Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками

Содержание

Вискомуфта вентилятора принцип работы — AvtoTachki

Вискомуфта вентилятора является одним из менее известных составляющих системы охлаждения двигателя.

Что такое вискомуфта вентилятора

Вязкие муфты вентилятора используются на автомобилях (легковых и грузовых автомобилях) с продольно расположенным двигателем, в основном это автомобили с задним приводом. Муфта необходима на низких скоростях и на холостом ходу для регулирования температуры. Неисправный вентилятор может привести к перегреву двигателя во время холостого хода или в условиях интенсивного движения.

Где находится

Вязкая муфта вентилятора расположена между шкивом помпы и радиатором и выполняет следующие функции:

  • Контролирует скорость вращения вентилятора для охлаждения двигателя;
  • Помогает в эффективности двигателя за счет включения вентилятора, когда это необходимо;
  • Снижает нагрузку на двигатель.

Крепление муфты

Либо муфта устанавливается на фланцевой вал, установленный на шкив помпы, либо в качестве альтернативы он может быть навинчен, непосредственно, на вал помпы.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками

Принцип работы вискомуфты

Вискомуфта основана на биметаллическом датчике, расположенном в передней части вискозного вентилятора. Этот датчик расширяется или сжимается, в зависимости от температуры, передаваемой через радиатор. Этот интеллектуальный компонент повышает эффективность двигателя за счет регулирования оборотов вентилятора двигателя и подачи холодного воздуха.

При холодных температурах

Биметаллический датчик сжимает клапан, поэтому масло внутри муфты остается в камере резервуара. На этом этапе муфта вискозного вентилятора отключается и вращается примерно на 20% от скорости вращения двигателя.

При рабочих температурах

Биметаллический датчик расширяется, вращая клапан и позволяя маслу перемещаться по всей камере во внешние края. Это создает достаточный крутящий момент для привода лопастей охлаждающего вентилятора при рабочих скоростях двигателя. На этом этапе сцепление с вязким вентилятором включается и вращается примерно на 80% от скорости вращения двигателя.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками

К чему может привести неисправная вискомуфта

При замене помпы всегда рекомендуется проверять состояние сцепления с вязким вентилятором. Поврежденная муфта будет непосредственно влиять на срок службы помпы. Неисправная вязкая муфта вентилятора может оставаться застрявшей в положении зацепления, что означает, что она всегда будет работать на 80% от скорости вращения двигателя. Это может привести к поломке с высоким уровнем шума и вибрации, создавая громкий вихревой звук при увеличении оборотов двигателя и увеличении расхода топлива.

С другой стороны, если соединение с вязким вентилятором выходит из строя в отключенном положении, оно не будет пропускать воздух через радиатор. Это, в свою очередь, приведет к перегреву двигателя при прекращении процесса охлаждения.

Причины поломки

  • Утечка масла из муфты, отсоединение муфты вентилятора;
  • Биметаллический датчик теряет свои свойства из-за поверхностного окисления, заставляя муфту застревать;
  • Неисправность подшипника, хотя может возникнуть редко, если вязкая муфта вентилятора не была заменена после большого пробега.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками Это приводит к ухудшению состояния поверхностей.

Работа датчика вискомуфты

Биметаллический датчик управляет работой вискозной муфты. В первую очередь, существуют два типа биметаллических сенсорных систем: пластина и катушка. Оба они работают по тому же принципу, что и объяснялось ранее.

Единственное различие заключается в том, что, пока катушка расширяется и сжимается для поворота пластины вращения, биметалл сжимается и изгибается. Это перемещает скользящую пластину и позволяет маслу перемещаться из камеры резервуара в полость.

Видео: как проверить вискомуфту

Как проверить вискомуфту вентилятора охлаждения (принцип работы вязкостной муфты)


Watch this video on YouTube

ПОХОЖИЕ СТАТЬИ

Принцип работы вискомуфты


Функционирование большого количества изделий основывается на применении различных особенностей знакомых веществ. Один из таких примеров – вискомуфта. Эта конструкция предназначается для избирательной передачи, которая зависит от крутящего момента.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками Работоспособность данных изделий основана на вязкости находящейся в них жидкости.

Содержание:

  1. Принцип работы
  2. Как работает муфта вентилятора
  3. Вискомуфта полного привода
  4. Как проверить работоспособность муфты?

Принцип работы

Большинство водителей с правилами работы вискомуфты охладительной системы не знакомо. И если с данным узлом возникают проблемы, многие начинают экспериментировать, проводя ремонт, чтобы исправить ситуацию. Но чтобы справиться с задачей, следует изучить принцип работы вискомуфты. И в первую очередь – узнать особенности устройства данного элемента:


Конструктивно устройство выглядит в виде герметично закрытого элемента, где размещены двойным рядом диски, контактирующие с валом. Они перемещаются, имеют выступы и отверстия, промежуток между поверхностями мал:

Внутрикорпусная пустота заполняется вязкой жидкостью, готовящейся на основе силикона. Она имеет свои отличительные особенности:

  • увеличивает вязкость, от интенсивного перемешивания начинает загустевать;
  • при нагреве имеет существенный коэффициент расширения.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками

Во время равномерного движения машины, диски крутятся в одном режиме, жидкость, находящаяся внутри, не размешивается. Как только валы начинают отличаться вращательным режимом, показатель вязкости жидкого вещества растет, она передает крутящий момент:

Если скоростной режим вращения сильно разнится, вязкость увеличивается до такой степени, что муфта останавливается и обретает признаки обычного твердого тела.

Как работает муфта вентилятора

Особенность работы зависит от строения устройства. На основании этого, вентилятор функционирует не всегда, а исходя из показателей температуры охладительной жидкости, что придает всей системе максимальный эффект. Муфта представляет собой овальный неразборный корпус, в котором расположены оба диска, при этом один из них фиксируется на валу вентилятора. Второй закреплен на валу, соединяющимся с приводом. Дисковые круги погружены в вязкообразную жидкость, находящуюся в специальном резервуаре. Внутри муфты имеется биметаллическая пластинка:

В оптимальном температурном показателе диски или немного удалены между собой, либо едва сцепляются, проскальзывая один по отношению ко второму.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками В данном положении вентиляторное устройство не функционирует. Увеличение температурного режима приводит к ситуации, что пластинка начинает выгибаться, выталкивая из резервуара жидкость. Таким образом, на один из дисков давление начинает повышаться. Он приближается к диску, укрепленному на крыльчатке, начиная его вращать. От температуры зависит, насколько плотно происходит контакт и передача крутящего момента.

Наиболее часто вентилятор с вискомуфтой можно встретить на следующих авто:

  • внедорожниках;
  • спорткарах;
  • кроссоверах;
  • грузовых машинах.

Вискомуфта полного привода

Данная конструкция с применением вискомуфты основывается на тех особенностях, что включение моста, расположенного сзади, проводится по мере надобности. В привычных условиях такая машина считается переднеприводной, но при проявлении отличий в угловых скоростях вращения колесных дисков, включается вискомуфта, распределяя крутящий момент на оба моста:

Кроме организации работы полноприводной системы, муфта разгружает колеса при вхождении в поворотные участки:

Для этого вискомуфта устанавливается на одном из мостов среди дифференциала и полуоси.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками На повороте при повышенной скорости коэффициент сцепления внутренних колес ухудшается, появляется пробуксовка. Муфта перераспределяет крутящий момент, создавая безопасность движения на повороте.

Как проверить работоспособность муфты?

В обычном состоянии, при заглушенном двигателе, этого сделать не получится, так как вентиляторная крыльчатка будет проворачиваться с большим трудом. Одним из простых методов является газета, свернутая тугой трубкой.
При холодной муфте запускайте мотор и свернутой газетной трубкой останавливайте вентилятор. От сопротивления лопасти вскоре перестанут вращаться. Прогрев двигатель, повторите попытку. При исправной вискомуфте крыльчатку остановить не получится.

Читайте также:


Вискомуфты BorgWarner: назначение и принцип работы

НАЗНАЧЕНИЕ

Вискомуфты BorgWarner, дополненные вентилятором, плавно регулируют частоту оборотов вентилятора при высокой скорости автомобиля и достаточном обдуве радиатора.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками Они экономят энергию авто, а следовательно уменьшают и расход топлива.

Уникальное конструктивное решение вискомуфты BorgWarner дает возможность задавать вентилятору наилучшее число оборотов. Подобная опция позволяет всей системе, отвечающей за регулировку воздуха, работать эффективно. Вискомуфта помогает в прогреве холодного мотора машины и сохраняет оптимальный температурный режим силового агрегата в его рабочих пределах.

Плавная смена режима вентилятора повышает износостойкость не только ремней вентиляторного привода, но и других деталей и узлов охлаждающей системы. При работе вискомуфты между деталями автомобиля не появляется трения, что значительно увеличивает время ее эксплуатации.

ПРИНЦИП РАБОТЫ ВИСКОМУФТ

Если двигатель автомобиля не разогрет, то рабочая полость муфты остается пустой. В дополнительной емкости есть специальная жидкость на силиконовой основе, которая способна застывать при нагреве и переходить в жидкое состояние при охлаждении. При разогреве мотора термоэластичная пластина открывает клапан.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками Далее, проходя между дисками муфты, жидкость, обладающая повышенной вязкостью, постепенно проникает в рабочую полость. С увеличением температуры рабочая полость наполняется все больше. Соответственно изменяется и передача крутящего момента пропорционально разнице вращения колес машины. Благодаря этому создается оптимальный уровень блокировки дисков муфты, а вентилятор разгоняется до нужного числа оборотов для наилучшей работы.

ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА

Вентиляторы в паре с вискомуфами – это эффективность, хорошие рабочие характеристики и бесшумная работа. Вискомуфты BorgWarner – новое слово в разряде технических новинок.

УСТАНОВИВ ВИСКОМУФТУ BORGWARNER ВЫ ПОЛУЧИТЕ:

  • Снижение шума работы вентилятора.
  • Повышенную эффективность. Вентилятор будет запускаться только при необходимости и на подходящей скорости.
  • Повышенный ресурс мотора. Установка вискомуфты позволяет экономить топливо и мощность мотора до 6-10%.
  • На автомобиль устанавливается компонент, который не требует сервиса или вмешательства в его работу.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками
  • Улучшенное температурное регулирование, которое в целом увеличивает срок эксплуатации автомобиля.

Вискомуфта — принцип работы и конструктивные особенности — TopWay.su

Вискомуфта — принцип работы и устройство

Вискомуфта, одна из разновидностей автоматических блокировок, ранее очень популярной. Вискомуфта принцип работы имеет достаточно простой и понятный — у неё герметичный корпус, в котором установлены плоские круглые диски. Некоторые из них соединяются с ведущим валом, другие — с ведомым. Поверхность этих дисков испещрена впадинами и выступами, а монтаж их осуществляется таким образом, чтобы расстояние между ними было минимально возможным. Диски постоянно вращаются при езде, но не соприкасаются. Поскольку внутри вискомуфты располагается еще и дилатантная жидкость на основе силикона, то при быстром вращении дисков (как правило, при застревании в грязи, на льду, при диагональном вывешивании) она расширяется и сгущается. Это обеспечивает необходимую силу давления на сами диски, прижимая их один к другому.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками

Вискомуфта — принцип работы и конструктивные особенности

Так и осуществляется автоматическая блокировка дифференциала и внедорожник получает крутящий момент на те колеса, которые имеют лучшее сцепление с дорогой (или бездорожьем). Следовательно, джипер трогается с места и преодолевает препятствие.

Принцип работы вискомуфты прост — если оба вала двигаются равномерно, то диски в вискомуфте будут крутиться в одинаковой скоростью и дилатантная жидкость не густеет. Следовательно, давления на диски не происходит и они не соприкасаются. Если один вал начинает крутиться со скоростью отличной от другого, то и диски в вискомуфте начинают себя вести во вращении соответственно. Вырастает вязкость жидкости, вискомуфта блокируется и крутящий момент передаётся на нужное колесо.

Конечно, это не 100% блокировка, но лучше чем ничего. Хотя и у этого варианта блокировки дифференциала есть свои минусы.

Вискомуфта — недостатки и преимущества

Вискомуфта недостатки и преимущества имеет примерно в равной пропорции.Вискомуфта принцип работы: принцип работы, проверка и ремонт своими руками

В некоторых ситуациях такая автоматическая блокировка дифференциала реально помогает, в других же, может даже сбросить автомобиль с дороги:

Поскольку вязкость жидкости в этом устройстве зависит от скорости перемешивания, то узнать точный коэффициент торможения дисков не получится. Нет какой-то строгой линейки зависимости данных свойств, поэтому вискомуфта в некоторых ситуациях может быть вовсе неэффективной;

Очевидным минусом некоторых вискомуфт является то, что их коэффициент полезного действия напрямую зависит от диаметра дисков и объема дилатантной жидкости. Поэтому устройства крупного размера значительно увеличивают клиренс джипа, что в некоторых ситуациях может быть весьма критично;

Также нужно помнить, что вискомуфты не имеющие свободного шестереночного дифференциала практически не используются, так как имеют очень крупную конструкцию и довольно маленькую эффективность;

А вот к преимуществам можно записать явную простоту конструкции вискомуфты. Её корпус может выдерживать очень высокие давления (до 15 атмосфер), а значит может эксплуатироваться даже в сложных условиях в течение длительного времени без каких-либо проблем;

Особого внимания вискомуфта не требует и её обслуживание можно свести к минимуму. Распространена практика, что при выходе из строя этого компонента его просто меняют целиком, не мучаясь с ремонтом.

Вискомуфта — применение в автомобилях

Вискомуфту применяли на большом количестве автомобилей,различными Range Rover и Jeep Cherokee. Чаще всего она ставилась в качестве блокировки дифференциала между осями авто. Иногда вискомуфту ставят в качестве дополнительного блокирующего элемента в шестереночный дифференциал.

Вискомуфта применяется для синхронизации работы мостов джипа, крутящий момент у которых может в некоторых ситуациях отличаться друг от друга. Это удобное и простое решение из недорогого сегмента. Поскольку в простых условиях эксплуатации разница между крутящим моментом будет небольшой, то вискомуфты должно хватать для того, чтобы передний мост не проскальзывал относительно заднего.

На данный момент вязкостную муфту почти не ставят на автомобили, так как её применение с системой антиблокировки колес практически невозможно.

Вискомуфта: принцип действия и устройство

Сейчас большую популярность на автомобильном рынке получили кроссоверы. Они имеют как полный, так и монопривод. Подключается он при помощи такого устройства, как вискомуфта. Принцип работы агрегата – далее в нашей статье.

Характеристика

Итак, что собой представляет данный элемент? Вискомуфта — это автоматический механизм для передачи крутящего момента посредством специальных жидкостей. Стоит отметить, что принцип работы вискомуфты полного привода и вентилятора одинаков. Таким образом, крутящий момент на обоих элементах передается при помощи рабочей жидкости. Ниже мы рассмотрим, что она собой представляет.

Что внутри?

Внутри корпуса муфты используется жидкость на силиконовой основе. Она имеет особенные свойства. Если ее не вращать и не нагревать, то она остается в жидком состоянии. Как только поступает энергия крутящего момента, она расширяется и становится очень плотной. С повышением температуры она похожа на застывший клей. Как только температура падает, вещество превращается в жидкость. Кстати, она залита на весь срок эксплуатации.

Как работает?

Какой у изделия под названием «вискомуфта» принцип работы? По алгоритму действий она похожа на гидравлический трансформатор автоматической коробки. Здесь также крутящий момент передается при помощи жидкости (но только посредством трансмиссионного масла). Существует две разновидности вискомуфт. Ниже мы их рассмотрим.

Первый тип: крыльчатка

Он включает в себя металический замкнутый корпус. Принцип работы вискомуфты (вентилятора охлаждения в том числе) заключается в действии двух турбинных колес. Они расположены друг напротив друга. Одно находится на ведущем валу, второе – на ведомом. Корпус заполнен жидкостью на основе силикона. Когда эти валы вращаются с одинаковой частотой, перемешивания состава не происходит. Но как только появляется пробуксовка, температура внутри корпуса растет. Жидкость становится гуще. Таким образом, ведущее турбинное колесо входит в сцепление с осью. Подключается полный привод. Как только машина покинула бездорожье, скорость вращения крыльчаток восстанавливается. С падением температуры снижается плотность жидкости. В автомобиле отключается полный привод.

Второй тип: дисковый

Здесь тоже имеется замкнутый корпус. Однако в отличие от первого типа, здесь имеется группа плоских дисков на ведущем и ведомом валу. Какой имеет эта вискомуфта принцип работы? Диски вращаются в силиконовой жидкости. Как только температура растет, она расширяется и прижимает эти элементы. Муфта начинает передавать крутящий момент на вторую ось. Так происходит только в том случае, когда машина забуксовала и имеется разная частота вращения колес (пока одни стоят, вторые буксуют). В обеих типах не используются автоматические электронные системы. Устройство работает от энергии вращения. Поэтому вискомуфта вентилятора и полного привода отличается долгим сроком службы.

Где используется?

Сперва отметим вниманием элемент, который используется в системе охлаждения двигателя. Принцип работы вискомуфты вентилятора основан на работе коленчатого вала. Сама муфта крепится на шток и имеет ременную передачу. Чем выше обороты коленчатого вала, тем сильнее разогревалась жидкость в муфте. Таким образом, связь становилась жестче, и элемент с вентилятором начинал вращаться, охлаждая двигатель и радиатор. С падением оборотов и снижением температуры жидкости муфта прекращает свою работу. Стоит отметить, что вискомуфта вентилятора больше не используется. На современных двигателях применяют электронные крыльчатки с датчиком температуры ОЖ. Они больше не связаны с коленчатым валом и работают отдельно от него.

