Сколько свинца в аккумуляторе | Таблица содержания свинца по маркам АКБ
От того, сколько свинца в аккумуляторе, зависит цена источника питания при продаже на лом. Зная точное количество металла, вы решите, как поступить с батареей: разобрать и сдать чистый цветной металл или отправить на переработку в собранном виде.
Содержание свинца в различных типах аккумуляторов
Приём б/у аккумуляторов включает анализ устройства на содержание металлов в составе. Количество цветмета зависит от ёмкости АКБ и представлено такими значениями:
- 55 А/ч. Всего – до 10,5 кг свинца. Извлечь без специального оборудования получится около 3-3,5 кг.
- 60 А/ч. Всего – 12 кг. Сколько свинца в АКБ доступного к самостоятельному извлечению? Только 3,4 кг чистого сплава.
- 75 А/ч. Всего – 15,5 кг. Для самостоятельного извлечения доступно 4,5 кг.
- 90 А/ч. Всего – 19 кг, из которых вы извлечёте 5,5 кг.
- 190 А/ч. Всего – 30 кг, количество добываемое вручную сплава – 8-9 кг.
Чаще встречаются источники питания на 55, 60 и 190 А/ч. Ёмкие модели выгоднее разбирать и сдавать на лом чистый металл.
Сколько электролита в аккумуляторе?
Сколько свинца в 1 аккумуляторе зависит от содержания электролита. Рабочее вещество занимает 20-25% от массы устройства. Точный объём жидкости связан с ёмкостью источника.
В батареях на 55 А/ч – 2,5 литра электролита. Для моделей на 60 А/ч используют на 0,2-0,5 литра больше. Чем выше ёмкость устройства, тем больше электролита требуется.
Вес составных частей аккумулятора
Когда проводится скупка аккумуляторов, важно не только сколько свинца в автомобильном аккумуляторе или устройствах другого типа. Важен вес всех элементов конструкции, так как некоторые из них тоже подходят для утилизации и могут принести доход.
Общее содержание неметаллических элементов, а также цветных металлов другого вида – 10-12% от массы устройства. Для установления точного веса понадобится разобрать источник питания и взвесить каждую пластину и другие составляющие. В обычном АКБ на 55 Ампер содержится 1,5-1,7 кг неметаллических элементов (то есть выполненных из ПВХ).
Зачем знать содержание свинца в аккумуляторе?
Компания К-2 занимается скупкой металлолома, в том числе источников питания для переработки и утилизации. Зная, сколько цветного металла в устройстве, вы заранее просчитаете стоимость батареи и выберите удобный вариант сотрудничества – с самостоятельным разбором и АКБ на цветмет или предоставив сортировку и прочие сложные работы нашим сотрудникам.
Аккумуляторы стартерные
Наименование | Масса, кг |
Аккумулятор 6 ст-55 | 12,1 |
Аккумулятор 6 ст-60 | |
Аккумулятор 6 ст-66 | 14,3 |
Аккумулятор 6 ст-74 | 15,4 |
Аккумулятор 6 ст-77 | 16,2 |
Аккумулятор 6 ст-90 | 20,5 |
Аккумулятор 6 ст-100 | 19,8 |
Аккумулятор 6 ст-110 | 25,6 |
Аккумулятор 6 ст-132 | 31,4 |
Аккумулятор 6 ст-140 | 36,9 |
Аккумулятор 6 ст-190 | 47,9 |
Аккумулятор 6 ст-215 | 27,3 |
Аккумулятор 3 ст-150 эм | 23,2 |
Аккумулятор 3 ст-155 эм | 25 |
Аккумулятор 3 ст-215 эм | 35,8 |
Аккумулятор 6 ст-50 эм | 17,5 |
Аккумулятор 6-ст 55 эм | 19,2 |
Аккумулятор 6 ст-60 эм | 21,1 |
Аккумулятор 6 ст-75 эм | 25,6 |
Аккумулятор 6 ст-75 тм | 23,9 |
Аккумулятор 6 ст-90 эм | 30,4 |
Аккумулятор 6 ст-132 эм | 43,1 |
Аккумулятор 6 ст-182 эм | 60,4 |
Аккумулятор 6 ст-190 тм | 61,7 |
Стационарные АКБ открытого типа
