF. Холодная ATF более густая, чем горячая. Поэтому холодная жидкость хуже протягивается через фильтр. С другой стороны горячая жидкость более текучая и в случае сильного износа деталей становится больше влияние утчек. Наиболее стабильно сохраняет вязкость новая ATF. Старая ATF cтановится более жидкой при нагреве из-за потери свойств присадок. Но из-за высокого содержания продуктов износа деталей агрегата, в холодном виде старая ATF гораздо гуще свежей.
Оппонент второй — гидросистема. Дело в том, что она герметична весьма условно. Большое количество каналов отлито в алюминиевых плитах, накрыто железными пластинами и стянуто болтами, стальные трубки вставлены в посадочные места без дополнительных уплотнений, валы имеют вращающиеся соединения, цилиндры сцеплений уплотнены резиновыми кольцами, а в их поршнях есть и вовсе предательская штука — отверстие закрытое центробежным клапаном. И всё это сочится, капает, подтекает… Спасают ситуацию две вещи:
— производительность насоса, она компенсирует все эти утечки;
— вязкость ATF, густая жидкость меньше просачивается через неплотность.
И теперь: на одну чашу весов кладём НАСОС (источник) с его производительностью. На другую чашу — ГИДРОСИСТЕМУ (потребитель) со всеми её утечками.
В новом агрегате всё в порядке: производительности насоса достаточно и для работы системы и для компенсации протечек даже с избытком — весы перевешены в сторону насоса.
Но со временем, с одной стороны фильтр постепенно забивается продуктами работы агрегата, а с другой стороны резинки «слегаются», теряют эластичность, втулки изнашиваются. Производительность падает, а утечки растут. Чем старее коробка, чем тяжелее были условия её эксплуатаци, что бы , чем хуже она обслуживалась… тем быстрее чаши весов стремятся к равновесию. И уже нужно совсем немного, что бы нарушить это равновесие. Это может быть поездка зимой на непрогретой коробке (а ATF в последний раз менялась. .. а уже и не помню когда). А может полуторачасовое толкание в пробке летом в жару (перегретая ATF становится жидкой как вода).
… и так пока чаша весов не перевесит на сторону гидросистемы. Тогда процесс развивается довольно стремительно: давления не хватает — пробуксовки — повышенный износ фрикционных дисков — продукты износа забивают фильтр — давление ещё ниже… далее по кругу… Всё… встала…
в начало
3.03.2013г.
Ремонт гидроблоков — Ремонт АКПП в Уфе
Самыми важными частями автоматической коробки переключения передач являются гидроблок и блок управления АКПП. Именно благодаря им система может сама решать в какой момент нужно переключить передачу, регулировать давление трансмиссионного масла и другое.
Принцип работы этого узла автомобиля прост: информация о режиме движения поступает в блок управления АКПП из других электронных блоков управления и датчиков машины, информация обрабатывается, после чего электронная система отдаёт соответствующие команды на гидроблок (соленоиды) АКПП. Это очень сложная и комплексная система. Разумеется, при выходе из строя гидробдока, АКПП уже не способна выполнять свои функции.
В большинстве современных автомобилей имеется отдельный блок управления трансмиссией и гидроблок или гидроблок соединённый с блоком управления. Часто они размещаются в салоне или под капотом или в АКПП.
Не существует какого-то единого стандарта создания блоков управления АКПП, каждый крупный производитель использует свои собственные технологии.
Диагностика и ремонт
Ремонт гидроблока АКПП становится все более и более востребованным, так как на наших дорогах появляется все больше автомобилей, оснащённых коробкой «автомат». В отличие от традиционной «механики», где полный контроль за работой двигателя возлагается на водителя, в коробке «автомат» используются современные компьютерные технологии (особенно совершенные в дорогих автомобилях).
Для диагностики и ремонта гидроблока АКПП требуется опытный специалист, разбирающийся в устройстве гидроблоков от различных производителей, таких как Вольво, Додж, Рено, Ниссан и других, так как у каждого из них свои «болезни» и особенности конструкции.
Самое главное — доверяйте такой ответственный ремонт только проверенным и опытным специалистам. Сотрудники нашей компании имеют соответствующий опыт и необходимую квалификацию для качественного ремонта гидроблока АКПП, поэтому обращаясь к нам вы гарантируете себе быструю и качественную техническую помощь.
Сертификат
С технологией ремонта можно ознакомиться по ссылке:
Что такое соленоид коробки передач и как он работает?
Что такое соленоид коробки передач?Соленоид или цилиндр трансмиссии представляет собой электрогидравлический клапан, который регулирует подачу жидкости в автоматическую коробку передач и через нее. Соленоиды могут быть нормально открытыми или нормально закрытыми. Они работают от напряжения или тока, подаваемого компьютером или контроллером трансмиссии.
Они контролируют поток трансмиссионной жидкости в трансмиссии и открываются и закрываются в соответствии с электрическими сигналами, которые они получают от двигателя вашего автомобиля или блока управления трансмиссией.Который извлекает данные из ряда датчиков скорости в двигателе.
В современных автоматических коробках передач для переключения передач используется гидравлическая жидкость под давлением. Всякий раз, когда требуется переключение передач, бортовой компьютер активирует соленоид коробки передач, который направляет трансмиссионную жидкость в корпус клапана для включения нужной передачи.
Если один из этих электромеханических клапанов выйдет из строя, могут возникнуть всевозможные проблемы с трансмиссией. Итак, давайте подробнее рассмотрим соленоид и общие проблемы, которые с ним связаны.
Как работает соленоид коробки передач?Когда вы едете по улице, компьютер автомобиля анализирует данные, поступающие от датчиков скорости автомобиля и датчиков частоты вращения двигателя. На основе этой информации модуль управления двигателем (ECU) или модуль управления коробкой передач (TCM) выполняет соответствующее переключение на повышенную/понижающую передачу, посылая сигнал на один из нескольких соленоидов переключения.
Эти соленоиды коробки передач имеют внутри подпружиненный плунжер, обмотанный проволокой.Когда эта катушка провода получает электрический заряд от TCM / ECU, плунжер открывается, позволяя трансмиссионному маслу течь в корпус клапана и создавать давление в нужных муфтах и ремнях. В этом случае трансмиссия переключает передачи, и вы едете по дороге.