Полный привод и вискомуфта

Принцип работы ее такой же, как и у вентилятора. Однако размещается деталь не в подкапотном пространстве, а под днищем автомобиля. И, в отличие от первого типа, вискомуфта полного привода не теряет своей популярности. Сейчас ее устанавливают на многие кроссоверы и внедорожники с отключаемым приводом. Некоторые используют электромеханические аналоги. Но они гораздо дороже и менее практичны. Среди достойных конкурентов следует отметить разве что механическую блокировку, которая есть на «Ниве» и «УАЗах». Но ввиду урбанизации, производители отказались от настоящей блокировки, которая жестко соединяет обе оси и повышает проходимость автомобиля. Водитель сам может выбрать, когда ему требуется полный привод. Если требуется преодолеть бездорожье «паркетнику», он быстро застрянет и уже после пробуксовок у него заработает задняя ось. Но выбраться из сильной грязи ему это не поможет.

Преимущества

Давайте рассмотрим положительные стороны вискомуфты:

  • Простота конструкции. Внутри используется всего несколько крыльчаток или дисков. И все это приводится в действие без электроники, путем физического расширения жидкости.
  • Дешевизна. За счет простой конструкции вискомуфта практически не влияет на стоимость автомобиля (если это касается опции «полный привод»).
  • Надежность. Муфта имеет прочный корпус, который выдерживает давление до 20 килограмм на квадратный сантиметр. Устанавливается на весь срок службы и не требует периодической замены рабочей жидкости.
  • Может работать в любых дорожных условиях. Она не дает пробуксовку на грязи или при движении по снегу. Внешняя температура не имеет значения для нагрева рабочей жидкости.

Недостатки

Стоит отметить отсутствие ремонтопригодности. Вискомуфта устанавливается навсегда. И если она вышла из строя (например, из-за механических деформаций), то меняется целиком. Также автолюбители жалуются на отсутствие возможности подключить полный привод самостоятельно. Муфта вводит вторую ось в зацепление только тогда, когда автомобиль уже «зарылся». Это не дает машине легко преодолевать грязевые или снежные препятствия. Следующий минус – низкий дорожный просвет. Для узла необходим большой корпус. А если использовать маленькую вискомуфту, она не будет передавать нужное усилие крутящего момента. И последний недостаток – боязнь перегрева. Долго буксовать на полном приводе нельзя. Иначе есть риск вывести из строя вискомуфту. Поэтому такой тип «нечестного» привода не приветствуется любителями офф-роуда. При длительных нагрузках, узел попросту заклинивает.

Заключение

Итак, мы выяснили, как работает вискомуфта полного привода и вентилятора. Как видите, устройство благодаря специальной жидкости может передавать крутящий момент в нужное время без привлечения дополнительных датчиков и систем. Это очень полезное изобретение.

принцип работы вязкостной муфты автомобиля

Итак, что такое вискомуфта вентилятора на автомобиле или как её ещё называют вязкостная муфта? Вискомуфта — это механизм, который служит не только для передачи крутящего момента, но также еще и для его выравнивания, носит название вязкостной муфты. Если сравнивать этот узел с гидромуфтой или же с гидротрансформатором, то наблюдаем иной принцип действия.

Вискомуфты вентилятора работают по принципу передачи крутящего момента не с помощью динамических свойств жидкостного потока, а через вязкостные свойства жидкости, которая заполняет ее внутренний объем. Преимущественно вискомуфты используются как механизм, осуществляющий автоматическую блокировку дифференциала.

Хроника создания вискомуфт

Что такое вискомуфта народ не знал аж до 1917 года пока в США, Мелвин Северн не изобрел эту самую вискомуфту. Однако сразу после этого она не нашла сколь-нибудь широкого применения. Лишь в 1964 году ее впервые смонтировали на автомобиль, называвшийся Interceptor FF. Разработанная инженерами английской компании Jensen, она была предназначена для того, чтобы служить автоматической блокировкой межосевого дифференциала машины.

Именно середина шестидесятых прошлого века оказалась временем, когда вязкостные муфты стали широко внедрятся в конструкцию полноприводных трансмиссий легковых автомобилей с постоянным приводом. Сейчас вискомуфты устанавливаются на двигатели Cummins, а так же широко используются и на других моторах.

Конструкция и основы работы автомобильных вискомуфт

По конструкции вискомуфта – это блок из тонких дисков, которые собраны в пакет и смонтированы в герметически закрытом корпусе. Конструктивно муфта состоит из двух пакетов, один из которых является ведущим, второй – ведомым, соответственно они соединены с входным и выходным валами.

Поверхность дисков, составляющих пакеты, особым образом отперфорирована отверстиями и отштампована выпуклостями. Каждый из дисковых блоков набран с таким расчетом, чтобы между отдельными составляющими их дисками было минимально допустимое расстояние.

Полость корпуса вискомуфты вентилятора на автомобиле заполняется дилатантной жидкостью. Чаще всего в основе ее вязкое вещество кремний-органического происхождения (силикон), которое обладает непостоянной вязкостью, резко возрастающей в результате роста скорости деформации смещения.

Увеличению эффективности работы муфты способствует также свойство жидкости очень сильно расширяться при повышении температуры, что приводит к возникновению дополнительной силы давления со стороны жидкости, передаваемой на диски. Ввиду перечисленных особенностей вискомуфты, диски, при увеличении скорости вращения, словно слипаются.

Если движение автомобиля равномерно, то скорость вращения ведущего и приводимого в движение жидкостью валов одинакова и не возрастает, т.к. внутреннее сопротивление в жидкости стабильно. Если один из этих двух валов изменяет скорость своего вращения по отношению к другому, диски в вискомуфте автомобиля подвергаются интенсивному относительному смещению.

Как следствие, скачкообразное возрастание вязкости жидкости и стремление возникающей внутрижидкостной силы трения к выравниванию угловых скоростей обоих дисковых пакетов. Значительная разность скоростей вискомуфты приводит к тому, что жидкость отвердевает из-за существенного возрастания собственной вязкости. При этом муфта самоблокируется и начинает передавать крутящий момент с ведущего вала на ведомый без фактических потерь.

Слабость и достоинства вязкостной муфты

Степень вязкости находящейся внутри муфты жидкости находится в зависимости от того, насколько сильно она перемешивается за счет вращения пакетных блоков, то есть от разности их угловых скоростей. Однако присутствует нелинейная зависимость между свойствами жидкости, что не дает возможности предопределить тормозной коэффициент. Ввиду этой причины эффективность вискомуфт в конструкции самоблокирующихся дифференциалов относительно невелика.

Если говорить об автомобилестроении, то в чистом виде, без традиционного дифференциала на основе шестеренчатого механизма, дифференциалы, основанные исключительно на работе вискомуфты, практически не употребляются. Связано это еще и с тяжеловесной конструкцией подобных муфт, ибо их эффективность находится в зависимости от поперечника дисков, а также от внутрикорпусного объема жидкости.

Ввиду возникающих требований к величине передаваемых моментов, внешние размеры ведущего моста значительно возрастают, что, помимо всего прочего, является еще и следствием снижения проходимости транспортного средства из-за уменьшения дорожного просвета.

Вместе с тем, вискомуфты весьма просты по конструкции. Хотя из-за особенностей своего функционирования должны обладать специфическими свойствами. Например герметичностью, которая не будет теряться при внутреннем давлении, достигающем пятнадцати атмосфер. Весь срок эксплуатации муфт не подразумевает их специального обслуживания. А если выявляется неисправность устройства, то этот узел попросту заменяется на новый.

Использование вязкостных муфт на практике

В основном данный механизм используется на полноприводных автомобилях с увеличенной проходимостью как самоблокирующийся дифференциал между осями, в качестве самостоятельного осевого дифференциала не употребляется. Изредка, вискомуфта, применяется как механизм автоматического блокирования традиционного дифференциала с шестернями: модели Thema и Dedra 2000 Turbo итальянской Lancia.

Для того, чтобы синхронизировать крутящий момент двух осей, передней и задней, более простого и недорогого способа, чем применение вязкостной муфты, попросту не существует. Ввиду относительно небольшой разницы моментов, возникающих в стандартных дорожных условиях на обеих осях автомобиля, оказывается вполне достаточной точность срабатывания муфты.

Работа вязкостной муфты успешно препятствует возникновению эффекта проскальзывания колес передней оси относительно колес оси задней. Особенно часто подобное возможно при преодолении автомобилем сильно пересеченной местности.

Если говорить о современных решениях, то автомобилестроители все реже применяют вискомуфты, отдавая предпочтение более совершенным принудительно управляемым муфтам Haldex. Они значительно лучше охлаждают и  взаимодействуют с системами ABS. Поэтому зная, что такое вискомуфта не стоит полагаться на нее полностью. Время идет и всему есть замена.

Поделитесь информацией с друзьями:


Вискомуфта: как работает, устройство, неисправности.

Рынок поддержанных автомобилей полон полноприводных кроссоверов, и не только. Большинство из них имеют так сказать не совсем полноценную систему полного привода, реализованную вискомуфтой. Чаще всего, такой узел встречается на автомобилях Toyota середины 2000-ых годов, и на таких асфальтных машинах многие, покупая полноприводную машину, к примеру RAV4 первого и второго поколения, очень сильно удивляются тому, что по факту покупают моноприводный универсал, по причине вышедшей из строя вискомуфты. Такая система полного привода у Toyota называется V-flex.

На фото — вязкостная муфта

Сегодня я предлагаю на примере этой системы полного привода, разобрать подробней, что же такое вискомуфта, как она работает, и стоит ли покупать автомобиль с системой полного привода, построенной вокруг нее.

Вискомуфта представляет собой механическое устройство, которое передает или стабилизирует крутящий момент, за счет вязкой жидкости. Устройство вискомуфты такое: в закрытом герметичном корпусев котором установлен пакет плоских круглых дисков, имеющих перфорацию. Диски сформированы таким образом, что ведомые и ведущие диски, перемещаются и находятся друг от друга на очень малом расстоянии. Жидкость, заполняющая корпус муфты на основе силикона имеет свойство менять вязкость при интенсивном перемешивании и нагреве, за счет чего зазор между дисками буквально сказать склеивается вязкой жидкостью, за счет ее расширения.

Устройство вискомуфты

Другими словами, работа вискомуфты зависит от разности скорости вращения ведомого и ведущего дисков, за счет чего меняются физические свойства кремний – органического вязкого вещества.

Месторасположение и схема работы вискомуфты

Такая система далеко не безупречна по причине того, что нет какой то регулировки смыкания дисков, и грубо говоря, все пущено на самотек, в прямом смысле этих слов, и зависит от свойств вязкой жидкости. Так же, к минусам можно отнести значительное время, которое требуется на срабатывание муфты. Это не так страшно, когда вискомуфта используется для включения привода вентилятора охлаждения радиатора, вот когда на включение полного привода требуется несколько минут, они могут стать фатальными. Так же, нельзя принудительно включить систему полного привода, и уже тем более ее заблокировать.

Если говорить об узле, то вискомуфта довольно простой, и как следствие недорогое устройство, которое не подлежит ремонту, и обычно ходит весь срок службы автомобиля. Выйти из строя она может только по причине долгой работы, и чаще всего она просто клинит. Что опять же, говорит о недостатках такого полного привода, ведь если вы где-то застрянете, придется много буксовать, и первое, что вас подведет – это вискомуфта.

Устройство в разобранном виде

Вискомуфта не ремонтопригодна, и ее проще купить новую, или контрактную, чем производить вскрытие. К тому же, далеко не каждый мастер возьмется за такую работу, и уж тем более, только единицы смогут ее успешно починить.

На сегодняшний момент, от вискомуфт в системах полного привода отказались уже все автопроизводители, сделав упор на гидромеханические или электромагнитные муфты, так как их работу куда проще регулировать, и в современных автомобилях, напичканных электроникой они более уместны, так как вискомуфту практически невозможно использовать в автомобилях, оборудованных антиблокировочными системами и системами стабилизации.

Я бы ни в коем случае не рекомендовал к покупке автомобиль с системой полного привода, в основе которой стоит вязкостная муфта. Откровенно говоря, это прошлый век. На рынке полно кроссоверов и просто полно приводных седанов и универсалов, которые оснащены подключаемым полным приводом в основе которых муфты Haldex (Volkswagen Tiguan, Opel Mokka, Ford Kuga), Dynamax (полно приводные модели Kia или Hyundai ) или вообще дифференциал Torsen (преимущественно дорогие модели Audi, оборудованные системой полного привода quattro). Это современные AWD системы, которые способны обеспечить и высокую проходимость, и безопасность в движении, как для людей в автомобиле, так и вне его.

С уважением, Андрей Червяков.

Устройство муфты Халдекс 5-го поколенияэлектромуфта Mazda CX-9

Вискомуфта | автомобили с полным приводом, автомобили 4×4, грузовики с полным приводом, 4motion, quattro, xDrive, SH-AWD, Haldex, Torsen, wiki

Как работает вискомуфта? (Править)

Вискомуфта заполнена силиконом и не контролируется компьютером. Серия пластин с отверстиями и прорезями превращается в силиконовую жидкость. Некоторые пластины прикреплены к карданному валу передней оси, а некоторые — к карданному валу задней оси.Обычно пластины вращаются с одинаковой скоростью без относительного движения. Силиконовая жидкость становится очень вязкой из-за ее вязкоупругости, как только пластины вращаются с различной скоростью. Силиконовая жидкость противостоит сдвигу, создаваемому пластинами с различной скоростью, вызывая передачу крутящего момента от более быстрой вращающейся оси на более медленную вращающуюся ось. Следовательно, для передачи крутящего момента требуется небольшая разница скоростей.

Если задние колеса и карданный вал проскальзывают и вращаются быстрее, чем передние, трение между пластинами увеличивается из-за создаваемого сдвига в жидкости, проскальзывание уменьшается, пробуксовка заднего колеса уменьшается, и крутящий момент от входного вала передается на перед.

Вискомуфта может быть установлена ​​двумя способами:

Вискомуфта

, действующая вместо межосевого дифференциала (Править)

В этом случае в нормальных условиях вся мощность передается только на одну ось. Одна часть вискомуфты соединена с ведущим мостом, другая часть — с ведомым мостом. При пробуксовке ведущих колес происходит блокировка вискомуфты и крутящий момент передается на другую ось. Это автоматическая система полного привода.

Рисунок: Вискомуфта

Рисунок: Расположение вискомуфты (2) возле заднего дифференциала на VW Golf Mk3

Рисунок: Детали вискомуфты Volkswagen

Недостатком вязкостной муфты является то, что она слишком медленно входит в зацепление и допускает чрезмерную пробуксовку колес перед передачей крутящего момента на другие колеса. Это особенно важно для автоматических систем полного привода — при прохождении поворотов с ускорением задняя часть включается с небольшой задержкой, вызывая резкое изменение поведения автомобиля от недостаточной до избыточной поворачиваемости.Кроме того, при взлете в песке передние колеса могут застрять до того, как будет задействован полный привод.

В попытке сократить время активации муфты VW Golf MkII Syncro всегда передает 5% крутящего момента на задние колеса (это достигается за счет того, что задний карданный вал в нормальных условиях вращается медленнее, чем передний, что вызывает нагрев вязкой жидкости и небольшое затвердевание) .

В то же время слишком сильное предварительное натяжение муфты приводит к нежелательному закручиванию трансмиссии и делает систему слишком чувствительной к неравномерному износу протектора передних и задних шин.Вот почему Volvo сначала снизила предварительное натяжение в 2000 году, а затем заменила вязкостную муфту сцеплением Haldex на своих полноприводных автомобилях в 2003 модельном году (Volvo s60 имеет Haldex с 2002 года). [1]

вискомуфта интегрирована в межосевой дифференциал (Править)

В этом случае все колеса постоянно находятся под напряжением. Вискомуфта встроена в межосевой дифференциал. Центральный дифференциал распределяет мощность на все колеса и позволяет им поворачиваться с разной скоростью в поворотах.Когда на одной из осей возникает чрезмерная пробуксовка, вискомуфта блокирует дифференциал и выравнивает скорости обеих осей. Крутящий момент передается на колеса, у которых есть тяга. Это штатная система полного привода.

Вискомуфта также может быть интегрирована в задний дифференциал.

Рисунок: Блокировка дифференциала с вискомуфтой

Рисунок: Вискомуфта (слева) и ее установка в заднем (вверху справа) и центральном планетарных дифференциалах (внизу справа)

Сноски

Это Wiki, поэтому не стесняйтесь исправлять любые фактические или грамматические ошибки.Протестируйте здесь перед публикацией.

Javacript требуется для справки и просмотра изображений.

1

Как работают вязкостные дифференциалы повышенного трения

Прежде чем понимать, как работают вязкие дифференциалы повышенного трения, необходимо знать немного терминологии (см. Иллюстрацию ниже). Как правило, у многих терминов есть альтернативные названия; Я просто выбрал общеупотребительные и простые для понимания термины.

Шестерня

Шестерня вращает коронную шестерню и соединена (прямо или косвенно) с выходом трансмиссии, таким образом, она передает крутящий момент на дифференциал.

Кольцевая шестерня

Кольцевая шестерня зацепляется с шестерней, таким образом, она вращает корпус дифференциала. Он концентричен выходным валам и ведущим шестерням.