Наименование | Масса, кг |
Аккумулятор ПСК, СК-1 | 6,8 |
Аккумулятор ПСК, СК-2 | 12 |
Аккумулятор ПСК, СК-3 | 16 |
Аккумулятор ПСК, СК-4 | 21 |
Аккумулятор ПСК, СК-5 | 25 |
Аккумулятор ПСК, СК-6 | 30 |
Аккумулятор ПСК, СК-8 | 37 |
Аккумулятор ПСК, СК-10 | 46 |
Аккумулятор ПСК, СК-12 | 53 |
Аккумулятор ПСК, СК-14 | 61 |
Аккумулятор ПСК, СК-16 | 68 |
Аккумулятор ПСК, СК-18 | 101 |
Аккумулятор ПСК, СК-20 | 110 |
Аккумулятор ПСК, СК-24 | 138 |
Аккумулятор ПСК, СК-28 | 155 |
Аккумулятор ПСК, СК-32 | 172 |
Аккумулятор ПСК, СК-36 | 188 |
Аккумулятор ПСК, СК-40 | 208 |
Аккумулятор ПСК, СК-44 | 226 |
Аккумулятор ПСК, СК-48 | 243 |
Аккумулятор ПСК, СК-52 | 260 |
Аккумулятор ПСК, СК-56 | 278 |
Аккумулятор ПСК, СК-60 | 295 |
Аккумулятор ПСК, СК-64 | 312 |
Аккумулятор ПСК, СК-68 | 330 |
Аккумулятор ПСК, СК-72 | 347 |
Аккумулятор ПСК, СК-76 | 365 |
Аккумулятор ПСК, СК-80 | 382 |
Аккумулятор ПСК, СК-84 | 397 |
Аккумулятор ПСК, СК-88 | 414 |
Аккумулятор ПСК, СК-92 | 434 |
Аккумулятор ПСК, СК-96 | 450 |
Аккумулятор ПСК, СК-104 | 467 |
Аккумулятор ПСК, СК-108 | 487 |
Аккумулятор ПСК, СК-112 | 506 |
Аккумулятор ПСК, СК-116 | 524 |
Аккумулятор ПСК, СК-120 | 541 |
Аккумулятор ПСК, СК-124 | 559 |
Аккумулятор ПСК, СК-128 | 577 |
Аккумулятор ПСК, СК-132 | 592 |
Аккумулятор ПСК, СК-136 | 312 |
Аккумулятор ПСК, СК-140 | 631 |
Аккумулятор СКЭ-16 | 69 |
Аккумулятор СКЭ-18 | 75 |
Аккумулятор СКЭ-20 | 85 |
Аккумулятор СКЭ-24 | 105 |
Аккумулятор СКЭ-28 | 120 |
Аккумулятор СКЭ-32 | 144 |
Аккумулятор СКЭ-36 | 159 |
Аккумулятор СКЭ-40 | 176 |
Аккумулятор СКЭ-44 | 191 |
Аккумулятор СКЭ-48 | 208 |
Аккумулятор СКЭ-52 | 223 |
Аккумулятор СКЭ-56 | 240 |
Аккумулятор СКЭ-60 | 255 |
Аккумулятор СКЭ-64 | 271 |
Аккумулятор СКЭ-68 | 287 |
Аккумулятор СКЭ-72 | 303 |
Аккумулятор СКЭ-76 | 319 |
Стационарные АКБ закрытого типа
Наименование | Масса, кг |
Аккумулятор 3 СН-36 | 13,2 |
Аккумулятор СН-72 | 7,5 |
Аккумулятор СН-108 | 9,5 |
Аккумулятор СН-144 | 12,4 |
Аккумулятор СН-180 | 14,5 |
Аккумулятор СН-216 | 18,9 |
Аккумулятор СН-228 | 23,3 |
Аккумулятор СН-360 | 28,8 |
Аккумулятор СН-432 | 34,5 |
Аккумулятор СН-504 | 37,8 |
Аккумулятор СН-576 | 45,4 |
Аккумулятор СН-648 | 48,6 |
Аккумулятор СН-720 | 54,4 |
Аккумулятор СН-864 | 64,5 |
Аккумулятор СН-1008 | 74,2 |
Аккумулятор СН-1152 | 84 |
Какой уровень электролита должен быть в аккумуляторе автомобиля
В современных автомобилях повышается роль источников электропитания. Инженеры увеличивают количество потребителей в бортовой сети, поэтому затраты энергии растут. Если двигатель авто не работает, то ток на потребителей поступает от аккумуляторной батареи. От её состояния также зависит качество запуска мотора.
Содержание
- Что такое электролит
- Для чего нужна электролитическая жидкость в аккумуляторе
- Сколько электролита должно быть в аккумуляторе
- Как осуществить проверку уровня
- Опасность высокого и низкого уровня
- Что делать, если низкий или высокий уровень электролитического раствора
Что такое электролит
Большинство установленных в автомобилях аккумуляторов являются жидкостными кислотно-свинцовыми источниками питания. Они подразделяются на обслуживаемые и необслуживаемые типы. Фактически это не единая ёмкость с электродами, а несколько ёмкостей (банок), соединённых между собой последовательно.