Компьютер автомобиля может управлять соленоидом коробки передач несколькими способами. Если автомобиль оснащен специальным блоком управления трансмиссией, он может открывать или закрывать гидравлический контур прямым сигналом 12 В.
Или блок управления двигателем может управлять плунжером соленоида, включая и выключая цепь массы. Соленоид можно использовать для управления одной или несколькими шестернями, в зависимости от сложности конструкции.
Симптомы неисправности соленоида коробки передачСоленоид коробки передач может выйти из строя из-за проблем с электричеством или из-за грязной жидкости, из-за которой соленоид переключения передач заедает в открытом/закрытом положении. Любое изменение давления трансмиссионной жидкости может вызвать многочисленные проблемы, в том числе:
- Неустойчивое переключение — или застрять на передаче и отказаться переключаться.
- Коробка передач не переключается на пониженную передачу — Если коробка передач не переключается на пониженную передачу, возможно, один из соленоидов переключения застрял в открытом/закрытом положении, препятствуя попаданию жидкости в корпус клапана трансмиссии для создания давления на нужной передаче.
- Серьезная задержка переключения/застревание в нейтральном положении — Чтобы автоматическая коробка передач с электронным управлением могла переключать передачи, соленоид должен регулировать давление жидкости для включения соответствующей передачи.
Если соленоид переключения передач получает слишком много или слишком мало электроэнергии, или грязная трансмиссионная жидкость заставила его оставаться открытым/закрытым, может возникнуть затруднение или замедление переключения на передачу, что может привести к тому, что коробка передач будет работать как он был мгновенно заблокирован нейтрален.
Поскольку соленоиды подключены к электрической системе автомобиля, ЭБУ обычно регистрирует код неисправности и включает контрольную лампу двигателя, если что-то пойдет не так. В этом случае трансмиссия может перейти в режим аварийной остановки, при котором включается только вторая/третья передача, чтобы ограничить скорость автомобиля, не блокируя его.
Первое, на что должен обратить внимание ваш механик, — это коды неисправностей. Сканер может помочь техническому специалисту определить причину проблемы с соленоидом.Это может быть так же просто, как плохой пол, или настолько сложно, как неисправный блок соленоидов (группа отдельных соленоидов переключения передач).
Что делать при возникновении проблем с соленоидами трансмиссииКак и любое механическое устройство или компонент, соленоиды трансмиссии со временем изнашиваются. Стандартное профилактическое обслуживание вашей трансмиссии может в некоторой степени компенсировать ее износ.
Если у вас возникли проблемы с электромагнитным клапаном трансмиссии, это может проявиться одним из четырех способов:
- Задержка переключения передач
- Вы не можете переключиться на более низкую передачу, и ваш двигатель продолжает работать даже при торможении
- Ваша трансмиссия заедает в нейтральном положении
- Переключение передач становится неровным и прерывистым
В зависимости от марки, модели и года выпуска автомобиля стоимость замены соленоида трансмиссии может различаться.
Стоимость замены соленоида коробки передач – запчасти и работаВ большинстве случаев в масляном поддоне есть соленоиды, соединенные с корпусом клапана. В зависимости от того, на чем вы ездите, техник может просто заменить неисправный соленоид.
Однако в некоторых случаях соленоиды поставляются в таких упаковках по несколько штук. Если проблема возникает с пакетом, необходимо заменить весь пакет. Эта работа обычно занимает от 2 до 4 часов. Время загрузки обычно оплачивается от 60 до 100 долларов в час.Средняя общая стоимость диагностики и замены составляет от 150 до 400 долларов.
Ожидайте от 15 до 100 долларов за один соленоид, в зависимости от марки и модели вашего автомобиля. Пакет может стоить $ 50 до $ 300.
Range | | Single | $ 15 до $ 100 | | |
Pack | $ 50 до $ 300 | ||||
От 120 до 400 долларов США | |||||
Всего (упаковка) | От 250 до 600 долларов США |
Хотя соленоиды переключения передач нередко изнашиваются со временем, вы можете продлить срок их службы, заменив трансмиссионную жидкость в интервалы, рекомендованные заводом-изготовителем.
Это удалит всю накопившуюся грязь и шлам, а свежая жидкость предотвратит прилипание плунжеров к внутренней части соленоидов. Если вы не знаете рекомендуемые интервалы переключения передач для вашего автомобиля, см. обратную сторону руководства по эксплуатации или просто спросите у Google.
СВЯЗАННЫЕ ПОСТЫ
Электромагнитный переключатель: принцип работы, типы и применение в работу с помощью слаботочного выключателя.Этот переключатель включает прочный переключатель, чтобы подключить аккумулятор автомобиля к стартеру двигателя. Электромагнитный переключатель соединяет ведущую шестерню со стартером до тех пор, пока ключ зажигания не сработает. Высокая производительность, надежность и долговечность являются ключевыми характеристиками соленоидных выключателей.
Каталог
Электромагнитные переключатели , использующие слабый электрический управляющий сигнал, используются в цепях высокого напряжения для коммутации. Этот переход в основном использует процесс принятия решений для работы с экономичными микрочипами и миниатюрными электронными компонентами, а также со сложными логическими схемами.Это также позволяет коммутационному аппарату большой мощности быть ограниченным удаленной областью. В автомобилях эти выключатели обычно используются для запуска систем двигателя. Описание того, что такое соленоидный выключатель и его работа, рассмотрено в этой статье.
I. Принцип работы
Проволочные магнитные катушки с открытым сердечником представляют собой соленоидные переключатели с цилиндрическим скользящим плунжером. После срабатывания катушки внутри полого отверстия может возникнуть магнитное поле, которое втягивает в себя цилиндрический плунжер в зависимости от направления переключателя, а также полюсов плунжера.Здесь плунжерное звено может быть выполнено механически, чтобы осуществлять переключение большой мощности на ряд переключающих контактов.
На электромагнитном переключателе имеется четыре соединительных клеммы, где катушка использует две и чаще всего может быть отделена от всех остальных клемм. Это делает катушку полностью автономной. Как правило, относительно выводов катушки выводы коммутируемого тока значительно тяжелее.
II. Типы
Из-за того, что через них протекает ток, большинство этих выключателей имеют только один переключаемый полюс.Некоторые переключатели на мгновение работают как соленоиды стартера, используемые в автомобилях. Когда двигатель автомобиля запускается, и стартер двигателя, и выключатель полностью отключаются от электрической системы. Подвижный плунжер для скольжения шестерни стартера с валом стартера используется в некоторых автомобильных системах. Он соединяет маховик со стартером, а также обеспечивает питание.