Вискомуфта

Вискомуфта очень похожа на многодисковую муфту, где есть чередующиеся фрикционные диски и диски, которые могут вращаться отдельно.Фрикционные диски будут нарезаны на один из выходных валов (или на оба, как показано ниже, хотя это чаще встречается для одиночной муфты). Пластины между фрикционными дисками будут вращаться вместе с корпусом дифференциала, поэтому два компонента могут вращаться отдельно. Эта муфта находится в вязкой жидкости (масле), отсюда и произошло название.

Боковая / ведущая шестерня

Эти шестерни находятся на концах приводных валов (показаны синим цветом ниже) и являются тем, с чем зацепляются звездочки, тем самым передавая крутящий момент от вращения дифференциала на ведомые колеса.

Приводной / полуосевой вал

Они соединяются с ведущими шестернями и являются выходными валами дифференциала, передавая крутящий момент на ведомые колеса.

Шестерня паука

Звездочки (показаны зеленым цветом ниже) зацепляются с ведущими шестернями, однако они вращаются вместе с корпусом дифференциала. Они установлены на подшипниках вокруг вала-шестерни, что позволяет им свободно вращаться вокруг оси вала-шестерни.

Вал шестерни

Вал-шестерня (разделенный на два отдельных вала ниже) — это то, что удерживает крестовины на месте. Этот вал соединен с корпусом дифференциала, поэтому крестовины вращаются вместе с корпусом.

Корпус дифференциала

Корпус удерживает внутри муфту, ведущие шестерни моста, ведущую шестерню и крестовины. Он вращается вместе с зубчатым венцом.

Чтобы понять, как это работает, сначала давайте посмотрим на порядок передачи крутящего момента.

1. Крутящий момент передается на выходной вал трансмиссии, где он затем передается с шестерни на коронную шестерню.
2. Кольцевая шестерня вращает корпус дифференциала, передавая крутящий момент через вал шестерни.
3. Вал ведущей шестерни вращает крестовины, передавая крутящий момент от вала ведущей шестерни на ведущие шестерни.
4. Крутящий момент передается от ведущих шестерен через полуоси на ведомые колеса.

Вискомуфта и принцип ее работы. Проще всего понять это, посмотрев на сценарий, когда одно из ведущих колес имеет ограниченное сцепление с дорогой (представим, что оно на льду), в то время как другое ведомое колесо имеет достаточное сцепление с дорогой (на асфальте). При открытом дифференциале крутящий момент равномерно распределяется между двумя колесами (50/50). Поскольку колесо на льду не может обеспечить большой крутящий момент, другое колесо также будет иметь ограниченный крутящий момент, и часто транспортное средство не сможет разогнаться (вот почему заблокированные дифференциалы так распространены для внедорожников).С LSD вы можете передавать больший крутящий момент на колесо с большим тяговым усилием.

Вот как это работает:

1. Если одно ведомое колесо находится на льду (скажем, правое колесо), а другое — на асфальте, колесо на льду начнет проскальзывать (вращаться) при нажатии на педаль газа.
2. Поскольку колесо на асфальте имеет большее сцепление с дорогой, оно не вращается.
3. Когда колесо на льду начинает вращаться, корпус дифференциала (и, следовательно, пластины вязкостной муфты) начинают вращаться, в то время как фрикционные диски, соединенные с левым выходным валом, остаются неподвижными (или с меньшей скоростью вращение).
4. Когда это происходит, жидкость внутри муфты начинает нагреваться и вращаться вместе с корпусом дифференциала. Трение между этой жидкостью и неподвижными / медленно движущимися фрикционными дисками заставляет фрикционные диски вращаться с большей скоростью.
5. При приближении скорости вращения левого выходного вала к правому выходному валу дифференциал действует больше как заблокированный дифференциал, и, таким образом, больший крутящий момент будет передаваться на колесо с большим тяговым усилием.
6. Это полезно в любом сценарии, когда начинает происходить проскальзывание шины, тем самым уменьшая общий крутящий момент, который может быть передан на землю.

Вот четырехминутное видео о том, как они работают:

Вискомуфта: принцип действия и устройство

Сейчас большую популярность на авторынке получили кроссоверы. У них есть как полный, так и одинарный привод. Он связан с таким устройством, как вискомуфта. Принцип работы агрегата — далее в этой статье.

Характеристика

Итак, что это за элемент? Вискомуфта — это автоматический механизм передачи крутящего момента через специальные жидкости. Следует отметить, что принцип работы вискомуфты с полным приводом и вентилятором одинаковый.

Таким образом, крутящий момент на оба элемента передается с помощью рабочей жидкости. Ниже мы рассмотрим, что это такое.

Что внутри?

Внутри картера сцепления, на силиконовой основе. Обладает особыми свойствами. Если его не вращать и не нагревать, он остается в жидком состоянии.Как только приходит энергия крутящего момента, он расширяется и становится очень плотным. При повышении температуры он выглядит как застывший клей. Как только температура падает, вещество становится жидким. Кстати, заправлен на весь период эксплуатации.

Как это работает?

Что за изделие называется «вискомуфта», принцип действия? По алгоритму действий аналогичен гидротрансформатору автоматической коробки. Здесь крутящий момент тоже передается жидкостью (но только трансмиссионным маслом).Есть две разновидности вискомуфт. Ниже мы их рассмотрим.

Первый тип: крыльчатка

Включает в себя металлический корпус. Принцип вязкостной муфты (включая вентилятор охлаждения) заключается в работе двух турбинных колес. Они расположены друг напротив друга. Один находится на приводном валу, второй — на ведомом валу. Тело заполнено жидкостью на основе силикона.

Когда эти валы вращаются с одинаковой частотой, перемешивание композиции не происходит. Но как только происходит пробуксовка, температура внутри корпуса повышается.Жидкость становится гуще. Таким образом, рабочее колесо турбины входит в сцепление с осью. Подключается полный привод. Как только машина выезжает из бездорожья, скорость вращения крыльчаток восстанавливается. С понижением температуры плотность жидкости уменьшается. В машине отключается полный привод.

Второй тип: диск

Тут тоже закрытый корпус. Однако в отличие от первого типа на ведущем и ведомом валах имеется группа плоских дисков. Что это за принцип работы вискомуфта? Диски вращаются в силиконовой жидкости.При повышении температуры он расширяется и сжимает эти элементы.

Муфта начинает передавать крутящий момент на вторую ось. Это происходит только в том случае, когда машина заглохла и есть другая частота вращения колес (пока одни стоят, вторые глохнут). Оба типа не используют автоматические электронные системы. Устройство работает на энергии вращения. Поэтому вискомуфта вентилятора и полного привода отличается долгим сроком службы.

Где это используется?

Для начала остановимся на элементе, который используется в системе охлаждения двигателя.Принцип вязкой муфты вентилятора основан на работе коленчатого вала. Сама муфта крепится к штоку и имеет ременную передачу. Чем выше частота вращения коленчатого вала, тем больше нагревается жидкость в сцеплении. Таким образом, соединение стало жестче, и элемент с вентилятором начал вращаться, охлаждая двигатель и радиатор.

При падении скорости и понижении температуры гидравлическая муфта прекращает работу. Следует отметить, что вискомуфта вентилятора больше не используется.На современных двигателях используются электронные рабочие колеса с датчиком температуры охлаждающей жидкости. Они больше не связаны с коленчатым валом и работают отдельно от него.

Полный привод и вискомуфта

Принцип работы такой же, как у вентилятора. Однако деталь размещается не в моторном отсеке, а под днищем автомобиля. И, в отличие от первого типа, вискомуфта с полным приводом не теряет своей популярности.

Сейчас устанавливается на многие кроссоверы и внедорожники с отключаемым приводом.Некоторые используют электромеханические аналоги. Но они намного дороже и менее практичны. Среди достойных конкурентов следует отметить механическую блокировку, которая есть на «Ниве» и «УАЗе». Но в связи с урбанизацией производители отказались от нынешней блокировки, которая жестко соединяет обе оси и улучшает проходимость автомобиля. Водитель сам может выбрать, когда ему нужен полный привод. Если потребуется преодолеть бездорожье «внедорожник», он быстро застрянет и после пробуксовки заведет задний мост.Но выбраться из густой грязи ему не поможет.

Преимущества

Рассмотрим положительные стороны вискомуфты:

  • Простота конструкции. Внутри используется всего несколько крыльчаток или дисков. И все это активируется без электроники, путем физического расширения жидкости.
  • Дешевизна. Благодаря простой конструкции вискомуфта практически не влияет на стоимость автомобиля (если это касается варианта «полный привод»).
  • Надежность. Муфта имеет прочный корпус, выдерживающий давление до 20 килограммов на квадратный сантиметр.Устанавливается на весь срок службы и не требует периодической замены рабочей жидкости.
  • Может работать в любых дорожных условиях. Не скользит по грязи или при езде по снегу. Внешняя температура не имеет значения для нагрева рабочей жидкости.

недостатки

Стоит отметить отсутствие ремонтопригодности. Вискомуфта установлена ​​навсегда.

И если он вышел из строя (например, из-за механических деформаций), он полностью меняется. Также автомобилисты жалуются на отсутствие возможности самостоятельно подключить полный привод.Муфта вводит второй вал в зацепление только тогда, когда автомобиль уже «похоронен». Это не позволяет автомобилю легко преодолевать препятствия из грязи или снега. Следующий минус — низкий клиренс. Для сборки требуется большой корпус. А если использовать небольшую вискомуфту, она не будет передавать нужное количество крутящего момента. И последний недостаток — боязнь перегрева. Долго буксовать на полном приводе не могу. В противном случае есть риск повредить вискомуфту. Поэтому такой вид «нечестной» езды не приветствуется любителями бездорожья.При длительных нагрузках узел просто заклинивает.

Вывод

Итак, мы разобрались, как работает вискомуфта четырехколесный привод и вентилятор. Как видите, устройство благодаря специальной жидкости может передавать крутящий момент в нужный момент без привлечения дополнительных датчиков и систем. Это очень полезное изобретение.

p >>

Принцип работы вискомуфты вентилятора

Вискомуфта вентилятора — один из малоизвестных компонентов системы охлаждения двигателя.

Что такое вискомуфта вентилятора

Вязкостная муфта вентилятора применяется на легковых и грузовых автомобилях с продольно установленным двигателем, в основном на заднеприводных автомобилях.Сцепление требуется на низких оборотах и ​​на холостом ходу для контроля температуры. Неисправный вентилятор может вызвать перегрев двигателя на холостом ходу или при интенсивном движении.

Где находится

Вязкостная муфта вентилятора расположена между шкивом насоса и радиатором и выполняет следующие функции:

  • Управляет скоростью вращения вентилятора для охлаждения двигателя;
  • Повышает эффективность двигателя за счет включения вентилятора при необходимости;
  • Снижает нагрузку на двигатель.

Крепление муфты

Муфта устанавливается на вал с фланцем, установленный на шкиве насоса, или ее можно навинтить непосредственно на вал насоса.

Принцип работы вискозной муфты

Вязкостная муфта основана на биметаллическом датчике, расположенном в передней части вискозного вентилятора. Этот датчик расширяется или сжимается в зависимости от температуры, передаваемой через радиатор. Этот интеллектуальный компонент повышает эффективность двигателя за счет регулирования скорости вращения вентилятора двигателя и подачи холодного воздуха.

Низкие температуры

Биметаллический датчик сжимает клапан, так что масло внутри муфты остается в камере резервуара. В этот момент вискозная муфта вентилятора отключается и вращается со скоростью примерно 20% от скорости двигателя.

При рабочих температурах

Биметаллический датчик расширяется, вращая клапан и позволяя маслу перемещаться по камере к внешним краям. Это создает достаточный крутящий момент для приведения в движение лопастей охлаждающего вентилятора на рабочих скоростях двигателя.В этот момент включается вязкостная муфта вентилятора и вращается примерно на 80% от скорости двигателя.

К чему может привести неисправная вискомуфта?

При замене насоса всегда рекомендуется проверять состояние вискомуфты вентилятора. Поврежденная муфта напрямую влияет на срок службы насоса. Неисправная вязкостная муфта вентилятора может застрять во включенном положении, что означает, что она всегда будет работать на 80% скорости двигателя. Это может привести к поломке с высоким уровнем шума и вибрации, создавая громкий вихревой звук при увеличении оборотов двигателя и увеличении расхода топлива.

С другой стороны, если вязкостное соединение вентилятора выходит из строя в выключенном состоянии, оно не позволяет воздуху проходить через радиатор. Это, в свою очередь, приведет к перегреву двигателя при остановке процесса охлаждения.

Причины поломки

  • Течь масла из муфты сцепления, отключение муфты вентилятора;
  • Биметаллический датчик теряет свои свойства из-за окисления поверхности, что приводит к застреванию гильзы;
  • Неисправность подшипника, хотя она может возникать редко, если вискомуфта вентилятора не была заменена после длительного пробега.Это приводит к ухудшению состояния поверхностей.

Работа датчика вискозной муфты

Биметаллический датчик контролирует работу вискозной муфты. В первую очередь, есть два типа биметаллических сенсорных систем: пластинчатые и катушечные. Оба они работают по тому же принципу, что и объяснялось ранее.

Единственное отличие состоит в том, что по мере того, как катушка расширяется и сжимается для вращения поворотной пластины, биметалл сжимается и изгибается. Это перемещает пластину скольжения и позволяет маслу перемещаться из камеры резервуара в полость.

Видео: как проверить вискомуфту

АНАЛОГИЧНЫЕ АРТИКУЛЫ

Viscous.indd

% PDF-1.4 % 1 0 объект > / Метаданные 109 0 R / Страницы 2 0 R / Тип / Каталог / OutputIntents [>] >> эндобдж 109 0 объект > поток 2009-09-28T19: 40: 04 + 02: 002009-09-28T19: 40: 09 + 02: 002009-09-28T19: 40: 09 + 02: 00Adobe InDesign CS3 (5.0.4)