Внутри каждой банки имеются свинцовые электроды, отделённые токонепроводящими сепараторами. Металл располагается в жидкой электролитической среде, состоящей из специального кислотного раствора.
Электролит в аккумуляторе автомобиля – это бесцветный раствор серной кислоты и дистиллированной воды с примерной плотностью 1,23–1,25 г/мл.
Благодаря жидкой среде в батареях идут электрохимические процессы, приводящие к генерации электричества. На степень заряженности АКБ оказывают влияние различные факторы, включая плотность раствора, окружающую температуру, загрязнённость пластин (степень сульфатации) и уровень жидкости в банках.
Для чего нужна электролитическая жидкость в аккумуляторе
Без токопроводящей жидкости кислотно-свинцовая АКБ в автомобиле работать не будет. Электролит обеспечивает движение ионов между электродами (плюсовым анодом и минусовым катодом). На положительном контакте происходит расщепление молекул воды на два иона водорода, молекулу кислорода и высвобождается пара электронов. Около отрицательного электрода пара свободных электронов встречается с двумя ионами водорода, образуя молекулу водорода. Эти процессы идут при отдаче энергии от аккумулятора на потребителей, а во время зарядки происходят обратные процессы.
Сколько электролита должно быть в аккумуляторе
Разберёмся, какой оптимальный уровень качественного электролита должен быть в автомобильном аккумуляторе. Корпусы многих моделей АКБ с жидкостью внутри изготовлены таким образом, что снаружи удаётся заметить количество заполнения внутреннего пространства. На внешней стороне корпуса подобных аккумуляторов могут присутствовать риски с указанием минимального (min) и максимального (max) значений, что позволяет облегчить контроль текущего состояния.
Рекомендуется поддерживать уровень заполнения электролита в рабочем автомобильном аккумуляторе ближе к максимально допустимому значению.
Падение ниже планки min может привести к скорому непоправимому ущербу для АКБ. В обслуживаемых моделях при регулярной эксплуатации специалисты рекомендуют мониторить состояние жидкости примерно раз в две – три недели. Особенно надо уделять внимание состояние в летнее время, в период жары, когда повышается вероятность испарений, и количество электролита будет уменьшаться в банках.
Производители установили зависимость объёма водного раствора серной кислоты от ёмкости аккумулятора. Чем больше Ампер-часов, тем больше нужно жидкости. Узнаем, сколько находится электролита в вашем аккумуляторе:
- 55 Ач – 2,5 л;
- 60 Ач – до 3 л;
- 75 Ач – 3,7–4 л;
- 90 Ач – до 4,8 л;
- 190 Ач – от 10 л.
Некоторые аккумуляторы продаются сухозаряженными, поэтому в них нужно доливать раствор самостоятельно. Подобная зависимость поможет сориентироваться, сколько литров будет нормой.
Как осуществить проверку уровня
Для мониторинга состояния автомобильной АКБ не требуется дорогостоящее оборудование. Также необязательно отправляться в автосервис, ведь все операции можно провести в гаражных условиях с минимальным инструментарием.
Проверка текущего уровня раствора электролита в автомобильном аккумуляторе осуществляется по такому алгоритму:
- перед тем как определить уровень кислотного раствора в банках батареи, необходимо дать отстояться АКБ пару часов, а потом, откинув клеммы, изъять заряженный источник питания из подкапотного пространства;
- определяем снаружи по меткам на корпусе (min/max) степень заполненности жидкостью;
- чтобы проверить уровень электролита в обслуживаемом аккумуляторе, потребуется стеклянная прозрачная трубка, открытая с обоих концов и с внутренним диаметром 3–5 мм;
- отвинчиваем пробки из банок АКБ;
- опускаем в одну из открытых ёмкостей трубку до упора на свинцовые пластинки;
- верхнюю открытую часть герметично прижимаем пальцем и аккуратно приподнимаем трубку;
- проводим ориентировочный замер уровня и возвращаем жидкость в банку;
- проделываем операцию с остальными ёмкостями, зафиксировав результаты.
Оптимальным считается значение 10–12 мм над уровнем пластин. Если имеется отклонение от номинала, то рекомендуем его устранить, долив дистиллят.
Опасность высокого и низкого уровня
Если электролита в вашем аккумуляторе мало или много, то это оказывает негативные последствия на работу данного источника питания в автомобиле. Данный факт актуален для батареи любого объёма.