На рынке доступны соленоиды различных форм. С точки зрения их тканей, дизайна и характеристик они различаются.Но те же электрические принципы полагаются на всевозможные соленоиды:
AC ламинированные соленоида
DC C-кадр соленоид
DC D-кадр соленоид
линейный соленоид
роторный соленоид
В трубе или трубопроводе электромагнитный клапан регулирует поток жидкости. Для управления средами используются различные механизмы, что гарантирует, что большое разнообразие этих клапанов соответствует вариациям.
Эти клапаны имеют различные рабочие механизмы в дополнение к конструкции. Здесь мы рассмотрим 5 типов и принципов работы электромагнитных клапанов:
— Электромагнитный клапан прямого действия
В этих типах клапанов используются самые простые операции. Электромагнитный клапан прямого действия состоит из плунжера, который, не полагаясь на внешнюю силу, непосредственно закрывает небольшое отверстие.
Электромагнитные клапаны этих типов быстродействующие. Они также могут работать от самых низких до самых высоких допустимых уровней при различных давлениях.
НО (нормально открытый) или НЗ (нормально закрытый) клапан может быть электромагнитным клапаном прямого действия. Если используется клапан NO, отверстие закрывается при подаче электрического тока.
Отверстие остается закрытым и открывается в НЗ клапане прямого действия, когда обмотки электромагнитной катушки находятся под напряжением.
Трехходовой двухпозиционный электромагнитный клапан представляет собой вариант клапана прямого действия. Он работает идентично клапану 2/2, за исключением того, что выпуск жидкости отличается. С уплотнением в верхней или нижней части плунжера это возможно.
Использование электромагнитных клапанов прямого действия имеет как преимущества, так и недостатки. Такие клапаны быстродействующие и точные. Еще одним преимуществом является то, что эти типы клапанов, от низкого до высокого, будут работать с разным линейным давлением.
Недостатки электромагнитных клапанов прямого действия в основном заключаются в их прочности и размере. Поскольку клапаны зависят от мощности закрытия катушки соленоида, им обычно требуется большой ток для работы.
— Пилотный электромагнитный клапан
Пилотный электромагнитный клапан, также называемый клапаном непрямого действия, использует разницу давлений для закрытия или открытия отверстия между портами клапана.Функция этих типов клапанов намного сложнее и состоит из нескольких деталей, чем у клапанов прямого действия.
Вот как это работает с управляющим электромагнитным клапаном.
Входное и выходное отверстия электромагнитных клапанов этого типа разделены диафрагмой. В диафрагме имеется небольшое отверстие, которое позволяет среде проходить в верхнюю камеру. Эта камера соединена с портом низкого давления узким каналом.
Это приводит к поднятию диафрагмы, и теперь среда может свободно течь от впускного к выпускному отверстию.
В соленоидном клапане с пилотным управлением камера давления помогает усилить усилия закрытия и открытия. Это позволяет питать линию с высоким расходом от крошечных соленоидов.
Благодаря этому усилению давления электромагнитный клапан этого типа обычно не требует больших токов для работы.
Пилотные электромагнитные клапаны имеют много недостатков, несмотря на их мощную работу. Они представляют собой односторонний электромагнитный клапан, способный управлять средой, которая течет только в одном направлении.
— двухходовые электромагнитные клапаны
Эти типы клапанов используют два порта для закрытия или открытия потока жидкости. Если отверстие позволяет среде течь, когда катушка обесточена и нормально закрыта, если подача питания на катушку позволяет жидкости течь через любой порт, двухходовой электромагнитный клапан называется нормально открытым. Чаще, чем для нормально разомкнутого типа, используется нормально закрытый электромагнитный клапан.
Двухходовые электромагнитные регулирующие клапаны, в которых важно только выпускать и ограничивать среду.К ним относятся машины и аналогичные устройства для сжатия воздуха.
— Трехходовой электромагнитный клапан
С тремя портами и двумя отдельными отверстиями обычно устанавливается трехходовой электромагнитный клапан. В зависимости от состояния катушки соленоида два отверстия открываются попеременно.
Эти типы клапанов обычно имеют два впускных порта и один выпускной. Трехходовой электромагнитный клапан часто объединяет две отдельные жидкости при использовании в этой конфигурации.
Два выхода и один вход используются некоторыми трехходовыми электромагнитными клапанами.В одном из выходных портов такая конструкция позволяет клапану регулировать поток среды, направляя его в другой. В обычных бытовых приборах, таких как бытовая посудомоечная машина, можно найти 3-ходовые электромагнитные клапаны.
— Четырехходовой электромагнитный клапан
В этом типе клапана используются четыре порта; два входа давления и два выхода выхлопа. Для управления приводами электромагнитных клапанов двойного действия широко используются 4-ходовые клапаны.
Впускные порты снабжают привод или цилиндр входящим давлением, а выпускные отверстия для давления являются выпускными трубами.
III. Области применения
Области применения электромагнитного переключателя включают следующее.
Используя небольшие электрические сигналы управления для активации переключателя, электромагнитный переключатель используется для управления мощными цепями.
Он также позволяет разместить систему коммутации большой мощности в удаленном месте.
Эти выключатели обычно используются в системах запуска автомобильных двигателей.
— Электромагнитный переключатель в автомобиле:
В автомобилях положение электромагнитного переключателя включает следующее.
Соленоиды пропускают ток, который при включении создает магнитное поле. Это магнитное поле обеспечивает источник питания с высокой силой и током для запуска устройств, используемых в электрических и автомобильных приложениях, таких как автомобильные и промышленные приложения.
Надежный выключатель, соединяющий аккумуляторную батарею автомобиля со стартером, активируется электромагнитным выключателем.
Когда ключ зажигания находится в исходном положении, этим переключателем подключается шестерня стартера.
Что такое электромагнитный клапан и как он работает?
Электромагнитные клапаны используются везде, где требуется автоматическое управление потоком жидкости. Они находят все более широкое применение в самых различных типах установок и оборудования. Разнообразие различных доступных конструкций позволяет выбрать клапан в соответствии с конкретной областью применения.