  • JPEG256256 / 9j / 4AAQSkZJRgABAgEASABIAAD / 7QAsUGhvdG9zaG9wIDMuMAA4QklNA + 0AAAAAABAASAAAAAEA AQBIAAAAAQAB / + 4AE0Fkb2JlAGQAAAAAAQUAAjoo / 9sAhAAKBwcHBwcKBwcKDgkJCQ4RDAsLDBEU EBAQEBAUEQ8RERERDxERFxoaGhcRHyEhISEfKy0tLSsyMjIyMjIyMjIyAQsJCQ4MDh8XFx8rIh0i KzIrKysrMjIyMjIyMjIyMjIyMjIyMjI + Pj4 + PjJAQEBAQEBAQEBAQEBAQEBAQEBAQED / wAARCAEA ALMDAREAAhEBAxEB / 8QBogAAAAcBAQEBAQAAAAAAAAAABAUDAgYBAAcICQoLAQACAgMBAQEBAQAA AAAAAAABAAIDBAUGBwgJCgsQAAIBAwMCBAIGBwMEAgYCcwECAxEEAAUhEjFBUQYTYSJxgRQykaEH FbFCI8FS0eEzFmLwJHKC8SVDNFOSorJjc8I1RCeTo7M2F1RkdMPS4ggmgwkKGBmElEVGpLRW01Uo GvLj88TU5PRldYWVpbXF1eX1ZnaGlqa2xtbm9jdHV2d3h5ent8fX5 / c4SFhoeIiYqLjI2Oj4KTlJ WWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq + hEAAgIBAgMFBQQFBgQIAwNtAQACEQMEIRIxQQVRE2Ei BnGBkTKhsfAUwdHhI0IVUmJy8TMkNEOCFpJTJaJjssIHc9I14kSDF1STCAkKGBkmNkUaJ2R0VTfy o7PDKCnT4 / OElKS0xNTk9GV1hZWltcXV5fVGVmZ2hpamtsbW5vZHV2d3h5ent8fX5 / c4SFhoeIiY qLjI2Oj4OUlZaXmJmam5ydnp + So6SlpqeoqaqrrK2ur6 / 9oADAMBAAIRAxEAPwCd6Dqrad5S8tok ImM2mWx3fgAEhg / yH / nzF12uhpICUgedbNmHDLLKgjR5jnP / AB6J / wAjj / 1RzXh3l0382X2frb / 5 Py + X4 + C4a / cH / j1j / wCRzf8AVDIh3o0w / hn9n60HQZR3fj4LxrV0elrF / wAjm / 6oZE + 1ml / mz + Q / 4pidHkHd + Pgu / S94f + PWL / ke3 / VDB / ot0n82fyH / ABSPyuTyb / S17 / yyxf8AI9v + qGD / AEXaT + bP 5D / ikflcnk79LXv / ACyxf8j2 / wCqGP8Aou0n82fyH / FL + Vn5fj4LTrF4P + PSP / kc3 / VDD / ot0n82 fyH60 / lMnl + Pg0dbux1tI / 8Akc3 / AFQyQ9q9IT9M / kP1p / J5PL8fBjGo / mvb6ZcPbT6ZIWjNCVlF PxQZ0uHB4sBIHYuFkynHKiEG / wCdNgkbSfouYhd6CVa / 8Ryw6I1dsBqhdUq2P5xWF8vKPTZF9mlX + CZPFoJZORatR2hHDzBTO2 / MWC5JVbLiR / NL / wBe8lLsycerTDtjHI8iix51BJAtF2 / 4uP8A1SyH 5CXe2fylDuVk82GSlLZN / wDi4 / 8AVHAdFIdWQ7QieiqnmSZzxS0QnpQTH / qjkTpCOrMawHotk8x3 qCqad61TxHpzcqnrQUi3O2I0vmp1f9FKH / MS4EqwxaLNK70KBJk + KremOPJRUljQDGWkMeZRj1sZ mgEtf847aM0k0idCGKlTKlQR1qONR1xGkJ6pOsiOi / 8A5XBaCITNpcoQkqCZk3IAJ24 ++ S / JHvR + eFclL / ldFj20qb / kav8AzTj + Sl3shqx3IrS / zZs9U1K005NNlja7mjgDtIpCmRglace1cjPSGMSb ZR1Ikap6DmM3sP0Swlv / AC15XSJlUppMJPKv ++ rXwzA7V0E9XiEYmqN7 / Fu0ucYp2e5Hjy9dj / ds f4 / 0zS / 6G8386P2ub / KMO4rhoF0P92p + P9MifZnMf4o / av8AKMO4r10S7H + 7U / H + mQPsrmP8UftQ dfjPQqi6TdDrIn4 / 0ys + yWf + dH7f1MDrIHoVQaZcDq6fj / TI / wChHUfz4 / b + pidXDub / AEZN / Ov4 / wBMH + hHUfz4 / b + pH5qPc79GS / zL + P8ATH / Qjqf58ft / Uv5qPctOkyn9pfx / pkh7Jakfxx + 39SRr I9zEfM / 5a3etXP1m0uIISy0cPy3I7 / Cpzr + x / F0mAQyG67nC1QGWVhjw / JnXqENfWhB2P95 / 1TzY jWR7nGOnJWWP5MeY7KYsuoWZjJrSstf + TeHFrRA8mOo0fixpO4fy01uIhvrltUeBk / 5ozK / lXh4F 10uxcnQhGL5C1oUP1u3qPd / + aMj / ACni7ij + Rs384K0fknWUNDdwEfN9v + EwHtHEehZR7Jzj + II2 28s61busguYQ69GHPcHYhhx8MqnrMUhVFux6DPE3xBGPo + sNE0SvaxofsonqcVbiE5r3DUr9 + VjU YrvduOmz1Vx + 1BP5X1Y3h2tJLQTKgVGPqHi6uJRLTb4uYrvUe2Wfm8XDVGmo6HPxcVxv4 ++ 0FJ5M 8xSQvAbqzcOKBpFdyppEvJeSkA8YyOnRm8cP5rT3fCUjS6oD6otjyl5nimvJrefT4mvqeoF + sfDT 0vsEsT / ukdTkDqMBA2O3ubo4tQCd47 + 9Jb38rNdvvQ9W7s1NtClupX1fiVK8S3JW3oabUH05OOtx C9ixlpMsq3DWmflfquj6pY6nNd20kdrdQSMic + RAlTpVBkcmshOJADLHpZwkCS9VzAc1jvlD / lHv Lf8A2x4f + TVrh6I6ptqWradpEIn1GdYEY0WtSWP + SqgsfoGGMDLkic4xG6Gg8zaFcRiVLtVjYMVa VXiDBftFfVVage2E4pDogZYHqpQeb / LlyJDDfKfRQyOGV1PFRU8Q6Att2FcJwzHRAzwPVG22sadd 2iX1vLztpSVWTg4FQeJryUU38cx9Rmhp / r2bcMTl + ndGAggEGoO4IyYIIQRTeFXYq7FXYq7FXYq7 FXYq7FXYqsMsQNC6gjqCRirvWh / 34v3jFXetD / vxfvGKu9aH / fi / eMVbWRHNFYMfYg4qo3v9yv8A xmh / 5Ox4Y80S5IjAljvlD / lHvLf / AGx4f + TVrh6I6pd5p8k3esXv6Qsboc3ADxXLNxUD / fZVWoP8 mmXYs4iKIaM2nMzYKW3nkLzDqVy11d3FmjlFUCPmF / doqKOIjAUfD2 + 7JjUQiNmuWmnI2aW / 8q61 OS24O9tFcR / ZkjeQrIPCRTHsf8ofd3x / MxtfysqZboGlXuj6FHpsvoyzoXruxjo7M3dQT18Mw9ZK WQHgAJP87k5eliIAcR + SZWVr9Uh9LmXJJY9gK9lHYZj6HSflsfDd / jo3Z8viyukRmU1OxV2KuxV2 KuxV2KuxV2KuxViWoeSZb2 + nuxdqgnkZwpQmnI1pXlhtUP8A8q / m / wCW1f8AkWf + a8bV3 / Kv5v8A ltX / AJFn / mvG1d / год + b / AJbV / wCRZ / 5rxtU18v8All9EuZbhrgTCSPhQKVpuGr9o + GBU4vf7lf8A jND / AMnY8MeaJckRgSx3yh / yj3lv / tjw / wDJq1w9EdWRYEuxV2KuxVBXWrWVnObadyJQiOEAqW9R zGir4szL0yQgSGJmAVIa / phjEpkKxtG0ysVNGRZBDVaV5VYigG + 48Rh8Mr4kVsuv2MCzNMJENqFa 4XjVolf7LOFJpXw6 + 2IxkoOQBUOs2Ymkgo5dEaRaLUOqMsbcGBoaMwGDgKeMWh / 8U6ORARIxFx6Q B4mi + tz4c69P7s1w + FJHixV9P1yx1OUw2ZZyqhyTQfC26sVLchyB2qMEoGPNMZiXJMciydirsVdi rsVSrWfMFno3BJvjlk3EYO / HpXGkEoTRPOmja2VjikMMzU4pJtyqAdj0 / aw0oNsgwJdirsVQ97 / c r / xmh / 5Ox4Y80S5IjAljvlD / AJR7y3 / 2x4f + TVrh6I6p / JLHDG0szrHGoqzuQqge5OBKF / TOkf8A Lfbf8jk / 5qxV36Z0j / lvtv8Akcn / ADVirv0zpH / Lfbf8jk / 5qxVL7lfLl1fnUpNQhFz9XNqjLNF + 7DFjzStaP8Z3yQmQKYGAJtDLYeVuDxSaksyNGIYlkulIgQcKCEVAU1iU167ZLxJI8KK76p5cMzyy asJRL6bSRvdRlGkiUIkrL3bavhXtsMHiFPhi1kOm + VItPl05tQSZJoxCZZrlHdUU80CVPFeLbii / PCcsrtAxRqlS4s / LF0xafUYnLXK3bn14RyKIIhG1B9jjtTAMhCTjBRlpdaNaSzzfpSKZrghj6ksH w0rsvpqhpv3rgJtkBSK / TOkf8t9t / wAjk / 5qyKXfpnSP + W + 2 / wCRyf8ANWKu / TOkf8t9t / yOT / mr FUbiqF1G + h020ku5yAkYJ32FaYq8fv8AzHLqWrNdyDnbk0XoGIBDcvbp9n / MSYEozTbOw1jUPQ0y B5JVoZWBMaqr8HJ5FaU + HFQynyx5tT1 / 0PqEknOMslbgBJI3VuJjfsw98jzZWzXFLsVQ97 / cr / xm h / 5Ox4Y80S5IjAljvlD / AJR7y3 / 2x4f + TVrh6I6pxqaO9hOiQC6YrQQsaB / Y9MCWJ / Ub7 / qW4P8A g / 8Am / CrvqN9 / wBS3B / wf / N + Ku + o33 / Utwf8H / zfirvqN9 / 1LcH / AAf / ADfirvqN9 / 1LcH / B / wDN + Ku + o33 / AFLcH / B / 834q76jff9S3B / wf / N + Ku + o33 / Utwf8AB / 8AN + Ku + o33 / Utwf8H / AM34q76j ff8AUtwf8H / zfirvqN9 / 1LcH / B / 834qm2laJZ3Nu0mpaTFaShyqoDyqtFIb7R7k4FZBiqVeZIIp9 HnE9OCAMQ3Qj7JB + hsQgvOdI8s6ff6osMUfpWkEfqMq / ZajBQnt8u + SYgM3D6doIeWKERRzsvrOi / ZIAVWenbbf7 / HAyYzqr20upSahZyqk6tSVq8oyQApjk3 / aVtyOmNItkvlfX47wvpkgerywErGSwJ ZV77E / RiUgslwJQ97 / cr / wAZof8Ak7HhjzRLkiMCWO + UP + Ue8t / 9seH / AJNWuHojqm2rCE6bcC4W RouHxiH + 8I / ya98CWGcPL / 8Ayz6t9y / 81YVdw8v / APLPq33L / wA1Yq7h5f8A + WfVvuX / AJqxV3Dy / wD8s + rfcv8AzViruHl // ln1b7l / 5qxV3Dy // wAs + rfcv / NWKu4eX / 8Aln1b7l / 5qxV3Dy // AMs + rfcv / NWKu4eX / wDln1b7l / 5qxV3Dy / 8A8s + rfcv / ADViruHl / wD5Z9W + 5f8AmrFVW1GhLcwtHb6r zV1K8wvGoIpy + LpirOsCqF3Z2t / Cbe7jEsRIJU16jcdKYql0Ok2GjQvDYQrbwSEtRa7Meu5qcUMW 17XktXksrR / Vul + FyASEqNtztXCglKNMsba50 + W2YFGdhzkRaCqustTTbsAflhVFaXpFzBqkVzZS 8uBAAC0Y8elfhqfvwKHpo98DJQvf7lf + M0P / ACdjwx5olyRGBLHfKH / KPeW / + 2PD / wAmrXD0R1Tf VGKafOwn + qEJ / f0J4e9BgSxH64 // AFM // JJ8Ku + uP / 1M / wDySfFXfXH / AOpn / wCST4q764 // AFM / / JJ8Vd9cf / qZ / wDkk + Ku + uP / ANTP / wAknxVEWa32oTehZ + YjLIAW4iJhsO + 9PHFUd + g / MX / V6b / g P + bsCu / QfmL / AKvTf8B / zdiqrbaNr0VxFLNq7Sxo6s8fCnJQQSv2u4xVPsVdirsVdiqheSNFayyJ EbhlUkRDcv7Yq86vLGe4tFuJYpbCKOUtKskTIKAMAnxAnYtXJMXafDdajKlnpERRI / tSkU28WPb5 f7WKs90zTI9PiHJvVmI + OSgH0CnbIskfiqHvf7lf + M0P / J2PDHmiXJEYEsd8of8AKPeW / wDtjw / 8 mrXD0R1T24NusLm6KCED4zLThT / K5bYEpd63lb / fmn / fDiqvb2 + h4YLWsVpOFNGMSxuAffjXFVX9 Gab / AMskH / ItP + acVd + jNN / 5ZIP + Raf804q79Gab / wAskH / ItP8AmnFXfozTf + WSD / kWn / NOKr4r OzgbnBBHE1KckRVNPmBiqvirsVUbm7tbKMS3cqQoTxDOQASQTTf5Yqhf09ov / LdB / wAGMVd + ntF / 5boP + DGKu / T2i / 8ALdB / wYxV36e0X / lug / 4MYq79PaL / AMt0H / BjFXfp7Rf + W6D / AIMYq4a7og2F 7AP9mMVV7XUbG9ZltLiOdkFWCMGoPoxVE4qh73 + 5X / jND / ydjwx5olyRGBLHfKH / ACj3lv8A7Y8P / Jq1w9EdU11dlXTLlnWN1CbrMSEP + tTtgSwr6xaf8sml / wDBv / zVhVFWeuS2CslnHpsKuasFkfcj 6cVRP + LNS / m0 / wD5GP8A1xpXf4s1L + bT / wDkY / 8AXGlTFbvzY6h2tbQqwBB5tuD / ALLArf1jzd / y yWn / AAbf81Yq76x5u / 5ZLT / g2 / 5qxV31jzd / yyWn / Bt / zViqZac + ovAx1OOOKbmQqxEleFBQ7k71 riqW + bZEi02JnkSIGdRWSFZx9iTbg6sPpxCsR + uQf8tVt / 0gQ / 8AVLCrvrkH / LVbf9IEP / VLFXfX IP8Alqtv + kCH / qlirvrkH / LVbf8ASBD / ANUsVd9cg / 5arb / pAh / 6pYq765B / y1W3 / SBD / wBUsVd9 cg / 5arb / AKQIf + qWKpxoltql5HJc6Tf28IDem5W0ijJNA1Phj98VZkoIUBjU03PicCqF7 / cr / wAZ of8Ak7HhjzRLkiMCWO + UP + Ue8t / 9seH / AJNWuHojqm2q / wDHOuKGJfg63ArEP9cEHbAliBRhSlxo fTvGv4fucKtcW / 5aNC / 5Fr / 1RxV3Fv8Alo0L / kWv / VHFXcW / 5aNC / wCRa / 8AVHFU2tH80XUXOyvd PliQ8Kx8ioIA + HaPwOKq3oedP + Wmy + 5 / + qeBXeh50 / 5abL7n / wCqeKu9Dzp / y02X3P8A9U8VTLTE 1dI3GrSQyOSPTMFaAU3ryVcVXanZT30CxW909k6uGMkfUgBhx6jxxVK / 8O6p / wBXu5 + 4 / wDNeKu / w7qn / V7ufuP / ADXirv8ADuqf9Xu5 + 4 / 814q7 / Duqf9Xu5 + 4 / 814q7 / Duqf8AV7ufuP8AzXirv8O6 p / 1e7n7j / wA14q7 / AA7qn / V7ufuP / NeKu / w7qn / V7ufuP / NeKprptnPZW5huLl7x + Rb1JOtDT4ep 8MVX3v8Acr / xmh / 5Ox4Y80S5IjAljvlD / lHvLf8A2x4f + TVrh6I6ptqzBNNuGPpUCf8AHwpaL / Zq AxI + jAlhpvYjSjaKdu9vJ / 1Qwoa + uRfzaJ / 0jyf9UcVd9ci / m0T / AKR5P + qOKu + uRfzaJ / 0jyf8A VHFURBrl1aoY7W70qBCeRWOKZAT0rRYh5YpVf8S6l / 1cNN / 4Gf8A6p4q7 / Eupf8AVw03 / gZ / + qeK q1nrGuX8wt7S906WUgkKFnGw69Yxiqf6auqqj / pVoGeo4fV + VKd68wMCu1W4v7a3WTT4EuZS4Vkd wgC0Y1qzL3AxVKf0v5n / AOrbB / 0kR / 8AVTFXfpfzP / 1bIP8ApIj / AOqmKu / S / mf / AKtkH / SRH / 1U xVNNMvLueBn1OKO1mDkKiyK4K0WjVVm71xVGetD / AL8X7xirvWh / 34v3jFXCWNjRXUk9gRiq / FXY qh73 + 5X / AIzQ / wDJ2PDHmiXJEYEsd8of8o95b / 7Y8P8AyatcPRHVO7yKaa1kit2VJXWiM6hlB91P XAlI / wBDa92urQf9G6f80Yq79Da // wAtdp / 0jJ / zTirv0Nr / APy12n / SMn / NOKu / Q2v / APLXaf8A SMn / ADTiqpBo + srPG09xavEHUyILdAWUh5gDx7jFU4 + p2f8AviL / AIBf6Yq76nZ / 74i / 4Bf6YquS 2t4m5RxIjeKqAfwGKquKpN5ntxc2EcZSF6TK1LiQxL9lxswZd9 + mKsW / RK / 740 // AKS2 / wCquFDv 0Sv ++ NP / AOktv + quKo / TdE0SRZP0oLWEgj0 / RuiajetayHFKN / QHk / 8A35F / 0kf834Fd + gPJ / wDv yL / pI / 5vxV36A8n / AO / Iv + kj / m / FVey03yvp9yl3azRLLHXiTPX7QKnYv4HFU8iminT1IXWVOnJC Gh4jFV + Koe9 / uV / 4zQ / 8nY8MeaJckRgSx3yh / wAo95b / AO2PD / yatcPRHVPLuaWC2kmgiNxIgqsQ NCx8K0OBKS / p7XP + rFL / AMjh / wBU8Vd + ntc / 6sUv / I4f9U8Vd + ntc / 6sUv8AyOH / AFTxVHaZqOoX sjreae9iqAFWZ + fI16fYXFUyxV2KuxV2KuxVJvM8STWEau1sgEymt4zLH9l + hTflirFvqMHebR / p lm / rhQ76jB / v7Rv + Rs39cVd9Rg / 39o3 / ACNm / rirvqMH + / tG / wCRs39cVd9Rg / 39o3 / I2b + uKu + o wf7 + 0b / kbN / XFU1srTymLZBqD2TXO / qGGV + HU8acmB6UxSnemXOhxBbHS5odyWWKN + R8SdyTgVMs VQ97 / cr / AMZof + TseGPNEuSIwJY75Q / 5R7y3 / wBseH / k1a4eiOqbatE02m3ESIZGdKBA4jJ / 2bbD Alhn6FvT / wBK + T / pOi / phQ79C3v / ACwSf9J0X9MVd + hb3 / q3y / 8ASdF / TFXfoW9 / 6t8v / SdF / TFX foW9 / wCrfL / 0nRf0xVOLfytpckEb3Es0MrKC8YnVuLdxyC74Eqn + E9F / 5aZ / + Rw / 5pxtU6tEtbO2 jtYpQUiHFS7AtT3OKq3rQ / 78X7xiqVeZGi + oRtJNBCplWj3EQmQ / C + wUq + / virGC9p3v9N / 6QV / 6 o4Vdzs / + W / Tf + kJf + qOKu52f / Lfpv / SEv / VHFXc7P / lv03 / pCX / qjirudn / y36b / ANIS / wDVHFUV p8 + ixT8tRudPuIeJHBLQKeW1DX0sVTL9IeSf5LT / AKRx / wBU8CqkOr + ULaQS27W0Mg6PHDxYV91j GKpjZazpmoymCyuBNIqlyoDD4QQK / EB44qrXv9yv / GaH / k7HhjzRLkiMCWO + UP8AlHvLf / bHh / 5N WuHojqmurx + tplzGQjckpSVuCH / WYEUwJYWdKBpWDT9th / pbdP8AkbhQ1 + iV / wB8af8A9Jbf9VcV d + iV / wB8af8A9Jbf9VcVd + iV / wB8af8A9Jbf9VcVd + iV / wB8af8A9Jbf9VcVd + iV / wB8af8A9Jbf 9VcVd + iV / wB8af8A9Jbf9VcVd + iV / wB8af8A9Jbf9VcVTjS / KllPE0mo2saE0MRgmdlZSK1rzONp RfmGFLLSLe3t2lijikRE9GITtxCPsVd02964FYz6sn / LRe / 9IMf / AFXwq71Zf + Wi9 / 6QY / 8Aqvir vVl / 5aL3 / pBj / wCq + Ku9WX / lovf + kGP / AKr4q71Zf + Wi9 / 6QY / 8AqvirvVl / 5aL3 / pBj / wCq + Ku9 WX / lovf + kGP / AKr4q71Zf + Wi9 / 6QY / 8AqvirIPLNncO36QN3K8Y5RGGaBYWJ2NfhkfbFU9vf7lf + M0P / ACdjxjzRLkiMCWO + UP8AlHvLf / bHh / 5NWuHojqm2rKG024UmIAp1uKiL / Z03pgSw020feXRf arSdMKGvq0X + / dE / 4KTFXfVov9 + 6J / wUmKu + rRf790T / AIKTFXfVov8Afuif8FJirvq0X + / dE / 4K TFXfVov9 + 6J / wUmKsjtdM8q3rMtpFbzlRVghrQfQcCU5ijjhjSGJQscahEUdAqigGKpV5l + s / UI / qv1rn6wr9Sr6lOL9eP7OKsY / 3MH / AKvX0c8Ku / 3Mf9rv / h8Vd / uY / wC13 / w + Ku / 3Mf8Aa7 / 4fFU6 tvL99cW8c7atfwtIoYxu7Blr2YcuuKqv + Gbz / q9Xv / Ixv + asCu / wzef9Xq9 / 5GN / zVirv8M3n / V6 vf8AkY3 / ADViqb2Fo9larbyTyXTKSTLKauamu5NemKt3v9yv / GaH / k7HhjzRLkiMCWO + UP8AlHvL f / bHh / 5NWuHojqmmtsE0q6ZmVAE3Z0EijfujAg4EsCN5Cet1bf8ASBD / ANUsKu + uQf8ALVbf9IEP / VLFXfXIP + Wq2 / 6QIf8AqlirvrkH / LVbf9IEP / VLFXfXIP8Alqtv + kCH / qlirvrkH / LVbf8ASBD / ANUsVd9cg / 5arb / pAh / 6pYqyKx0bXY41uLG + toFmQMDHaxISrDkK8YhirI7RLiO2jS7kE06ikkgA UMfGgpgVR1PTY9UgW3lllhCuH5QMFYkBloSQ23xYqln + ELP / AJbb0fKVf + qeNq1 / g + z / AOW29 / 5G r / 1TxtXf4Ps / + W29 / wCRq / 8AVPG1d / g + z / 5bb3 / kav8A1TxtXf4Ps / 8Altvf + Rq / 9U8bV3 + D7P8A 5bb3 / kav / VPG1d / g + z / 5bb3 / AJGr / wBU8bV3 + D7P / ltvf + Rq / wDVPG1T6NBHGsYJIQBQT1NBTfFV G9 / УФ / 4zQ / 8AJ2PDHmiXJEYEsd8of8o95b / 7Y8P / ACatcPRHVNtWd49NuJI3eN1SoeJebj / VUstf vwJYadSv9qX + pDx / 0Vf + yjCrX6S1D / q4al / 0iL / 2UYq79Jah / wBXDUv + kRf + yjFXfpLUP + rhqX / S Iv8A2UYq79Jah / 1cNS / 6RF / 7KMVd + ktQ / wCrhqX / AEiL / wBlGKu / SWof9XDUv + kRf + yjFUXprapq dwbaLVL2FgpflNbKq7U2qJ233xVmmBXYq7FXYq7FXYq7FXYq7FXYq7FUPe / 3K / 8AGaH / AJOx4Y80 S5IjAljvlD / lHvLf / bHh / wCTVrh6I6siwJdiq1nRaBmC16VNOpA / WcVbLBRViAPE4q3irsVWu6Rj k7BR4k0xpXK6uodGDKwBBBqCDuMVbBBqAa02Pt3xVvFXYq7FVqOkgLRsHAJUlTUVUlWG3gRQ40rF zrF6hLNG5YCtDKy8tqiilAN / uyuWpjE0YtBnIFKr38z9FtpTDJcTLcW1fVihEYVmDlDE3qpIeS96 ED9WZMMXGAR1bhxUnOg + ddP8wmZbMcfRk9JXkdQJaAOxjBKE / CfDBLHwlZXHmE7ivTIpIiYuJBHw Wu + yszcmCigr16duu2R4VBWz3l7HL6cOnyzIrAGT1IVBU9WQGXkae4GIiK5rZ7l7XVyp2spmBYr8 LQ1AH7Z5Sr8J7d / EDHhHetq0EjzRLJJE9uzVrFIULLQ039N3X7jgIoqCp3v9yv8Axmh / 5Ox4x5rL kiMCWO + UP + Ue8t / 9seH / AJNWuHojqyLAl2KpPrVw9rcWzR2cdyJA3qSOyqYxG0bIRyZSfiNRSpGI MuIAdWrLIx6JNpmqfXDZRQ6bDxmoJGDhWjSkMRKtI6sfhAFBUmmQGacoCX9KmvHmMjyZcs0TsUR1 ZgKlQQSB8ssouSlurapdadPbpFCkkUxId2YAggMwota / s + GRhcsoj0asuQw6INtWmu5YIpLWKWEy xrIXYfDzYIpCMfi + 14HLM8TilEDrbGGYzPJOF0 + yUcRCpXoFIqoHwbBTUAD0loB4YOIt1BLbu / l0 u + NpaW8QtvTWZzUKecjSLsvL / ivwwQueQBryZDDkF9lq15d3kcXoosDBub8viBAJFAWr28MOaJxz AHJGPKZnknGRbnYqg5tLsLl0kni9R4pBKjMzEq4PIEHl2PTwyQmQgxBYrqFxweJh5iFYog1wGXqo 5EPWlCxamw + 7MTUEEtOU708M1llk1 / UXQh2a6uSrDcEF3oa5s9KP3cXIhy + D0f8AKKe2jtruOZ4 / U9eN4omZVZiIyrUB3P2qHBlG7HUGpB6dp + omZHlaAxB2 / dooYERgUBdXCHkWr + yNqeGVSgWuOQdy ZKwdQ46MARX3ystoNrsVdiqHvf7lf + M0P / J2PDHmiXJEYEsd8of8o95b / wC2PD / yatcPRHVkWBKA k0mKRXX6xdJzAWq3EgIoKVX4tjtkxPyRwsf80I1pc2LuXm5NcSmhZzv6PwohLEDbYDKJ0c + P3uLq tiEn09Gt77S4HB5RyrQbciOUVCRXatO + V5sM8eOII / yjTD6h72c2tgYJ5Jw5QSGvphY + pILMzLEp JPGnU / qplSlYdgAkXmn / AI62n / 6r / wDEXyjH / jcPcXF1X1BAD / jp6d / xnT / iaZdr / wC + x / 533NeL + 8DOsDnsQ8xEL5gVmNALNCSegHOfI4v8Zj7i4mp + sNaO6PrltwYN8EnQ1 / ZbHVyEtRGj0KMIIyUW YZJzHYqhtQeSOwupIm4SJDIyMamjBSQdt8VYUEtwyyCWMMh5KReSbEgr / wAs / gcoOlieaBEA2Fsd vpqRoiNZ8FUBf9IY7Dp / x54TpweqW1t7BJhcRyWscoXgGS6kU8aq9PhtB3UYjAB1XoiorfRLrlLq dwrSBuEZEqzAqoDdZ4QerHtloB6lAjTJLK + 0 + KGCyik + KOKIIlDUqVXjx4rQ7Htk + E1a2invLZJj bs9JVjMpWhPwDauw / DBwmltctxE7KorVxUVVhtQHuPfGk2svf7lf + M0P / J2PGPNEuSIwJY75Q / 5R 7y3 / ANseH / k1a4eiOrIsCXYqxnzZ / vbpn / Pf / mTlM / 7 / AB + 9xdXzDF9FljN1pcnAiR5UeVljI5MW i3 + FaHp2yuYlLFCz / lO9x8f1D3s + sbq + nmCXChFEYdh6MqGrE8QGf4enUVr4gZmyAAdiCWM + fpJI ZraSIkMI3AI6ioYE / ccwcxIzCv5pRijGWrxg8rh4pVoLc20pzSpnTkVFNw0Q / hjwCEsYHfL7g4WK RlkBPm9LzLc95t + Ypb9NQjfj9VT5V9SbMHW7SG4 + P9jvOwo45cXpJkOoNbfMIjyUeV5ZsepRx08E pg08RHKPj + h5uRJ1U / 60vveg5nuQ7FUNqNf0fdU6 + jJTfj + ye9Vp9 + KvNxb3tB8R / wCR8H / VLFKx Ipyqmr9B / uyMf8ycVb9Kfxf / AJGRf9UcVTvQpryC1IQXAj9eQuYgkhaiItBRVA37kdum4IPJHNl2 mBV061Cq6gwoaS / b3UE861 + Lx98SbKAKRWBLsVQ97 / cr / wAZof8Ak7HhjzRLkiMCWO + UP + Ue8t / 9 seH / AJNWuHojqyLAlB3Gopb3cdoYZXMi8jKgUog3FX + Ko3HhkhCxaCd2O + ZS9xPpUsvNOQmPAj0y N4TuAxP45VI8OeHvcXVfwpFpRFvcaVHPWP0JljZpAUBIaHdeYXb3ynJhnHHAEb8bTDaQ97NIdHuY CzpPFzkKtI / pSVbgS0df9Jpsadt / pzNOQFz + FJfOMUk11ZwEqZJIZUrSi8jHIK0 + Km + Yco8eoAHW Mvua / E8PUQkehv7Um0ONoJdMt5VaORLheSuKH7cdSPEVyWWE4zx2OsvuDjYRWQPSsuc9gnnSzN9r KW6ABzaxsrtWi0kmr0yjJphnyAE9CnT6 + ei1InHu3Hk15UtZbPUrSCVQpVH6Gu / Ag / qyuOHJizAS 8 / 0OLxCWpkRyJJZ5mW5LsVUL5JpbK4jt / wC + eJ1jqafEVIXeh74q80GipVI1UuzEqKJD1AJNSxA7 HMY6quiBME0g4p9PKIF1xBsBxaSIMKDoRXqO + T8Sf80pbiaG7nitrfUnummYBRCI5ApDAAsyEgbk ZOMpk7RYykAN01H6S0hDam + ELyN63B34OwdVTpByrT0zvkgJdQmMhJnmkMz6TYu7c2a3iLMa7kot T8W / 34UozFXYqh73 + 5X / AIzQ / wDJ2PDHmiXJEYEsd8of8o95b / 7Y8P8AyatcPRHVkWBKjLaWs7rJ NDHI6fZZ1DEbMNiR / lH78IkQigUk8zwiS5sZDKkfpCYhXJDPUw7JQHK + C80DfItGpjdMb0WAXtxY STSqOcnqsk7MwarQ / u05c / oGVylPJjiTLcTcfFHiI97MoJrmO4MHI + k8zLGGiBCBasV5pNsGh3Kj bwoRmUQCHOCU + aY2Op6fKGj4gOpQsfUNVk3C8KU / 2WVYoj8zE30Ozj6kbgoBYS + oWMgeNRHPHVWY hzV0 / uwEINO9SPpy7WgeJA337MMQuYZRHqTFJVEZmlirQRvCS4LOIzT1l3KLy3p / DAYOXbHdUEba wkgchjapUOQzsfVuAzFo + SdulduntkcYH5gb70dnG1AFhV0hVOs27lwGCuAlDUjid + lMOsEfHib3 rkjABxstyLmIS + sXvDCUuZrX0X5n0W4h6EHi / iNslGVdEEWpXGm3E9wLgX88IHAGKPiIyEcydCpO 9aGh4G2ETAHJBiT1Y / dcnvAkpWOsMZZ + qVHJf2V5bqo6j6SN8wtTEcXNryRF83hGsxJHr2qqnEJF d3CoFBC / bkAA2FBQZtNN9Efx0bYHkPJ6H + TsUJsr13okkk6wJKoUuoKF2oWVqD4a77bYMkqY5Y2Q 9Mf6lZJ6t3cFbdGpJNK6AAseEdfTQKFavUkU2yoGROzHggAm6qFUKOgFB9GV820Cm8VdiqHvf7lf + M0P / J2PDHmiXJEYEsd8of8AKPeW / wDtjw / 8mrXD0R1ZFgS7FUp1rR5NSltriOUIbQSH0 + HIyc + F AGLoF + xkeAGcZdzVlxcdJTYeUry1nsOdxHwsgkkjBSeThkJjUcl2 + D7R + 7InBEwA7pcTCOmo808f SIZLtbtypZWJFYYSaE7jmY + W42O + X8Zqm / h4QGs6Ve6hqMFwiARWwYKQQS1VbqCVpu1MhGERkE73 DXkxcZtCHy / qD3VvI3wJEBLyRhyD1U8KmtKU60OTzcOSUZH + G / tYxwASBTpNJRF4i4kPxKQxWGoC knjX0e9d ++ PG3cKXXXl5 / rkM8BMiJGsJHwIQDI7lqIiLsJOwyMa8QT6hqyYRI23Y6TdQajb3bxFV T1EcF1ailfhbanUmlMOYRyTEr5BYYeGVsgyLc7FXYqxRNCvQ5DfWSCTUk2 / EClPgpRvfeuQlp8cj 1aZQJPJAXP5d6LdyXDvZ1makbSBFqXJ9VpSX9HkSGFWUnuO2ZMcvAAAzjxJtonk2x0RbgW9FFzIJ eES + iENOJ4ENIRt2BGRllJSY3zTy2tEgjKMTKWoWL77gAbcqmm1euQJSBSuqqihVAVVFABsABgS3 irsVQ97 / AHK / 8Zof + TseGPNEuSIwJY75Q / 5R7y3 / ANseH / k1a4eiOrIsCXYq7FXYq7FXYq7FXYq7 FXYq7FUrv9Civ71b83VxbyrEIeMLJwK1ZqlZI3Ffip8ssjkMRVMJQs3az9AH / q43ffalvQhhQqR9 W6UHTpj4vkF4D3qcnllJZYJn1G8L2tDFRoQARQglRAAx274RmroEeH5lN4IVgiSFdwo3aigse7EI qrUnc0GVk2WwClTArsVdirsVdiqHvf7lf + M0P / J2PDHmiXJEYEsd8of8o95b / wC2PD / yatcPRHVN tVEZ064E0P1hOHxRBuHIeHLamBLD / S0n / qwt / wBJbf8ANeFXelpP / Vhb / pLb / mvFU6i0DypJEjvD HGzKGZDcPVSRUj + 97YFXf4e8pf77i / 5Hv / 1VxV3 + HvKX ++ 4v + R7 / APVXFXf4e8pf77i / 5Hv / ANVc VTaGfT7eGOCGaJY4lCIvMGiqKAVJJ6DFV / 1yz / 3 / ABf8Gv8AXFV8c8M1RFIslOvFgafdiqpirsVd irsVdirsVdirsVdirsVQ97 / cr / xmh / 5Ox4Y80S5IjAljvlD / AJR7y3 / 2x4f + TVrh6I6ptqqGTTrh FUuWSgVYxKT8o2KhvvwJYf8Ao + f / AJZJ / wDuGQ / 9V8KHfo + f / lkn / wC4ZD / 1XxV36Pn / AOWSf / uG Q / 8AVfFXfo + f / lkn / wC4ZD / 1XxV36Pn / AOWSf / uGQ / 8AVfFXfo + f / lkn / wC4ZD / 1XxVUg0ueaZIj byRcyF5yabCFWvdj652xVlH6B0X / AJYYP + AGBKva6fY2RY2kEcBegYooWtOlaYqicVdirsVdirsV dirsVdirsVdiqHvf7lf + M0P / ACdjwx5olyRGBLHfKH / KPeW / + 2PD / wAmrXD0R1VLnzjpFrcS20iz c4XaNqICKqSpp8XtgpKl / jjRf5Z / + AH / ADXjSu / xxov8s / 8AwA / 5rxpXf440X + Wf / gB / zXjSu / xx ov8ALP8A8AP + a8aV3 + ONF / ln / wCAH / NeNK7 / ABxov8s // AD / AJrxpXf440X + Wf8A4Af8140qrbec dIuriK2jWbnM6xrVABViFFfi98aVPsVdirsVdirsVSbUfNGm6ZdtZ3IlMiAE8FBHxCo / aGKoX / HG i / yz / wDAD / mvGld / jjRf5Z / + AH / NeNK7 / HGi / wAs / wDwA / 5rxpXf440X + Wf / AIAf8140qJ0 / zVpm pXcdlbiUSy8uPNQB8Klz + 0ewxVMr3 + 5X / jND / wAnY8MeaJckRgSwjyz5m8tw + W9BVte022uLbTbe GWKa4i5K3pQ8lZfWQqylKb4QUEG0a2v + T3Yu + taCzMSWYvASSepJ + s42Fotfp3yZ / wBXnQP + Cg / 7 KcbC0Xfp3yZ / 1edA / wCCg / 7KcbC0Xfp3yZ / 1edA / 4KD / ALKcbC0Xfp3yZ / 1edA / 4KD / spxsLRd + n fJn / AFedA / 4KD / spxsLRd + nfJn / V50D / AIKD / spxsLRd + nfJn / V50D / goP8AspxsLRbXX / J6MHTW tBVlIKsHgBBHQg / WcbC0UR / i / wAvf9TJo / 8AyOi / 7Ksdl3d / i / y9 / wBTJo // ACOi / wCyrHZd3f4v 8vf9TJo // I6L / sqx2Xd3 + L / L3 / UyaP8A8jov + yrHZd3f4v8AL3 / UyaP / AMjov + yrHZd1GXzF5Rmc yTa5oUjnqzvAx29zc42ForP075M / 6vOgf8FB / wBlONhaLv075M / 6vOgf8FB / 2U42Fou / Tvkz / q86 B / wUH / ZTjYWi79O + TP8Aq86B / wAFB / 2U42Foro / MPlGFxJDrmhRuvRkeAEV26i5xsLRVX81 + WpeK y + ZNJKB0chZ4gTwZXpU3Lfy + GNhFEor / ABn5P / 6v2m / 9JkH / AFUwMn // 2Q ==
  • Adobe: docid: indd: 51050807-36a9-11db-af06-850bd9a1a4dcuuid: 6ece6e06-7d06-4424-bdf0-e4e04b3308acproof: pdf51050806-36a9-11db-af06-8509da50da1 СсылкаStream300.00300.00Inchesuuid: 16808815-81b3-11da-bf46-9ca2106f0819adobe: docid: photoshop: 3e61f5e2-81b1-11da-bf46-9ca2106f0819
  • ReferenceStream299.99299.99Inchesuuid: 8267ca78-e469-11d8-9b31-9aadfd810ff6adobe: docid: photoshop: 8267ca75-e469-11d8-9b31-9aadfd810ff6
  • ReferenceStream300.00300.00Inchesuuid: e290c920-4664-11db-a008-dc5c74fa2155adobe: docid: photoshop: e290c91c-4664-11db-a008-dc5c74fa2155
  • ReferenceStream300.00300.00Inchesuuid: 0d77b2b4-5161-11db-ba1d-c79898ed9167adobe: docid: photoshop: 0d77b2b1-5161-11db-ba1d-c79898ed9167
  • СсылкаStream300.00300.00 Inchesuuid: 55DEC59F54ACDE1184FFACD684FDD70Cuuid: 8FD2A01AC4A9DE1196FFACC580F18E5C
  • application / pdf
  • Viscous.indd
  • Библиотека Adobe PDF 8.0 FalsePDF / X-4 конечный поток эндобдж 2 0 obj > эндобдж 100 0 объект > поток HuTK tKKJI, t (݋4 K% ҹh5J # Ғ (H wqyy ~ 3̙g