При превышении оптимального объёма во время закипания возникает риск разбрызгивания агрессивной химической жидкости. Также в некоторых случаях скопившийся под большим давлением газ может спровоцировать взрыв батареи.
Низкий уровень электролита также приводит к проблемам. Чаще всего в таких обстоятельствах провоцируется сульфатация пластин и последующее их разрушение. Дополнительным негативом служит существенное понижение ёмкости источника питания ниже допустимых заводом-изготовителем пределов.
Что делать, если низкий или высокий уровень электролитического раствора
Восстановить объём кислотного раствора автомобилист сможет самостоятельно при соблюдении мер безопасности и наличии материалов и инструментов. Рассмотрим далее, можно ли самому доливать купленный электролит в автомобильный аккумулятор. Определим, как правильно восстанавливать баланс жидкости в банках.
Для долива автомобилисты могут использовать как готовый электролит, так и дистиллят. Однако чаще всего необходим второй вариант, так как в процессе эксплуатации и периодов зарядки в основном выкипает вода, а концентрация кислоты при этом повышается. Добавление непосредственно электролита актуально для тех случаев, когда он выплёскивался из общей ёмкости или раствор терялся через щели или микротрещины.
Выявив превышение уровня жидкости, необходимо сделать отбор излишков. Для данной операции подойдёт резиновая груша, в которую вставлен жёсткий наконечник, например из стеклянной трубки. После забора жидкости повторно проводим измерение и наводим баланс.
Категорически недопустимо переворачивать АКБ, чтобы слить излишки кислотного раствора, так как возникает риск разрушения хрупких свинцовых пластин. Это относится к батареям с длительным периодом эксплуатации.
DOE объясняет…Батареи | Министерство энергетики
Офис Наука
Аккумуляторы и аналогичные устройства принимают, хранят и отдают электроэнергию по требованию. Батареи используют химию в форме химического потенциала для хранения энергии, как и многие другие повседневные источники энергии. Например, бревна и кислород хранят энергию в своих химических связях до тех пор, пока горение не преобразует часть этой химической энергии в тепло. Смеси бензина и кислорода накапливают химическую потенциальную энергию до тех пор, пока она не преобразуется в механическую энергию в двигателе автомобиля. Точно так же, чтобы батареи работали, электричество должно быть преобразовано в форму химического потенциала, прежде чем его можно будет легко хранить.

Батарейки были изобретены в 1800 году, но их сложные химические процессы все еще изучаются. Ученые используют новые инструменты, чтобы лучше понять электрические и химические процессы в батареях, чтобы создать новое поколение высокоэффективных накопителей электроэнергии. Например, они разрабатывают улучшенные материалы для анодов, катодов и электролитов в батареях. Ученые изучают процессы в перезаряжаемых батареях, потому что они не полностью меняются местами при зарядке и разрядке батареи. Со временем отсутствие полного реверсирования может изменить химический состав и структуру материалов батареи, что может снизить производительность и безопасность батареи.
Вклад Управления науки Министерства энергетики США в исследования в области хранения электроэнергии
Исследования, проведенные при поддержке Управления науки Министерства энергетики США, Управления фундаментальных наук об энергетике (BES), привели к значительным улучшениям в области накопления электроэнергии. Но мы все еще далеки от комплексных решений для хранения энергии следующего поколения с использованием совершенно новых материалов, которые могут значительно увеличить количество энергии, которое может хранить батарея. Это хранилище имеет решающее значение для интеграции возобновляемых источников энергии в наше электроснабжение. Поскольку совершенствование аккумуляторных технологий необходимо для широкого использования подключаемых к сети электромобилей, хранение также является ключом к снижению нашей зависимости от нефти в качестве транспорта.
BES поддерживает исследования отдельных ученых и междисциплинарных центров. Крупнейшим центром является Объединенный центр исследований в области хранения энергии (JCESR), центр инноваций в области энергетики Министерства энергетики. Этот центр изучает электрохимические материалы и явления на атомном и молекулярном уровне и использует компьютеры для разработки новых материалов. Это новое знание позволит ученым разработать более безопасное хранилище энергии, которое прослужит дольше, быстрее заряжается и имеет большую емкость. По мере того, как ученые, поддерживаемые программой BES, добиваются новых успехов в науке об аккумуляторах, эти достижения используются прикладными исследователями и промышленностью для улучшения приложений в области транспорта, электросетей, связи и безопасности.