ОБЩИЕ СВЕДЕНИЯ
Электромагнитные клапаны используются везде, где требуется автоматическое управление потоком жидкости.Они находят все более широкое применение в самых различных типах установок и оборудования. Разнообразие различных доступных конструкций позволяет выбрать клапан в соответствии с конкретной областью применения.
КОНСТРУКЦИЯ
Электромагнитные клапаны представляют собой блоки управления, которые при подаче или отключении питания либо перекрывают, либо пропускают поток жидкости. Привод выполнен в виде электромагнита. При подаче питания создается магнитное поле, которое тянет плунжер или поворотный якорь против действия пружины.В обесточенном состоянии плунжер или поворотный якорь под действием пружины возвращаются в исходное положение.
РАБОТА КЛАПАНА
По способу срабатывания различают клапаны прямого действия, клапаны с внутренним управлением и клапаны с внешним управлением. Еще одним отличительным признаком является количество соединений портов или количество путей потока («путей»).
КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ
В электромагнитном клапане прямого действия уплотнение седла прикреплено к сердечнику электромагнита.В обесточенном состоянии отверстие седла закрыто, которое открывается, когда клапан находится под напряжением.
2-ХОДОВЫЕ КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ
Двухходовые клапаны представляют собой запорные клапаны с одним входным и одним выходным портами (рис. 1). В обесточенном состоянии пружина сердечника с помощью давления жидкости удерживает уплотнение клапана на седле клапана, перекрывая поток. При подаче питания сердечник и уплотнение втягиваются в катушку соленоида, и клапан открывается. Электромагнитная сила больше, чем объединенная сила пружины и силы статического и динамического давления среды.
Рисунок 1
3-ХОДОВЫЕ КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ
Трехходовые клапаны имеют три портовых соединения и два седла клапана. Одно уплотнение клапана всегда остается открытым, а другое закрытым в обесточенном режиме. Когда катушка находится под напряжением, режим меняется на противоположный. Трехходовой клапан, показанный на рис. 2, выполнен с сердечником плунжерного типа. Различные операции клапана могут быть получены в зависимости от того, как текучая среда подключена к рабочим отверстиям на рис. 2. Давление жидкости увеличивается под седлом клапана.Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к седлу клапана и перекрывает поток жидкости. Порт A выпускается через R. Когда на катушку подается питание, сердечник втягивается внутрь, седло клапана в порту R закрывается подпружиненным верхним уплотнением сердечника. Текучая среда теперь течет от Р к А.
фигура 2 В отличие от версий с сердечниками плунжерного типа, задвижки с поворотным якорем имеют все присоединительные отверстия в корпусе задвижки. Изолирующая диафрагма предотвращает контакт жидкой среды с камерой катушки.Клапаны с поворотным якорем могут использоваться для обеспечения работы любого трехходового клапана. Основной принцип конструкции показан на рис. 3. Клапаны с поворотным якорем в стандартной комплектации снабжены ручным управлением.
цифра 3
ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ УПРАВЛЕНИЕМ
В клапанах прямого действия силы статического давления увеличиваются с увеличением диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления сил давления, соответственно становятся больше.Поэтому электромагнитные клапаны с внутренним управлением используются для переключения более высоких давлений в сочетании с отверстиями большего размера; в этом случае перепад давления жидкости выполняет основную работу по открытию и закрытию клапана.
ДВУХХОДОВЫЕ КЛАПАНЫ С ВНУТРЕННИМ УПРАВЛЕНИЕМ
Электромагнитные клапаны с внутренним управлением оснащаются 2- или 3-ходовым пилотным электромагнитным клапаном. Мембрана или поршень обеспечивают уплотнение седла главного клапана. Работа такого клапана показана на рис.4. Когда пилотный клапан закрыт, давление жидкости увеличивается с обеих сторон диафрагмы через выпускное отверстие. Пока существует перепад давления между впускным и выпускным отверстиями, запирающее усилие доступно благодаря большей эффективной площади в верхней части диафрагмы. Когда пилотный клапан открывается, давление с верхней стороны диафрагмы сбрасывается. Большая эффективная сила чистого давления снизу теперь поднимает диафрагму и открывает клапан. Как правило, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия.Компания Omega также предлагает клапаны с внутренним пилотированием, в конструкции которых используется соединенный сердечник и диафрагма, которые работают при нулевом перепаде давления (рис. 5).
цифра 4
МНОГОХОДОВЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ УПРАВЛЕНИЕМ
4-ходовые электромагнитные клапаны с внутренним управлением используются в основном в гидравлических и пневматических устройствах для приведения в действие цилиндров двойного действия. Эти клапаны имеют четыре патрубка: впускной патрубок P, два патрубка цилиндра A и B и один патрубок выпускного патрубка R.4/2-ходовой тарельчатый клапан с внутренним управлением показан на рис. 6. В обесточенном состоянии пилотный клапан открывается на соединении входа давления с пилотным каналом. Обе тарелки главного клапана теперь находятся под давлением и переключаются. Теперь соединение порта P подключено к A, а B может выпустить воздух через второй ограничитель через R.
цифра 5
КЛАПАНЫ С ВНЕШНИМ УПРАВЛЕНИЕМ
В этих типах для приведения в действие клапана используется независимая пилотная среда.На рис. 7 показан поршневой клапан с угловым седлом и запорной пружиной. В безнапорном состоянии седло клапана закрыто. 3-ходовой соленоидный клапан, который может быть установлен на приводе, управляет независимой управляющей средой. Когда на электромагнитный клапан подается питание, поршень поднимается против действия пружины, и клапан открывается. Нормально открытый вариант клапана может быть получен, если пружина размещена на противоположной стороне поршня привода. В этих случаях независимая управляющая среда подключается к верхней части привода.Версии двойного действия, управляемые 4/2-ходовыми клапанами, не содержат пружины.
цифра 6
МАТЕРИАЛЫ
Все материалы, используемые в конструкции клапанов, тщательно отбираются в соответствии с различными видами применения. Материал корпуса, материал уплотнения и материал соленоида выбраны для оптимизации функциональной надежности, совместимости с жидкостями, срока службы и стоимости.
МАТЕРИАЛЫ КОРПУСОВ
Корпуса клапанов нейтральной жидкости изготавливаются из латуни и бронзы.Для жидкостей с высокими температурами, например пара, доступна коррозионностойкая сталь. Кроме того, полиамидный материал используется в различных пластиковых клапанах по экономическим причинам.