    Borg Warner viscous, Care & Feeding

    Очень интересная ветка

    Вернул несколько постов о том, как работают ВК и раздаточная коробка. Я процитирую P38 с руководством по эксплуатации:

    «Привод от промежуточного вала по цепи Морзе передается на блок дифференциала.Блок дифференциала состоит из солнечной и планетарной шестерен. Задний выходной вал проходит через вал солнечной шестерни дифференциала и входит в зацепление с водилом планетарной передачи. На шлицевом переднем конце заднего выходного вала находится внутренний шлиц узла вязкой муфты. Внешний диаметр вала солнечной шестерни входит в зацепление с внешними шлицами узла вискомуфты.
    Узел вискомуфты
    Вязкостная муфта работает вместе с блоком дифференциала для управления пропорцией крутящего момента, передаваемого на передний и задний приводные валы.Вязкостная муфта представляет собой герметичный блок, заполненный силиконовым желе, который окружает диски внутри блока. Силиконовое желе обладает свойствами, которые увеличивают его вязкость и сопротивление текучести при перемешивании и нагревании.
    В нормальных условиях движения незначительных изменений относительной скорости каждого приводного вала недостаточно для увеличения вязкости кремниевого желе. Поэтому сопротивление внутри вязкой муфты невелико.
    В условиях бездорожья, когда колеса теряют сцепление с рыхлой или грязной поверхностью, существует большая разница в скоростях вращения переднего и заднего приводных валов.Проскальзывание из-за разницы в скоростях вращения приводных валов внутри вязкой муфты приводит к перемешиванию кремниевого желе, вызывая нагревание, которое увеличивает вязкость. Повышенная вязкость увеличивает сопротивление между дисками, заставляя оба набора дисков вращаться с одинаковой скоростью, уменьшая проскальзывание оси и увеличивая тягу. Вязкостная муфта устраняет необходимость в ручной блокировке дифференциала.

    Что происходит, так это то, что механический дифференциал, который «открыт», соединяется с VC, который действует как блок ограниченного трения с блокировкой.В нормальном режиме работы вязкость агрегата достаточна для распределения крутящего момента 50/50 на передний и задний приводные валы (вот почему Ян говорит, что он предварительно заблокирован при стендовых испытаниях)

    Вот почему мы имеем «постоянный 4WD»

    Умный бит заключается в том, что когда передняя или задняя ось вращается с разной скоростью, это приводит к быстрому изменению скорости вращения между пластинами, VC будет вести себя следующим образом (и мы говорим о миллисекундах времени реакции):
    1) Ножницы
    2) Нагрейте быстро
    3) Вязкость увеличивается / Кремний расширяется
    4) ВК начинает блокироваться….
    5) «Эффект горба» блокирует VC

    Однако есть предел: и если нагрузки слишком велики в течение слишком длительного периода, вязкая жидкость действительно будет «вариться», и VC выйдет из строя — подумайте об этом как о предохранителе, и почему нельзя буксировать автопогрузчиком!

    Этот видеоролик с транспортным средством VW очень хорошо демонстрирует это, а также демонстрирует, почему при стендовых испытаниях выявляется только готовый VC, а не демонстрируется, как он работает.

    Итак, вы все правы — в некотором роде!

    Крис

    Границы | Выбор материалов, используемых в вязкостной муфте с жидкостью ER, работающей в особых условиях

    Введение

    Наиболее важными факторами, которые в последнее время способствовали улучшению результатов механических устройств и повысили надежность устройств, являются внедрение новых материалов и интеграция с цифровой электроникой.В вязких сцеплениях и тормозах оба этих фактора сочетаются за счет использования новых строительных материалов и гидравлических рабочих жидкостей нового типа, то есть интеллектуальных жидкостей, которые реагируют на физическое поле, изменяя свои реологические свойства.

    Используются два типа интеллектуальных жидкостей: электрореологические жидкости (ER) и магнитореологические жидкости (MR), активируемые, соответственно, электрическим или магнитным полем. Жидкости ER и MR делятся на две группы в зависимости от их состава: однофазные и двухфазные.Однофазные жидкости однородны, а двухфазные жидкости состоят из двух фаз: твердой и жидкой.

    Вязкостные муфты состоят из ведущей части, соединенной с входным валом, и ведомой части, соединенной с выходным валом. Блокировка ведомой части приводит к тому, что сцепление становится тормозом. В этих муфтах крутящий момент передается в результате трения, вызванного напряжением сдвига в рабочей жидкости, между ведущей частью и ведомой частью. По форме ведущей и ведомой части можно выделить два основных типа вязких муфт: цилиндрические и дисковые.

    Из-за необходимости создания электрического или магнитного поля в зазоре, содержащем рабочую жидкость, создание муфт и тормозов с использованием интеллектуальных жидкостей оказывается намного сложнее, чем создание муфт и тормозов с использованием обычных рабочих жидкостей. В вязких муфтах с жидкостями ER электрическое поле обычно создается между двумя электродами, один из которых расположен в ведущей части, а другой — в ведомой части муфты. В таких муфтах для передачи напряжения на электроды, связанные с подвижной частью муфт, используются дополнительные электрические провода и скользящие кольца.Однако в вязких муфтах с жидкостью MR помимо электрических проводов и скользящих колец необходимо устанавливать сердечники и катушки электромагнита. По этим причинам вязкие муфты с жидкостями MR весят больше, и, следовательно, имеется большая инерция вращающихся частей, что неблагоприятно для управления муфтами. Сложная конструкция муфт и тормозов с интеллектуальными жидкостями заставляет выбирать материалы с надлежащими свойствами, а также выбирать методы проектирования, основанные на математическом моделировании и численных расчетах.

    До сих пор для управления крутящим моментом использовалась важная функция вязких сцеплений и тормозов: зависимость крутящего момента от угловой скорости входного вала. Изменение угловой скорости позволяет контролировать передаваемый крутящий момент. Крутящий момент также можно контролировать, изменяя температуру, давление или объем рабочей жидкости внутри муфты. Для вязких сцеплений и тормозов, изготовленных из новых материалов, таких как интеллектуальные жидкости, управление достигается за счет изменения напряжения сдвига, воздействия на жидкость ER или MR с соответствующим полем с регулируемым напряжением.Изменение электрического или магнитного поля достигается путем изменения напряжения или тока с помощью источников электропитания с электронным управлением. Увеличение напряжения сдвига в рабочей жидкости вызывает увеличение крутящего момента, передаваемого вязкими муфтами или тормозами.

    В работе представлены результаты оптимизации конструкции и экспериментальных исследований вязкодисковой муфты с жидкостью ER, работающей в необычных тепловых условиях. Целью оптимизации конструкции было достижение большого крутящего момента муфты при небольшом размере муфты и в то же время небольшой площади отвода тепла.Однако температура рабочей жидкости муфты поддерживалась близкой к температуре окружающей среды. Многоцелевая оптимизация проводилась на основе математических моделей жидкостей ER и дисковой вязкой муфты. Многоцелевая оптимизация вязкой муфты с жидкостью ER, включая качество материалов, ранее подобным образом не проводилась. Впоследствии был изготовлен и испытан на специально построенном стенде опытный образец вязкой муфты с жидкостью ER. Полученные результаты позволили сформулировать принципы построения вязких муфт с жидкостью ER, включая выбор материалов.

    Литературный этюд

    В практически используемых двухфазных жидкостях ER и MR твердая фаза состоит из частиц полимера или железа, соответственно, диаметром от 5 до 10 мкм, а жидкая фаза — силиконового масла (Fertman, 1990; Conrad, 1993; Weiss, 1993; Mikkelsen et al., 2017). Двухфазные жидкости также содержат добавки (до 3%), предотвращающие осаждение и агрегацию твердой фазы и повышающие электрореологический или магнитореологический эффект. Процентное содержание твердой фазы в двухфазных жидкостях ER и MR составляет 60–80% по массе и 20–30% по объему.Одним из ограничений использования жидкости ER является ее чувствительность к изменениям температуры и влажности воздуха. Использование жидкости MR ограничено явлением магнитного насыщения.

    Жидкости

    ER и MR используются или предполагается использовать в основном в качестве материалов с контролируемыми реологическими свойствами в различных устройствах, таких как тактильные устройства (Liu et al., 2006), поглотители энергии (Milecki et al., 2005; Choi and Wereley , 2015), амортизаторы (Sapiński et al., 2016), консольные балки (Lara-Prieto et al., 2010), гидродинамические муфты (Madeja et al., 2011; Olszak et al., 2018), разрядные машины (Kim et al., 2002) или даже роботы (Saito, Ikeda, 2007; Jing et al., 2018) и сейсмические изоляторы (Li et al., 2013).

    Чаще всего жидкости ER и MR используются в таких устройствах, как сцепления и тормоза (Olszak et al., 2016a; Raju et al., 2016; Gao et al., 2017). Для достижения предполагаемых характеристик сцеплений и тормозов с жидкостями ER и MR их архитектура принимается во внимание путем анализа формы и положения рабочего пространства (Avraam et al., 2010), способ создания электрического или магнитного поля (Takesue et al., 2003; Böse et al., 2013; Sohn et al., 2018), а также тепловые условия работы (Chen et al., 2015; Song и др., 2018). Дополнительно во внимание принимаются интеллектуальные жидкости, используемые для изготовления сцеплений и тормозов с ER и MR, в основном их состав (Sarkar and Hirani, 2013; Kumbhar et al., 2015; Mangal et al., 2016) и долговечность (Olszak et al. ., 2016б; Ким и др., 2017; Зябска и др., 2017). Примеры конструктивных решений сцеплений и тормозов с интеллектуальными жидкостями можно найти в публикациях (Papadopoulos, 1998; Kavlicoglu et al., 2002; Смит и др., 2007; Фернандес и Чанг, 2016).

    Следующим важным шагом на пути к совершенствованию конструкции сцеплений и тормозов с использованием интеллектуальных жидкостей является использование методов оптимизации. В публикациях по этой теме геометрические размеры оптимизированы, в то время как авторы предполагают разные целевые функции и разные методы оптимизации.

    Объектами оптимизации обычно являются устройства с жидкостью MR, используемые в транспортных средствах. В предыдущих работах (Park et al., 2006, 2008) процесс строительства включал междисциплинарную оптимизацию проектирования; целевая функция учитывает массу тормоза, а также тормозной момент и использует скалярные весовые коэффициенты. В этих работах предполагалось, что в автомобиле вес тормоза важнее тормозного момента. Для сокращения времени расчета использовались три метода оптимизации, первые два из которых были менее эффективными: встроенные возможности ANSYS, а затем метод случайного поиска, который давал самые низкие значения целевой функции.Во время оптимизации был также проведен CFD-анализ и оценено распределение напряженности магнитного поля и установившееся распределение температуры. Нгуен и Чой (2010) в процессе оптимизации тормозов автомобиля и при определении целевой функции приняли во внимание следующие аспекты: требуемый тормозной момент, температуру из-за трения в нулевом поле жидкости MR, массу тормозной системы и геометрические размеры. Использованный здесь метод оптимизации основан на анализе конечных элементов.В работе (Assadsangabi et al., 2011) целевая функция была принята таким образом, чтобы обеспечить максимально возможный тормозной момент при минимально возможной массе автомобильного тормоза. Оптимизация проводилась с использованием анализа конечных элементов и генетического алгоритма. Целью работы (Sohn et al., 2015) была оптимизация тормоза мотоцикла. В целевой функции учитывались такие факторы, как тормозной момент, вес и температура. В процессе оптимизации использовался инструмент, основанный на анализе конечных элементов.В исследовании (Nguyen and Choi, 2010) магнитореологического демпфера для легкового автомобиля целевая функция включала демпфирующую силу, динамический диапазон и индуктивную постоянную времени демпфера. В методе оптимизации, основанном на анализе конечных элементов, использовались алгоритм анализа золотого сечения и метод локальной квадратичной аппроксимации.

    Оптимизация размеров муфт с жидкостью MR можно найти в двух предыдущих статьях (Horvath and Torőcsik, 2011; Bucchi et al., 2017).В обоих случаях оптимизация была направлена ​​на достижение максимально возможного передаваемого крутящего момента сцепления, в то время как в Bucchi et al. (2017) акцент был сделан на форме магнитореологического жидкостного зазора, и оптимизация проводилась с использованием метода конечных элементов. Однако в Horvath and Torőcsik (2011) особое внимание уделялось внутреннему радиусу, в то время как оптимизация была основана на простом аналитическом методе и процедуре моделирования. В статье (Gao et al., 2017) описана оптимизация демпфера MR, разработанного для интеллектуальных протезов колен.В целевой функции учитывались такие факторы, как общее потребление энергии за один цикл походки и вес амортизатора MR. Оптимизация проводилась на основе алгоритма оптимизации роя частиц. Первоначальный метод оптимизации, называемый методом Тагучи, был использован для оптимизации магнитореологического тормозного привода (Erol and Gurocak, 2011). В целевой функции учитывалось отношение крутящего момента к объему.

    Математическая модель

    При определении математической модели жидкости ER предполагалось, что реологические свойства жидкости могут быть описаны моделью Бингема:

    , а для U = 0, τ = μ0γ., а электрические свойства жидкости ER можно описать уравнением:

    где μ p — пластическая вязкость, τ 0 — предел текучести жидкости ER, зависящий от электрического поля, μ 0 — коэффициент динамической вязкости жидкости без электрического поля, и i g — плотность утечки тока.

    Связь τ 0 , μ 0 , i g с электрическим полем E описывалась формулами, в которых температура T , относительная влажность воздуха w и скорость сдвига γ.принято к сведению:

    τ0 = a0 · a1 · a2 · a3 · E2 (3) μ0 = b0 · b1 + b2E2ig = c0 · c1 · c2 · c3 · E1,7

    где a 0 , b 0 , c 0 , a 2 , b 2 — числовые коэффициенты; a 1 , b 1 , c 1 — коэффициенты, линейно зависящие от температуры T ; a 3 , c 2 — коэффициенты, линейно зависящие от относительной влажности воздуха w ; и c 3 — коэффициенты, линейно зависящие от скорости сдвига γ..

    Предполагалось, что радиусы r в математической модели вязкого сцепления с жидкостью ER описываются пропорциональным увеличением модельного сцепления, геометрия которого была определена на основе анализа уже существующих сцеплений и тормозов с интеллектуальной жидкостью (Papadopoulos, 1998; Kavlicoglu et al., 2002; Smith et al., 2007; Nguyen and Choi, 2010; Erol and Gurocak, 2011) с использованием коэффициента увеличения s k . Ширина муфты модели рассчитывается в зависимости от количества дисков n с постоянной шириной зазора h между дисками.На рисунке 1 показана конструктивная схема модельной вязкой муфты с жидкостью ER, а в таблице 1 показаны сопоставленные размеры муфты в зависимости от коэффициента увеличения s k и количества рабочих зазоров n .