Хранение электроэнергии Факты
- Нобелевская премия по химии 2019 года была присуждена совместно Джону Б. Гуденафу, М. Стэнли Уиттингему и Акире Йошино «за разработку литий-ионных аккумуляторов».
- Электролитный геном в JCESR создал вычислительную базу данных с более чем 26 000 молекул, которые можно использовать для расчета основных свойств электролита для новых усовершенствованных аккумуляторов.
Ресурсы и соответствующие термины
- Потребности в фундаментальных исследованиях для хранения электроэнергии следующего поколения Проект материалов
- и геном электролита
- Скрытая архитектура накопителя энергии
- Заглядывая в аккумуляторы: рентгеновские лучи раскрывают тайны литий-ионных аккумуляторов
- Активизация разработки литий-ионных аккумуляторов
- Научное открытие: двоюродный брат поваренной соли может сделать накопление энергии более быстрым и безопасным
Научные термины могут сбивать с толку. Объяснения DOE предлагают простые объяснения ключевых слов и понятий в фундаментальной науке. В нем также описывается, как эти концепции применяются к работе, которую проводит Управление науки Министерства энергетики, помогая Соединенным Штатам преуспеть в исследованиях по всему научному спектру.
Исследование показывает сходство между твердыми и жидкими электролитами, используемыми в батареях — The Source
Керамические твердоэлектролитные элементы (вертикальные прямоугольные формы) с растущими внутри них снизу вверх дендритами (молниевидными темными структурами внутри прямоугольников). Эти твердые электролиты плавают в жидкости (синяя лужица), которая представляет собой жидкий электролит. Отражения твердых электролитов в синей жидкости, особенно темных дендритов, показывают сходство процесса инициирования дендритов как в жидкости, так и в твердом состоянии. (Фото: Раджив Гопал/Bai lab)Новое исследование Инженерной школы МакКелви Вашингтонского университета в Сент-Луисе впервые показало, что твердотельный электролит имеет высокий уровень сходства с жидким электролитом, что является хорошей новостью для разработки более безопасных и эффективных твердотельных электролитов. государственные батареи, основанные на надежном механистическом знании.
Bai«Наши результаты обнаруживают удивительное сходство между жидким и твердым электролитами, и это позволяет нам позаимствовать некоторые идеи из успешных жидких электролитов, чтобы помочь в разработке твердых электролитов», — сказал Пэн Бай, доцент кафедры энергетики. экологическая и химическая инженерия. «До нашей работы считалось, что твердые электролиты, по крайней мере керамические, которые мы здесь изучали, явно отличаются от своих жидких аналогов».
Батарейки питают большую часть нашей жизни, поэтому поиск новых улучшений окажет сильное влияние на общество, сказал Бай.
Перспективным направлением является разработка полностью твердотельной батареи. Ключевым компонентом является электролит в центре батареи, который обеспечивает движение ионов между электродами. Здесь традиционно используемый жидкий электролит заменяется твердым и соединяется с металлическим электродом. Это не только увеличивает количество хранимой энергии, но и делает батарею потенциально более безопасной. Однако все большее число отчетов о твердотельных батареях рассказывает историю о ключевом барьере, известном как критическая плотность тока (CCD), за пределами которого вырастают небольшие древовидные структуры, называемые дендритами, что приводит к отказу батареи. Эти сообщаемые ПЗС относительно низки, что препятствует быстрой зарядке и ставит под угрозу дальнейшее развитие твердотельных батарей.
«ПЗС твердотельных электролитов — загадка. Мы работаем над тем, чтобы выяснить, почему он существует, какова его истинная физика и как он меняется в различных условиях эксплуатации», — сказал Бай, главный исследователь этого проекта и соответствующий автор статьи, опубликованной 12 апреля в ACS Energy Letters.
«Наше открытие показывает, что величина ПЗС связана с толщиной твердого электролита, аналогично предельному току в жидких электролитах, которые, как известно, зависят от толщины», — сказал он. «Если вы сможете сделать твердый электролит достаточно тонким, мы сможем решить эту проблему с ПЗС, избегая роста дендритов и внутреннего короткого замыкания».
GopalЭкспериментальные инновации, используемые в этом исследовании, включают в себя использование стандартной гранулы, небольшого круглого диска, полностью уплотненного путем контролируемого спекания керамических порошков, и точное разрезание его на несколько более мелких частей. Затем образцы были испытаны с использованием электроаналитического метода, отличного от обычно используемого.
«Эти детские образцы из одной и той же материнской гранулы были почти идентичными», — сказал Бай. «Тестирование сотен этих идеально согласованных миниатюрных образцов сделало полученные нами результаты более надежными, а статистику — более значимой».