ЭЛЕКТРОМАГНИТНЫЕ МАТЕРИАЛЫ
Все детали соленоидного привода, контактирующие с жидкостью, изготовлены из аустенитной коррозионностойкой стали. Таким образом гарантируется устойчивость к коррозионному воздействию нейтральных или слабоагрессивных сред.
УПЛОТНИТЕЛЬНЫЕ МАТЕРИАЛЫ
Конкретные механические, термические и химические условия применения влияют на выбор материала уплотнения.стандартным материалом для нейтральных жидкостей при температурах до 194°F обычно является FKM. Для более высоких температур используются EPDM и PTFE. Материал ПТФЭ универсально устойчив практически ко всем жидкостям, представляющим интерес с технической точки зрения.
НОМИНАЛЬНЫЕ ДАВЛЕНИЯ — ДИАПАЗОН ДАВЛЕНИЙ
Все значения давления, приведенные в этом разделе, относятся к манометрическому давлению. Номинальные значения давления указаны в фунтах на квадратный дюйм. Клапаны надежно работают в заданных диапазонах давления. Наши цифры относятся к диапазону от 15 % пониженного напряжения до 10 % повышенного напряжения.Если 3/2-ходовые клапаны используются в другом режиме, допустимый диапазон давления изменяется. Более подробная информация содержится в наших технических паспортах.
В случае работы с вакуумом необходимо позаботиться о том, чтобы вакуум был на стороне выхода (A или B), а более высокое давление, т. е. атмосферное давление, подключено к входному отверстию P.
ЗНАЧЕНИЕ РАСХОДА
Скорость потока через клапан определяется характером конструкции и типом потока.Размер клапана, необходимый для конкретного применения, обычно определяется номинальным значением Cv. Эта цифра рассчитана для стандартных единиц измерения и условий, т. е. расхода в галлонах в минуту и использования воды при температуре от 40°F до 86°F при перепаде давления 1 фунт/кв. дюйм. Приведены значения Cv для каждого клапана. Стандартизированная система значений расхода также используется для пневматики. В этом случае поток воздуха в SCFM выше по потоку и перепад давления 15 PSI при температуре 68°F.
ЭЛЕКТРОМАГНИТНЫЙ ПРИВОД
Общей чертой всех соленоидных клапанов Omega является соленоидная система, залитая эпоксидной смолой.В этой системе вся магнитопроводная катушка, соединения, ярмо и направляющая трубка сердечника объединены в одном компактном блоке. Это приводит к тому, что высокая магнитная сила удерживается в минимальном пространстве, обеспечивая первоклассную электрическую изоляцию и защиту от вибрации, а также от внешних коррозионных воздействий.
КАТУШКИ
Катушки Omega доступны для всех широко используемых напряжений переменного и постоянного тока. Низкое энергопотребление, особенно при использовании небольших соленоидных систем, означает, что возможно управление с помощью полупроводниковой схемы.
цифра 7 Доступная магнитная сила увеличивается по мере уменьшения воздушного зазора между сердечником и гайкой заглушки, независимо от того, задействован ли переменный или постоянный ток. Система соленоидов переменного тока имеет большую магнитную силу, доступную при большем ходе, чем сопоставимая система соленоидов постоянного тока. Характерные графики зависимости хода от силы, показанные на рис. 8, иллюстрируют эту взаимосвязь.
Потребляемый ток соленоида переменного тока определяется индуктивностью. С увеличением хода индуктивное сопротивление уменьшается и вызывает увеличение потребляемого тока.Это означает, что в момент обесточивания ток достигает своего максимального значения. Противоположная ситуация применима к соленоиду постоянного тока, где потребление тока зависит только от сопротивления обмоток. Сравнение во времени характеристик включения соленоидов переменного и постоянного тока показано на рис. 9. В момент подачи питания, т. е. когда воздушный зазор максимален, соленоидные клапаны потребляют гораздо более высокие токи, чем когда сердечник полностью закрыт. втянут, т. е. воздушный зазор закрыт.Это приводит к высокой производительности и расширенному диапазону давления. В системах постоянного тока после включения тока поток увеличивается относительно медленно, пока не будет достигнут постоянный ток удержания. Таким образом, эти клапаны способны регулировать только более низкие давления, чем клапаны переменного тока при тех же размерах отверстия. Более высокое давление может быть получено только за счет уменьшения размера отверстия и, следовательно, пропускной способности.
ТЕПЛОВЫЕ ЭФФЕКТЫ
Когда катушка соленоида находится под напряжением, всегда выделяется определенное количество тепла.Стандартная версия соленоидных клапанов характеризуется относительно низким превышением температуры. Они рассчитаны на достижение максимального повышения температуры 144°F в условиях непрерывной работы (100%) и при 10% перенапряжении. Кроме того, обычно допустима максимальная температура окружающей среды 130°F. Максимально допустимая температура жидкости зависит от конкретных указанных материалов уплотнения и корпуса. Эти цифры можно получить из технических данных.
ОПРЕДЕЛЕНИЕ ВРЕМЕНИ (VDE0580) ВРЕМЯ ОТВЕТА
Небольшие объемы и относительно высокие магнитные силы, связанные с электромагнитными клапанами, позволяют получить быстрое время отклика.Для специальных применений доступны клапаны с различным временем срабатывания. Время отклика определяется как время между подачей сигнала переключения и завершением механического открытия или закрытия.
НА ПЕРИОД
Период включения определяется как время между включением и выключением тока соленоида.
ПЕРИОД ЦИКЛА
Суммарное время включенного и обесточенного периодов является периодом цикла. Предпочтительный период цикла: 2, 5, 10 или 30 минут.
ОТНОСИТЕЛЬНЫЙ РАБОЧИЙ ЦИКЛ
Относительный рабочий цикл (%) представляет собой процентное отношение периода включения к общему периоду цикла. Непрерывная работа (100% рабочий цикл) определяется как непрерывная работа до тех пор, пока не будет достигнута установившаяся температура.
РАБОТА КЛАПАНА
Код работы клапана всегда состоит из заглавной буквы. В сводке слева подробно описаны коды различных операций клапана и указаны соответствующие стандартные символы контура.