    Рисунок 1 . Схема построения модельной вязкой муфты с жидкостью ER с 5 дисками.

    Таблица 1 . Размеры муфты с жидкостью ER приняты для оптимизации.

    В процессе оптимизации муфты были выполнены следующие расчеты: крутящий момент, передаваемый через муфту M , мощность муфты P , объем муфты O , температура жидкости ER в муфте T Z и центростремительное ускорение a d .Расчеты производились по формулам:

    M = nπμp2hω (r24-r14) + n2πτ03 (r23-r13) (4) P = nπμp2hω2 (r24-r14) + n2πτ03ω (r23-r13) O = πrz2Sz ad = ω2rz Tz = PαSz + T ic = n · ig S

    , где T — температура окружающей среды, а S = π (r22-r12) — поверхность стороны электрода.

    Крутящий момент M , передаваемый через вязкую муфту с жидкостью ER, был рассчитан путем интегрирования единичной силы, возникающей на радиусе r , с упрощающим предположением, что напряжение сдвига τ не изменяется — ни по радиусу диска ни по высоте зазора.В результате получилось следующее уравнение:

    M = ∫r1r2rdF = 2π∫r1r2τr2dr (5)

    , где впоследствии была учтена формула (1) (Park et al., 2008; Erol, Gurocak, 2011).

    Температура T Z была рассчитана из уравнения, описывающего тепло Θ , выделяемое в окружающую среду в момент Δ t , предполагая, что муфта работает с постоянной мощностью P в заданных условиях:

    Θ = P Δt = αSs (Tz-T) Δt (6)

    , где α — коэффициент теплопередачи, а T — температура окружающей среды.

    Величины, описываемые формулами (4), являются показателями конструкции вязкостной муфты с жидкостями ER, отражающими ее характерные особенности, такие как производительность ( P , M ), размеры ( O ) и условия работы ( T , T Z , a d ).

    Оптимизация вязкостной муфты с помощью жидкости ER

    Способ проведения оптимизационных расчетов

    Основной целью оптимизации было получить вязкое сцепление с жидкостью ER с минимально возможными размерами, передающее максимально возможный крутящий момент, но в то же время количество рассеиваемого тепла, зависящее от боковой поверхности сцепления, обеспечивало возможна низкая температура жидкости ER при постоянной работе сцепления.

    Были созданы две целевые функции, содержащие отношения M / O и T Z / T . Отношение M / O должно быть как можно большим, чтобы получить максимально возможный крутящий момент M от конструкции с минимально возможным объемом O . Однако отношение T Z / T должно генерировать, возможно, небольшие значения, чтобы уменьшить изменение температуры и, следовательно, влияние температуры на свойства жидкости ER.Предполагаемыми ограничениями были значения мощности P , центростремительного ускорения a d и тока i c .

    Целевые функции были следующими:

    Fc = | w1 · Tz / Tr-w2 · OM / (OM) r | (8)

    где: w i ( i = 1, 2) — весовой коэффициент для целевой функции i .

    Уравнение (8) было сформулировано на основе метода взвешенной суммы, который является наиболее широко используемым методом многокритериальной оптимизации.В этом исследовании предполагалось, что ∑i = 1i = 2wi = 1 и 0 ≤ w i ≤ 1. Коэффициенты w 1 и w 2 не имеют физического значения.

    Требовались минимальные значения этих целевых функций:

    — для допустимых значений из объемов: l ≤ с k ≤ 8; 30 ≤ ω ≤ 250 рад / с; 5 ≤ n ≤ 13;

    — с ограничениями: P ≤ 1000 Вт; a d <300 рад / с 2 ; i c <100 мА.

    Для оптимизационных расчетов использовалась индивидуальная компьютерная программа, написанная на языке программирования Delphi. Расчеты проводились следующим образом:

    — использовался генератор случайных чисел, допустимые значения взяты из предполагаемых диапазонов разрешенных значений;

    — проведена проверка на соблюдение ограничений;

    — если нарисованные значения допустимых значений удовлетворяли условиям ограничений, то целевые функции рассчитывались; если нет, разрешенные значения были нарисованы снова;

    — вычисленная целевая функция запоминалась и вычисления повторялись;

    — сравнивались значения целевых функций с предыдущего и текущего шага расчетов;

    — было выбрано меньшее значение, и одновременно были сохранены значения, рассчитанные для меньшего значения целевой функции.

    На основе нескольких наборов геометрических размеров вязких муфт с жидкостями ER (наборы, которые были признаны лучшими) были построены виртуальные твердотельные модели муфт. Эти модели впоследствии были использованы для расчета распределения температуры в муфте с помощью программы ANSYS Fluent. При расчете тепла, выделяемого в рабочих зазорах муфты, учитывалась мощность, выделяемая при протекании электрического тока P 1 = U · i c , а также мощность P 2 , излучаемые в результате напряжения сдвига τ раз.Из-за различных размеров муфт, полученных в процессе оптимизации, мощность P = P 1 + P 2 относилась к объему V жидкостей ER в рабочих зазорах.

    Отношение мощности, превращенной в тепло, к единице объема жидкости P 2 / V было вычислено с учетом того, что мощность dP , излучаемая в жидком кольце толщиной dr , может быть записана как:

    dP2 = dF v = dSτ v = 2πrdrτ v (9)

    После соблюдения dV = 2 πr dr h и v = ωr = γ.h результат:

    dP2 = 2πrdrτv = 2πrdrhτγ. = dVτγ. (10)

    и после интегрирования обеих частей уравнения и преобразования:

    Чтобы отобразить соотношение P 2 / V в зависимости от радиуса r , принимается во внимание, что γ. = Vh = ωrh и τ = μpγ. + Τ0, что дает результат:

    P2V = (μpγ. + Τ0) γ. = Μpγ.2 + τ0γ. = Μpr2h3ω2 + τ0rhω (12)

    Данные для оптимизации

    Предполагалось, что в вязкой муфте с жидкостью ER будет использоваться жидкость ERF # 6.Он состоит из сульфированной стирол-дивинилбензольной смолы с катионом натрия и силиконового масла; его данные представлены в таблице 2 (Płocharski et al., 1997; Bocińska et al., 2002) согласно информации производителя. Жидкость ERF # 6 была выбрана в основном из-за ее долговечности.

    Таблица 2 . Основная информация о жидкости ERF # 6.

    Коэффициенты a , b и c математической модели жидкости ERF № 6, описываемой формулами (3), были определены на основе испытаний, проведенных с помощью измерительного устройства.Устройство было построено аналогично цилиндрическому реометру, но диаметр цилиндров был намного больше. Основным элементом устройства была вязкая муфта, состоящая из взаимно изолированных цилиндров, подключенных к электрическим полюсам источника питания высокого напряжения. Один из цилиндров с внутренним радиусом 122 мм был установлен непосредственно на валу вертикально установленного асинхронного двигателя, управляемого преобразователем частоты, который позволял плавно регулировать угловую скорость ω . Однако второй цилиндр с внешним диаметром 120 мм и высотой 29 мм был соединен с рычагом длиной l = 140 мм, который давил на тензометрический датчик силы F .Зазор между цилиндрами составил х = 1 мм. Температура жидкости T измерялась резистивным датчиком, размещенным на стенке невращающегося цилиндра. Влияние относительной влажности воздуха на реологические характеристики жидкости ERF # 6 было проверено путем помещения измерительного прибора в пластмассовую палатку, в которой постоянно увеличивалась влажность, которая постоянно увеличивалась в соответствии с размещением сосудов с дымящейся водой. Схема построения измерительной вязкой муфты представлена ​​на рисунке 2.

    Рисунок 2 . Схема вязкостной муфты измерительного устройства: 1 — цилиндр, установленный на валу двигателя; 2 — цилиндр, соединенный с рычагом; 3, рычаг; 4 — датчик силы; 5, выход датчика температуры.

    В ходе исследования компьютерная измерительная система зарегистрировала значение силы F в зависимости от угловой скорости ω и тока утечки I для различных значений приложенного к цилиндрам электрического напряжения U .Затем значение силы F вычислялось как напряжение сдвига τ , а угловая скорость ω — как скорость сдвига γ. согласно следующему уравнению:

    τ = Mr2S = Flr2S [Па] (13) γ. = ωr2h [1 / с] (14)

    где r 2 — радиус цилиндра, соединенного с рычагом, h — размер зазора, M — крутящий момент, S = 2 πr 2 b is площадь среза, l — длина силового рычага, а b — высота цилиндра, соединенного с рычагом.

    Однако напряженность электрического поля рассчитывалась по формуле:

    Значения коэффициентов a , b , c флюида ERF №6 сопоставлены в таблице 3.

    Таблица 3 . Коэффициенты a, b, c , входящие в математическую модель жидкости ERF №6.

    Значение коэффициента α, представленное в формулах (4), можно принять из диапазона 100 ÷ 150 Вт / (м 2 K) (Накамура и др., 2003). В расчетах оптимизации принималось α = 120 Вт / (м 2 K). Максимальное значение центростремительного ускорения, которое может влиять на жидкость ER, не вызывая разрушения из-за центробежной силы, было принято равным 300 рад / с 2 на основании предыдущей публикации (Carlson, 1997).

    Результаты оптимизации

    Таблица 4 показывает сопоставленные результаты оптимизирующих расчетов геометрических размеров вязкой муфты с жидкостью ER. Результаты были получены путем минимизации целевой функции, описываемой уравнением (7), для заранее заданных значений угловой скорости ω .

    Таблица 4 . Результаты расчета для T = 20 ° C, U = 2 кВ, n = 12, w = 30%.

    В таблице 5 показаны результаты расчетов оптимизации целевой функции, описываемой уравнением (8) для различных весовых коэффициентов w 1 , w 2 , выбранных таким образом, чтобы коэффициент увеличения s k было близко к 2. Справочные значения T r = 37 o C, ( O / M ) r = 1290 см 3 / Нм были приняты произвольно на основе результаты показаны в таблице 4.

    Таблица 5 . Результаты расчета для U = 2 кВ, 30 ≤ ω ≤ 250 рад / с, 5 ≤ n ≤ 13, w = 30%.

    На рисунке 3 представлены результаты расчетов целевой функции, описываемой формулой (8) для различных весовых коэффициентов, полученные в результате 2 500 розыгрышей.

    Рисунок 3 . Набор значений целевой функции, описываемый формулой (8) для U = 2 кВ, 30 ≤ ω ≤ 250 рад / с, 5 ≤ n ≤ 13, w = 30% и для : (A) w 1 = 0.3, w 2 = 0,7; (B) w 1 = 0,7, w 2 = 0,3.

    Примеры диаграмм, показывающих зависимость P / V от радиуса r для угловой скорости ω = 100 рад / с, показаны на рисунке 4.

    Рисунок 4 . Зависимость P / V от радиуса r для ω = 100 рад / с и жидкости ERF # 6.

    На рисунке 5 показана геометрия муфты с жидкостью ER для s k = 2, а на рисунке 6.показывает рассчитанное распределение температуры.

    Рисунок 5 . Вид на геометрию сцепления для s k = 2: коричневый цвет, диски; серый цвет, кожух.

    Рисунок 6 . Распределение температуры в ° C в поперечном сечении муфты для s k = 2, ω = 100 рад / с, U = 2 кВ.

    Обсуждение результатов

    Как следует из данных таблицы 4, для целевой функции, описываемой уравнением (7), при аналогичных значениях отношения M / O увеличение угловой скорости ω ведомой части вязкой муфты с Жидкость ER вызывает уменьшение коэффициента увеличения s k и увеличение массовой температуры T муфты.Муфта, работающая с более высокой угловой скоростью ω , передает больше мощности P , как показано в уравнениях (4). С другой стороны, меньшее значение коэффициента увеличения s k означает, что муфта имеет меньшие размеры и, следовательно, имеет меньшие поверхности для рассеивания тепла, как видно из таблицы 1. Таким образом, причина Увеличение массовой температуры T муфты с увеличением угловой скорости ω — это работа муфты с большей мощностью и меньшей площадью отвода тепла.

    Напротив, как следует из данных Таблицы 5, при аналогичных значениях коэффициента увеличения s k (близко к 2,0) муфта работает с большей угловой скоростью ω , с меньшим весовым коэффициентом w 1 определение доли температурного отношения T Z / T r в целевой функции, описанной уравнением (8), при этом меньший весовой коэффициент w 1 , тем выше температура T Z .

    Как показано на рисунке 3, отображение зависимости целевой функции, описываемой уравнением (8), от коэффициента увеличения s k , увеличение весового коэффициента w 1 с 0,3 до 0,7 вызывает минимальное значения целевой функции, поэтому оптимальные решения существуют для меньших значений коэффициента увеличения s k , то есть для меньших размеров муфты с жидкостью ER.

    По результатам проведенных исследований наиболее важным параметром при оптимизации муфты с жидкостью ER является мощность P , выделяемая в вязкой муфте с жидкостью ER, которая зависит от двух значений: U и ω . Диапазон изменения высокого напряжения U для всех муфт с жидкостями ER одинаков и на практике не превышает значений от 0 кВ до 3 кВ, в основном из-за возможных пробоев между электродами, которые генерируют электрическое поле.Таким образом, перед выбором оптимальных габаритов вязкой муфты с жидкостями ER следует выбрать значение угловой скорости ω .

    Предполагалось, что муфта с жидкостью ER в сконструированном устройстве, которое служит для приложения контролируемой силы, обычно будет работать в диапазоне скоростей ω от 100 до 180 рад / с. Для такого диапазона ω на основании результатов проведенных расчетов, в основном результатов, представленных в таблицах 4, 5 и на рисунке 3, было принято значение s k = 2.

    Для проверки расчетов оптимизации для с k = 2 для следующих данных: 100 рад / с ≤ ω ≤ 180 рад / с и T = 20 ° C, U = 2 кВ, n = 12, w = 30%, выполнены расчеты температуры рабочей жидкости ER в муфте на основе обеих целевых функций. Для целевой функции, описываемой уравнением (7), полученная температура составила T = 28,3 ° C, а для целевой функции, описываемой уравнением (8), и для w 1 = 0.5, w 2 = 0,5, полученная температура составила T Z = 32,1 ° C. Температуры T и T Z отличаются от температуры жидкости ER (29,5 ° C), показанной на Рисунке 6, не более чем на 6%, что указывает на правильность предположений.

    Выбор материалов и конструкция прототипа вязкой муфты с жидкостью ER

    Конструктивное решение сцепления

    После определения габаритов вязкой муфты с жидкостью ER для с k = 2 на основании таблицы 1 был построен прототип.Предполагалось, что муфта будет работать вертикально, а подшипники будут размещены на одной стороне муфты, как показано на Рисунке 7.

    Рисунок 7 . Конструктивное решение прототипа сцепления: 1 — кожух подшипников; 2 — кожух сцепления; 3 — втулки изоляционные для подшипников вала; 4 — диски, закрепленные на кожухе; 5 — диски на валу; 6, вал; 7 — скользящее кольцо; 8 — гибкая муфта; 9 — подшипник вала; 10 — подшипник сцепления; 11, уплотнительное кольцо.

    Такое конструктивное решение выгодно из-за герметичности.Между дисками использовались распорные кольца, замена которых позволяет изменять ширину рабочего зазора. Полюс «+» источника питания высокого напряжения соединялся с валом муфты щеткой и скользящим кольцом, а полюс «-» — к корпусу муфты. Чтобы изолировать ведущую часть от ведомой, наружное кольцо подшипников, закрепленных на валу, было помещено во втулки, изготовленные из материала, который является отличным электроизолятором. Чтобы снизить затраты на производство сцепления, диски были закреплены винтами вместо обычно используемых шлицев.Для увеличения теплоемкости и облегчения отвода тепла из рабочих зазоров муфты стенки кожуха были сделаны намного толще, чем это необходимо для обеспечения достаточной механической прочности и жесткости.

    Используемые материалы

    Из-за хорошей электрической и теплопроводности большинство деталей прототипа сцепления были изготовлены из металла. Диски сцепления были изготовлены из аустенитной нержавеющей стали с обозначением 304 в соответствии со стандартом ASTM / AISI.Нержавеющая сталь 304 содержит около 19% хрома и 10% никеля в качестве основных легирующих добавок и устойчива к коррозии, сохраняя при этом свою прочность при высоких температурах. Исходным материалом для изготовления дисков сцепления служил холоднокатаный лист с гладкой поверхностью. Диски были вырезаны из листа с помощью водоструйной абразивной обработки. Затем диски были отполированы. Шлифование этого материала не рекомендуется из-за того, что он слишком мягкий для этого процесса. Корпус и вал сцепления были изготовлены путем механической обработки из стали марки 403 по стандартам ASTM / AISI.Нержавеющая сталь 403 содержит 11% хрома и 1% марганца. Более высокое содержание углерода означает, что нержавеющая сталь 403 имеет более высокую прочность и более высокую износостойкость по сравнению с нержавеющей сталью 304.

    Изолирующие втулки подшипников и упругая муфта вала сцепления с валом двигателя были изготовлены из материала под названием полиамид (PA6). Уплотнительное кольцо было напечатано на 3D-принтере из материала под названием АБС (акрилонитрило-бутадиено-стирен) (Kotlinski et al., 2013).

    Испытания сцепления с жидкостью ER

    Создание испытательной установки

    Стенд для испытаний прототипа сцепления состоял из управляемого электродвигателя, на валу которого была установлена ​​приводная часть сцепления с жидкостью ER.Ведомая часть соединялась с рычагом, нажимающим на датчик силы. Точность положения датчика силы относительно рычага составила 0,1 мм, что дало погрешность <0,1%.