ВЯЗКОСТЬ
Технические данные действительны для вязкостей до указанной цифры.Допустимы более высокие значения вязкости, но в этих случаях диапазон допустимых значений напряжения уменьшается, а время отклика увеличивается.
ДИАПАЗОН ТЕМПЕРАТУР
Температурные ограничения для текучей среды всегда детализированы. Различные факторы, напр. Тем не менее, условия окружающей среды, езда на велосипеде, скорость, допуск по напряжению, особенности установки и т. д. могут, однако, повлиять на температурные характеристики. Поэтому приведенные здесь значения следует использовать только в качестве общего руководства. В случаях, когда речь идет об эксплуатации в экстремальных температурных диапазонах, вам следует обратиться за консультацией в технический отдел компании Omega.
Применение Техническое обучениеУправление коробкой передач
|
Муфта гидротрансформатора автоматической коробки передач TCC
Муфта гидротрансформатора (TCC) создает прямое соединение между двигателем и трансмиссией, что увеличивает расход топлива и снижает температуру трансмиссионной жидкости. Проскальзывание потребляет мощность во время фазы сцепления. Блокировка корпуса преобразователя на валу турбины предотвращает это проскальзывание.
Муфта находится внутри корпуса гидротрансформатора; он содержит фрикционный материал, который фиксирует вал турбины внутри корпуса гидротрансформатора.TCM посылает импульсный сигнал напряжения на соленоид TCC. Соленоид перемещает клапан, который направляет жидкость под давлением в цепь сцепления, включая TCC. Когда сцепление выключено, гидротрансформатор позволяет двигателю вращаться без остановки. Пока транспортное средство замедляется и приближается к остановке, применение ТСС нежелательно. Подобно сцеплению механической коробки передач, оно заставляет двигатель глохнуть.
Диск сцепления содержит возвратную пружину и поршни с гидравлическим управлением.Поршни приводят диск сцепления в контакт с корпусом, обеспечивая механическое соединение 1:1. Он включается только в определенное время, в зависимости от таких условий, как скорость и температура. TCM принимает эти решения на основе входных данных от различных датчиков. Он сравнивает информацию с заводскими предустановленными таблицами перед включением или отключением TCC.
Входные датчики автоматической коробки передач
Датчик ECT контролирует температуру охлаждающей жидкости двигателя. TCM задерживает включение TCC до тех пор, пока двигатель не достигнет заданной температуры.
Датчик массового расхода воздуха контролирует объем воздуха, проходящего через воздушную трубку. TCM отключает TCC, когда двигатель разгоняется. Большинство трансмиссий отключают TCC во время замедления, чтобы предотвратить высокие выбросы.
Датчик TP указывает угол дроссельной заслонки. Если водитель ускоряется до полностью открытой дроссельной заслонки, TCM отключает TCC для переключения на пониженную передачу.
TCM использует тормозной выключатель . Сигнал предназначен для отключения TCC, когда автомобиль замедляется или останавливается.
TFT контролирует температуру трансмиссионной жидкости. TCM использует эту информацию для включения или выключения TCC в зависимости от температуры трансмиссионной жидкости.
Соленоид переключения передач 2-3 4L60E ❤️ Распространенная проблема для автомобилей GM
Коробка передач 4L60E — одна из лучших на рынке, и из-за неисправности соленоида она постоянно совершенствовалась на протяжении многих лет. Этот ремонт может стоить до 500 долларов, если вы можете сделать модернизацию самостоятельно. С лицензированным механиком водители должны рассчитывать заплатить до 2000 долларов или больше.
Авторемонт ДОРОГО
В зависимости от серьезности неисправности соленоида, возможно, стоит отправить автомобиль на свалку, если еще один ремонт не стоит вложений.
Трансмиссии состоят из трех различных систем, которые работают вместе: механической системы, гидравлической системы и электрической системы.
Вместе они помогают определить мощность от двигателя к карданному валу, определить, какая часть шестерен получает мощность, и контролировать точки переключения трансмиссии.Другими словами, это очень важный аспект эксплуатации автомобиля.
Существует два основных типа трансмиссий: специально разработанные электронные трансмиссии и модернизированные с использованием электронного управления. 4L60E — это четырехступенчатая коробка передач с автоматическим переключением передач. Существовали ранняя и поздняя версии этой трансмиссии, поэтому важно выяснить, какая из них установлена в вашем автомобиле.
Несмотря на общую впечатляющую надежность, 4L60E не будет работать лучше, чем его соленоиды.
Соленоиды со временем могут изнашиваться или ломаться, и их необходимо заменять. В зависимости от серьезности, это может означать, что автомобиль застрял на нейтральной передаче и становится полностью неуправляемым.
В этом блоге рассказывается, что такое соленоид переключения передач, что он делает и каковы его общие симптомы при поломке. Смета расходов на 2021 год предназначена для ремонта соленоидов, однако эти затраты варьируются в зависимости от гаража, местоположения и наличия запчастей.
Что такое соленоид переключения передач?В современных автоматических коробках передач для переключения передач используется жидкость под давлением; каждый раз при переключении передачи компьютер автомобиля активирует соленоид переключения , который направляет жидкость так, чтобы автомобиль включал правильную передачу.
Соленоиды переключения передач в трансмиссии 4L60E получают команды от блока управления двигателем на открытие и закрытие. Часть E в 4L60E означает электронный; эта трансмиссия имеет электронное управление.
При выходе из строя одного из соленоидов могут возникнуть всевозможные проблемы с трансмиссией. Когда в системе трансмиссии транспортного средства возникает небольшой сбой, все это часто отключается, что приводит к неприятной ситуации, связанной с заглохшим автомобилем, эвакуатором и (часто дорогими) счетами за ремонт.
Что делает соленоид переключения передач?Электромагнитный клапан переключения передач является жизненно важным компонентом, обеспечивающим безопасность и надежность автомобиля. Когда вы едете, компьютер автомобиля анализирует всевозможные данные. Основываясь на этой информации, блок управления двигателем соответствующим образом переключает передачи с помощью одного из нескольких соленоидов переключения передач.
Эти соленоиды имеют подпружиненный плунжер, обмотанный проволокой. Когда провод получает электрический заряд от блока управления двигателем, поршень открывается и позволяет трансмиссионной жидкости течь в нужные области.Все это происходит, когда коробка передач переключает передачи, а вы продолжаете движение по дороге.
Компьютер автомобиля управляет соленоидами переключения передач несколькими способами, включая открытие или закрытие гидравлического контура или управление плунжером, включающим и отключающим контур. В зависимости от конструкции автомобиля соленоид переключения передач может использоваться для управления одной или несколькими передачами.
Как узнать, что мой соленоид переключения передач вышел из строя?Если электромагнитный клапан переключения передач 4L60E неисправен, ваш автомобиль может не переключаться на пониженную передачу, задерживать переключение передач, нестабильно переключаться или застревать в нейтральном положении.В 4L60E много хлопот могут доставить соленоиды переключения передач.
Коробка передач 4L60E часто не переключается на пониженную передачу, если один или несколько соленоидов переключения заедают, потому что трансмиссионная жидкость не может перенаправляться в коробку передач для переключения передач.
Иногда происходит длительная задержка переключения и включения, что часто связано с неисправным соленоидом переключения передач. Это также может означать, что коробка передач пропускает передачи, потому что просто не может найти нужную.
В худшем случае, если соленоид переключения передач полностью вышел из строя, возможно, что коробка передач вообще не будет работать и останется в нейтральном положении независимо от того, какую передачу вы включили.
Каковы симптомы неисправности электромагнитного клапана переключения передач?К счастью, неисправный соленоид переключения передач обычно не является аварийным ремонтом коробки передач, и вы можете продолжать управлять автомобилем некоторое время, хотя во время вождения вы заметите определенные симптомы. Эти симптомы включают:
- Задержка или неустойчивое переключение передач
- Невозможность переключения на пониженную передачу
- Автомобиль набирает обороты при торможении
- Коробка передач застряла в нейтральном положении
- Загорается индикатор проверки двигателя
Если вы заметили, что вашему автомобилю требуется больше времени для переключения передач, причиной может быть неисправный соленоид.Если трансмиссионная жидкость загрязнена, это может означать, что соленоид переключения передач остается открытым или закрытым, что затрудняет переключение передач коробкой передач.
Кроме того, если трансмиссионная жидкость загрязнена, а соленоид застрял в открытом или закрытом положении, это также может означать, что вы не можете переключиться на более низкую передачу или что автомобиль набирает обороты при торможении. С загрязненной трансмиссионной жидкостью автомобиль не реагирует на сигналы от блока управления двигателем, предписывающие снизить скорость.
Кроме того, ваш автомобиль может быть полностью не в состоянии выполнять требуемое переключение передач и вести себя так, как будто он находится в нейтральном положении.
Наконец, может загореться лампочка проверки двигателя или трансмиссия может перейти в режим отказоустойчивости, что сделает автомобиль практически неуправляемым. У вас будет ограниченная мощность и всего несколько передач, так что будут заметные изменения в том, как едет ваша машина.
Некоторые машины даже не дают включить первую передачу, так что никуда не поедешь.
Как проверить соленоид переключения передач 4L60E?Большинство проблем с соленоидом 4L60E 2-3 переключения связано с тем, что провод катушки вышел из строя.Провод катушки может выйти из строя несколькими способами, кроме того, поршень также может застрять.
Вы можете проверить соленоиды переключения передач с помощью омметра. Если соленоиды имеют сопротивление от 20 до 30 Ом, они исправны. Если сопротивление ниже 20, но все еще регистрируется, соленоид, вероятно, расплавился. Если сопротивления нет, соленоид неисправен.
У многих людей нет даже такого измерительного прибора. По этой причине работа с соленоидами не является рекомендуемым проектом «сделай сам».Решение проблемы будет менее напряженным, если вы заплатите за буксировку профессиональному механику, который сделает работу быстро и правильно.
Если соленоид сломан, он больше не сможет создавать надлежащее магнитное поле, необходимое для правильной работы автомобиля. При поломке соленоида будет сильная вибрация.
Если соленоид расплавится, он также будет издавать резкую вибрацию, но, кроме того, вызовет экстремальные температуры внутри трансмиссии.
Если поршень заедает, это почти всегда вызвано грязной трансмиссионной жидкостью или каким-либо мусором. К счастью, поршень можно легко заменить, и когда это обслуживание будет выполнено, было бы разумно заменить трансмиссионную жидкость и фильтр, чтобы удалить грязную жидкость.
4L60E Расположение и замена соленоида переключения передач 2-3В большинстве случаев электромагнитный клапан переключения расположен внутри масляного поддона и соединен с корпусом клапана.
В зависимости от вашего автомобиля механик может заменить сломанный соленоид переключения передач, но иногда соленоиды поставляются в нескольких упаковках, поэтому, если есть проблема с одним, необходимо заменить все.
Если это делает механик, обычно это занимает от двух до четырех часов, а магазины выставляют счет от 60 до 100 долларов в час. Средняя общая стоимость диагностики и замены одного соленоида переключения составляет от 150 до 400 долларов.
Стоимость варьируется в зависимости от автомобиля, но вот простая разбивка:
- Один соленоид стоит от 15 до 100 долларов США
- Упаковка стоит от 50 до 300 долларов США
- Стоимость рабочей силы варьируется от 250 до 400 долларов США
Таким образом, ориентировочная стоимость ремонта составляет от 250 до 600 долларов.
Здесь следует упомянуть, что иногда расходы на трансмиссию, затраты на замену соленоидов и ремонт в целом являются признаком того, что пришло время отправить автомобиль на свалку. Автомобили строятся только для того, чтобы прослужить в среднем 12 лет.
Водители новых автомобилей могут рассчитывать на свою гарантию или отзывы, чтобы сделать ремонт автомобиля приятным и доступным. Однако по мере старения автомобиля проблемы начинают накапливаться. Будьте осторожны, покупая подержанный автомобиль. Если проблем больше, чем просто соленоид, возможно, стоит пересмотреть вопрос о том, чтобы утилизировать машину и приобрести что-то более надежное.
Соленоиды переключения со временем изнашиваются, это нормально; тем не менее, вы можете продлить срок их службы, заменив трансмиссионную жидкость в соответствии с рекомендациями производителя. Это гарантирует, что вся грязь, шлам и загрязнения будут удалены, а свежая жидкость предотвратит заедание поршней.
Можно ли ездить с неисправным электромагнитным клапаном переключения передач?Короткий ответ: да, вы можете управлять автомобилем с соленоидом плохого переключения передач .
Хотя он может неправильно переключать передачи или даже пропускать определенную передачу, вы можете проехать на нем в течение короткого периода времени без каких-либо серьезных повреждений.Однако в некоторых цифровых системах автомобиль может отключить вас от сети, что сделает его неуправляемым.
Система управления подачей жидкости должна продолжать функционировать, но избегайте серьезной нагрузки на коробку передач. Будьте осторожны с тем, как вы едете; не относитесь к улице как к своей личной гонке на дрэг-рейсинге.
Бывают ситуации, когда сломанный соленоид означает, что автомобиль не сдвинется с нейтрального положения, что сделает автомобиль непригодным для движения.
Лучше, чтобы механик диагностировал его, прежде чем он дойдет до этой точки.Если ваша машина уже есть, может быть, лучше отправить ее на свалку, чем вкладывать деньги в решение этой головной боли.
Примечание. Вождение автомобиля с неисправной коробкой передач не просто раздражает, это просто опасно. Если автомобиль не может включить передачу, когда вы находитесь в дороге, возможно, ваш автомобиль не сможет набрать скорость или замедлиться, что может привести к столкновению.
Если у вас возникли проблемы с коробкой передач, когда вы находитесь в дороге, вам следует подумать о том, чтобы обратиться за помощью на дороге. Отбуксируйте автомобиль в местный гараж, чтобы механик мог его осмотреть.
4L60E Проблемы с соленоидом переключения 2-3: что делать дальше?Если у вас есть автомобиль с коробкой передач 4L60E, у вас могут быть проблемы с электромагнитным клапаном переключения передач. К счастью, если их обнаружить на ранней стадии, их легко и недорого заменить.
Однако, если вам не так повезет, вы можете получить машину, которая не переключается с нейтральной передачи. В таком случае вы никуда не пойдете в ближайшее время.
Последнее замечание: не думайте, что проблемы с трансмиссией связаны с «просто датчиком» или «просто соленоидом».Часто механики выбрасывают эту «хорошую новость» перед тем, как сообщить плохую: вам нужен серьезный ремонт трансмиссии.
Все мы, владельцы автомобилей, сталкиваемся с головной болью, связанной с ремонтом автомобилей. Мы просто должны быть умными в том, как мы поступаем.
В зависимости от вашего автомобиля, возможно, не стоит делать этот ремонт, особенно если автомобиль старый и имеет ряд других проблем. В этой ситуации лучше всего отправить автомобиль на свалку и получить денежный платеж, который можно использовать для покупки более нового автомобиля.
Вы контролируете свои финансы и можете решить, что лучше для вас в вашей конкретной ситуации. Жизнь — это открытая дорога перед вами, и для прогресса вам нужно либо решить проблему с электромагнитным клапаном переключения передач 4L60e 2-3, либо вообще выбрать новый маршрут.
Принцип работы электромагнитного клапана
Что такое электромагнитный клапан?
Электромагнитный клапан представляет собой промышленное оборудование, управляемое электромагнетизмом. Это автоматический базовый элемент для контроля жидкости.Он относится к приводу, но не ограничивает гидравлическое давление и пневматическое управление. В системе промышленного управления электромагнитный клапан используется для регулирования направления, расхода, скорости и других параметров среды. Электромагнитный клапан может координироваться с различными цепями для реализации ожидаемого управления, при этом гарантируется точность и гибкость управления.
Электромагнитный клапан состоит из электромагнитной катушки и магнитного сердечника. Это корпус клапана, содержащий одно или несколько отверстий.Когда катушка проходит или отключается от питания, работа магнитного сердечника приводит к тому, что жидкость проходит через корпус клапана и отключается, чтобы достичь цели изменения направления жидкости. Электромагнитный компонент электромагнитного клапана состоит из неподвижного железного сердечника, подвижного железного сердечника, катушки и так далее. Корпус клапана состоит из сердечника золотникового клапана, жгута золотникового клапана и основания пружины. Электромагнитная катушка устанавливается непосредственно на корпус клапана, в то время как корпус клапана заключен в уплотнительную трубу, что представляет собой простую и компактную комбинацию.
Как работает электромагнитный клапан?
Электромагнитный клапан имеет закрытую камеру внутри и вентиляционные отверстия в разных положениях. Каждое отверстие связано с разными маслопроводами. Камера имеет поршень посередине. Две стороны — это две части электромагнитов. Электризующая магнитная катушка притянет корпус клапана к своей стороне, так что различные выпускные отверстия для масла будут открываться или закрываться посредством управления движением корпуса клапана. Однако впускное отверстие для масла постоянно открыто.Гидравлическое масло будет поступать в разные отводные трубы. Давление масла будет использоваться для привода поршня масляного цилиндра, который будет приводить в движение шток поршня, а затем механическое устройство. Таким образом, посредством управления током электромагнитного клапана будет контролироваться механическое движение. Кроме того, давайте кратко узнаем о принципе работы двух основных типов электромагнитных клапанов.
1. Электромагнитный клапан прямого действия
- Принцип работы
Когда питание включено, электромагнитная катушка создает электромагнитную силу, которая поднимает запорный элемент с седла клапана и открывает клапан.Когда питание отключается, электромагнитная сила исчезает, и пружина прижимает запорный элемент к седлу клапана, чтобы закрыть клапан. - Характеристики
Может нормально работать в условиях вакуума, отрицательного давления и нулевого давления. Однако диаметр обычно не превышает 25 мм.
2. Клапан электромагнитный пилотный
- Принцип работы
Когда питание включено, электромагнитная сила открывает пилотное отверстие, и давление в верхней камере быстро уменьшается, образуя перепад давления, который низкий вверху и высокий внизу вокруг закрывающего элемента.Давление жидкости способствует перемещению закрывающего элемента вверх для открытия клапана. Когда питание выключено, сила пружины закрывает направляющее отверстие. Давление через перепускной порт быстро создает перепад давления, который высок вверху и низок внизу вокруг запорного элемента. Давление жидкости заставляет закрывающий элемент двигаться вниз и закрывать клапан. - Характеристики
Диапазон давления жидкости имеет относительно высокий верхний предел. Он может быть установлен случайным образом с соблюдением условия перепада давления жидкости.
Купить 2-ходовой, 3-ходовой и 5-ходовой пневматический электромагнитный клапан с высокой производительностью и низкой ценой на ATO.