    Величина электрического напряжения подавалась от источника высокого напряжения, полюса которого взаимозаменяемо соединялись с дисками прототипной муфты. Источник питания также позволял измерять ток утечки. В кожухе вязкой муфты с жидкостью ER был установлен термометр для измерения температуры жидкости ER.Измерение относительной влажности воздуха производилось датчиком влажности, установленным в непосредственной близости от муфты. Угловая скорость считывалась с помощью энкодера электродвигателя. Точность измерительных устройств, используемых на испытательном стенде, приведена в таблице 6. Все измеренные значения были записаны с течением времени на основе компьютерной измерительной системы. Схема испытательного стенда представлена ​​на рисунке 8.

    Таблица 6 . Точность измерительных приборов.

    Рисунок 8 .Схема испытательного стенда: 1 — ПЛК; 2, карты ввода / вывода; 3 — компьютерный комплект с программным обеспечением; 4, источник питания высокого напряжения; 5, контроллер сервопривода; 6, сервопривод; 7 — сцепление испытано с жидкостью ER; 8 — датчик силы; 9 — датчик влажности; 10, датчик температуры.

    Тесты на рабочем месте

    Характеристики вязкой муфты с жидкостью ER как τ = f (γ.) Определялись по формулам (13) и (14) для считанных значений силы F в зависимости от угловой скорости ω для выбранных постоянные значения электрического напряжения U , рисунок 9.Измерения проводились при постоянной температуре жидкости и постоянной относительной влажности w . Для сравнения на Рисунке 9. дополнительно показаны характеристики τ = f (γ.), Полученные с помощью измерительного устройства, схему которого можно увидеть на Рисунке 2.

    Рисунок 9 . Зависимость τ от γ. для T = 20 ° C и w = 30%: зеленый цвет, измерительные приборы; красный цвет, вязкая муфта с жидкостью ER.

    Как видно из диаграмм, представленных на Рисунке 9, различия между линиями, касающимися измерительного устройства, и линиями, касающимися муфты с жидкостью ER, невелики, даже если есть существенные различия в размерах и форме рабочих зазоров.Средняя относительная ошибка составила 12%. Также необходимо отметить, что диапазон изменений напряжения сдвига τ , вызванных изменением напряжения U от 0 до 2,5 кВ, на 30% больше, чем диапазон изменений напряжения сдвига τ , вызванных изменениями углового скорость ω .

    Испытания на долговечность прототипа муфты с жидкостью ER показали, что необходимо тщательно выбирать изоляционный материал, а также материалы для скользящего кольца и щетки.Изначально изоляционным материалом был Текстолит (TcF-1), характеризующийся большим электрическим сопротивлением и хорошей обрабатываемостью. Чтобы упростить конструкцию муфты, также использовалась медная щетка, взаимодействующая непосредственно с валом. Однако в ходе испытаний выяснилось, что из-за попадания влаги на гильзу, подверженную воздействию высоких напряжений, материал частично обугливался на поверхности, и создаваемые таким образом токопроводящие дорожки в значительной степени ухудшали изоляционные свойства. После замены Текстолита (TcF-1) материалом Полиамид (PA6) не произошло снижения изоляционных свойств.Испытания также показали, что использование медной щетки во взаимодействии непосредственно с валом является причиной электрических пробоев, происходящих при относительно низком напряжении, около 1,5 кВ, из-за того, что продукты износа попадают внутрь муфты вместе с ER. жидкость. Чтобы избежать этого, скользящее кольцо было изготовлено из бронзы, а щетка — из графита из-за его хороших смазывающих свойств. После этой замены не было случаев электрических поломок, вызванных продуктами износа.

    Рекомендации по выбору материалов

    При выборе жидкости ER для использования в управляемой муфте необходимо выбрать жидкость, напряжение сдвига τ которой незначительно зависит от скорости сдвига γ. Как было показано в предыдущих исследованиях (Nakamura et al., 2002, 2004) , чем больше зависимость, тем проблематичнее управление устройством с использованием жидкости ER. Этому требованию лучше всего удовлетворяют гетерогенные жидкости ER, твердой фазой которых является химически чистый крахмал.Недостаток жидкости этого типа — большая чувствительность к влажности и малая долговечность. При выборе жидкости ER для управления вязкой муфтой необходимо учитывать также тот факт, что крутящий момент M , передаваемый муфтой, является суммой двух составляющих, первая из которых зависит от μ. p · ω со второй зависимостью от τ 0 , являющейся функцией напряжения U .Если сцепление должно управляться путем переключения напряжения U , выбранная жидкость должна иметь самое большое соотношение τ 0 / μ 0 , тогда как для муфты, управляемой изменениями угловой скорости ω должен иметь наименьшее возможное отношение τ 0 / μ 0 .

    При выборе материалов для изоляционных элементов вязкостной муфты с жидкостью ER необходимо обращать внимание на их изоляционную прочность, низкое тепловое расширение, обеспечивающее стабильность формы при воздействии высокой температуры, хорошую химическую стойкость к маслам, большую механическую прочность и хорошую обрабатываемость.Необходимо учитывать, что пластмассы являются хорошими электрическими изоляторами, а также теплоизоляторами. Использование изоляционных материалов препятствует рассеиванию тепла, образующегося в результате взаимного трения частиц, трения между частицами и стенками рабочего зазора и электрического тока в жидкости ER. При определении толщины стенок изолирующих элементов необходимо учитывать тот факт, что чем толще стена, тем меньше вероятность электрических пробоев.Однако это ухудшает условия отвода тепла. В настоящее время большим облегчением является возможность создавать изолирующие элементы сложной формы с помощью методов 3D-печати, поскольку большинство пластиков, используемых в этой технологии, обладают хорошими изоляционными свойствами.

    Использование металлических материалов связано с возможностью коррозии металлических частей муфты, особенно тех, которые работают при повышенной температуре, продукты которой, проводящие электричество после попадания в жидкости ER, могут вызвать увеличение тока утечки и возникновение электрических пробоев. .Целесообразно использовать металлы и сплавы, устойчивые к коррозии. В случае возникновения фрикционных контактов элементов сцепления важно учитывать тот факт, что продукты износа могут препятствовать правильной работе сцепления.

    Выводы

    Управляющая сила F посредством муфты с жидкостью ER может быть реализована путем изменения угловой скорости двигателя и путем изменения высокого напряжения электрического тока, подаваемого на диски, поскольку как увеличение угловой скорости, так и Увеличение электрического напряжения вызывает увеличение напряжения сдвига в жидкостях ER и увеличение передачи крутящего момента на рычаг.Однако управление изменениями напряжения происходит быстрее и позволяет увеличить диапазон регулирования на 30%. Предложенный способ управления силой можно использовать на практике, так как он позволяет плавно изменять силу от нуля до максимального значения.

    Разработанные математические модели, хотя и простые, достаточно точны, чтобы их можно было использовать для оптимизации конструкции сцепления с жидкостью ER. Различия между результатами испытаний муфты с жидкостями ER и измерительным устройством в среднем достигают 12%, но их можно признать приемлемыми из-за значительных различий в размерах и формах рабочих зазоров.Можно признать, что результаты испытаний, полученные с помощью измерительных приборов, могут быть использованы для проектирования муфт с жидкостью ER.

    Предполагаемые методы оптимизации размеров вязкой муфты с жидкостями ER, состоящие из случайного пропорционального увеличения модели муфты, оказались полезными при проектировании вязкой муфты с жидкостью ER. Важно подчеркнуть, что проведенная таким образом оптимизация с использованием двух разных целевых функций дала очень похожие результаты.

    Из-за сложной конструкции вязкой муфты с жидкостями ER крайне важно использовать конструкционные материалы с проводящими свойствами, а также материалы с изоляционными свойствами. Однако не все материалы с такими характеристиками можно использовать в сцеплениях с жидкостью ER. Представленные рекомендации могут быть полезны при выборе материалов для изготовления вязкой муфты с жидкостями ER. Как показали проведенные работы, на практике жизненно важно подкрепить выбор материалов испытаниями на долговечность опытных муфт.

    По результатам проведенных испытаний можно предположить, что дальнейшие работы по расширению использования вязких муфт с жидкостями ER в машинах и устройствах должны быть сосредоточены не только на оптимальной форме муфт с жидкостями ER, но и на правильный выбор жидкостей ER, а также других строительных материалов.

    Авторские взносы

    AK и ZK внесли свой вклад в концепцию и дизайн исследования. GM и JZ провели оптимизационный анализ. PM выполнил расчеты ANSYS.АК, ЗК, КО и АО проводили испытания. ZK, AO и KO написали первый черновик рукописи. S-BC внесла свой вклад в доработку рукописи, прочитала и одобрила представленную версию.

    Финансирование

    Это исследование было профинансировано Польско-тайваньским / тайваньско-польским совместным исследовательским проектом No. PBWLA / 2016/019.

    Заявление о конфликте интересов

    Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

    Список литературы

    Ассадсангаби, Б., Данешманд, Ф., Вахдати, Н., Эгтесад, М., и Базарган-Лари, Ю. (2011). Оптимизация и конструкция дисковых тормозов MR. Внутр. J. Auto. Тех-Кор. 12, 921–932. DOI: 10.1007 / s12239-011-0105-x

    CrossRef Полный текст | Google Scholar

    Авраам, М., Городинка, М., Романеску, И., и Премон, А. (2010). Вращающийся MR-тормоз с компьютерным управлением для устройства реабилитации запястья. J. Intel. Мат. Syst. Struct. 21, 1543–1557. DOI: 10.1177 / 1045389X10362274

    CrossRef Полный текст | Google Scholar

    Bocińska, M., Wyciślik, H., Osuchowski, M., and Płocharski, J. (2002). Влияние ПАВ на свойства электрореологических жидкостей, содержащих полианилин. Внутр. J. Mod. Phys. В . 16, 2461–2467. DOI: 10.1142 / S0217979202012517

    CrossRef Полный текст | Google Scholar

    Бёзе, Х., Герлах, Т., и Эрлих, Дж. (2013). Магнитореологические устройства передачи крутящего момента с постоянными магнитами. J. Phys. Конф. Сер. 412: 012050. DOI: 10.1088 / 1742-6596 / 412/1/012050

    CrossRef Полный текст | Google Scholar

    Bucchi, M. F., Forte, P., and Frendo, F. (2017). Оптимизация геометрии магнитореологической муфты с катушками. P. I. Mech. Англ. LJ Mat. 231, 100–112. DOI: 10.1177/1464420716665650

    CrossRef Полный текст | Google Scholar

    Карлсон, Дж. Д. (1997). «Магнитореологические гидродинамические приводы» в Adaptronics and Smart Structures , ed H.Яноха (Берлин; Гейдельберг: Springer Verlag, 184–204.

    )

    Google Scholar

    Чен, С., Хуанг, Дж., Цзянь, К., и Дин, Дж. (2015). Анализ влияния температуры на магнитореологическую жидкость и характеристики трансмиссии. Adv. Матер. Sci. Англ. 2015, 1–7. DOI: 10.1155 / 2015/583076

    CrossRef Полный текст | Google Scholar

    Чой, Ю. Т., и Уэрли, Н. М. (2015). Снижение ударных нагрузок, вызванных падением, с помощью адаптивных магнитореологических поглотителей энергии с учетом временной задержки. J. Vib. Акуст . 137: 7. DOI: 10.1115 / 1.4028747

    CrossRef Полный текст | Google Scholar

    Конрад, Х. (1993). Электрореологические жидкости: характеристики, структура и механизмы. ASME Fluids Eng. Div. Электрореол. Потоки 164, 99–113.

    Google Scholar

    Эрол, О., и Гурочак, Х. (2011). Оптимизация интерактивного дизайна магнитореологических тормозных приводов с использованием метода Тагучи. Smart Mater. Struct . 20: 105027.DOI: 10.1088 / 0964-1726 / 20/10/105027

    CrossRef Полный текст | Google Scholar

    Фернандес, М. А., Чанг, Дж. Ю. (2016). «Разработка магнитореологической гидравлической муфты для роботизированных манипуляторов», 14-й международный семинар IEEE по усовершенствованному управлению движением .

    Google Scholar

    Фертман, В. Э. (1990). Руководство по магнитным жидкостям: свойства и применение . Нью-Йорк, штат Нью-Йорк; Вашингтон; Филадельфия, Пенсильвания; Лондон: Тейлор и Фрэнсис Inc.

    Google Scholar

    Гао, Ф., Лю, Ю. Н., и Ляо, В. Х. (2017). Оптимальная конструкция магнитореологического демпфера, используемого в умных протезах коленного сустава. Smart Mater. Struct . 26: 035034. DOI: 10.1088 / 1361-665X / aa5494

    CrossRef Полный текст | Google Scholar

    Хорват П. и Торучик Д. (2011). Оптимизация дисковой магнитореологической муфты. Sci. Proc. Факультет мех. Англ. СТЮ Братислава 19, 106–111. DOI: 10.2478 / v10228-011-0018-8

    CrossRef Полный текст | Google Scholar

    Цзин, З., Сан, С., Оуян, Ю., Чжан, С., Ли, В., и Чжэн, Дж. (2018). Анализ дизайна и моделирования роботизированной ноги с изменяемой жесткостью, работающей с магнитореологической технологией. J. Intel. Мат. Syst. Struct. 29, 3725–3736. DOI: 10.1177 / 1045389X18798958

    CrossRef Полный текст | Google Scholar

    Кавличоглу, Б., Горданинеджад, Ф., Эвренсел, К. А., Кобаногулу, Н., Синь, М., Фукс, А., и др. (2002). Магнитореологическая гидравлическая муфта с высоким крутящим моментом. Proc. Конференция SPIE Smart Mater.Struct. 4697: 472674. DOI: 10.1117 / 12.472674

    CrossRef Полный текст | Google Scholar

    Ким, К. С., Чой, С. Б., и Чо, М. С. (2002). Контроль вибрации разгрузочной машины vire cut с помощью тормозного акуатора ER. J. Intel. Мат. Syst. Struct. 13, 316–322. DOI: 10.1177 / 1045389X02013010002

    CrossRef Полный текст | Google Scholar

    Ким, В. Х., Пак, Дж. Х., Ким, Г. У., Шин, С. С. и Чой, С. Б. (2017). Исследование стойкости при регулировании крутящего момента магнитореологического тормоза: экспериментальная работа. Smart Mater. Struct. 26: 037001. DOI: 10.1088 / 1361-665X / aa59d8

    CrossRef Полный текст | Google Scholar

    Kotlinski, J., Migus, M., Kesy, Z., Kesy, A., Hugo, P., Deez, B., et al. (2013). Изготовление рабочих колес гидродинамического преобразователя крутящего момента методом селективного лазерного спекания. Rapid Prototyping J. 19, 430–436. DOI: 10.1108 / RPJ-04-2011-0043

    CrossRef Полный текст | Google Scholar

    Кумбхар, Б.К., Патил, С.Р., и Савант, С.М. (2015). Синтез и характеристика магнитореологических (MR) жидкостей для применения MR тормозов. Eng. Sci. Technol. Int J. 18, 432–438. DOI: 10.1016 / j.jestch.2015.03.002

    CrossRef Полный текст | Google Scholar

    Лара-Прието, В., Паркин, Р., Джексон, М., Зильбершмидт, В., и Кози, З. (2010). Экспериментальное исследование адаптивных консольных многослойных балок MR для приложений контроля вибрации. Smart Mater. Struct. 19: 015005. DOI: 10.1088 / 0964-1726 / 19/1/015005

    CrossRef Полный текст | Google Scholar

    Ли, Ю., Ли, Дж., Ли, В., и Самали, Б. (2013). Разработка и характеристика адаптивного сейсмического изолятора на основе магнитореологического эластомера. Smart Mater. Struct. 22: 035005. DOI: 10.1088 / 0964-1726 / 22/3/035005

    CrossRef Полный текст | Google Scholar

    Лю Б., Ли В. Х., Косасих П. Б. и Чжан Х. З. (2006). Разработка тактильного устройства на основе MR-тормоза. Smart Mater. Struct. 15: 1960. DOI: 10.1088 / 0964-1726 / 15/6/052

    CrossRef Полный текст | Google Scholar

    Мадея, Дж., Кеси, З., и Кеси, А. (2011). Применение электрореологической жидкости в гидродинамической муфте. Smart Mater. Struct . 20: 105005. DOI: 10.1088 / 0964-1726 / 20/10/105005

    CrossRef Полный текст | Google Scholar

    Мангал, С. К., Мунджал, К., Шарма, В. (2016). Оптимизация крутящего момента для синтезированной жидкости MR. Внутр. J. Eng. Res. Заявление . 6, 9–14 (Pt 5). Доступно на сайте: www.ijera.com

    Google Scholar

    Миккельсен, А., Войцеховски, Я., Rajnak, M., Juraj Kurimsky, J., Khobaib, K., Kertmen, A., et al. (2017). Сборка микросфер сульфированного полистирола под действием электрического поля. Материалы 10, 1–17. DOI: 10.3390 / ma10040329

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Milecki, A., Sedziak, D., and Ortmann, J. (2005). Управляемость амортизатора MR для автомобилей. Внутр. J. Vehicle Des. 38, 222–233. DOI: 10.1504 / IJVD.2005.007294

    CrossRef Полный текст | Google Scholar

    Накамура Т., Сага, Н. и Накадзава, М. (2002). Регулировка импеданса одновальной муфты с использованием однородной электрореологической жидкости. J. Intel. Мат. Syst. Struct. 13, 465–469. DOI: 10.1106 / 1045389068

    CrossRef Полный текст | Google Scholar

    Накамура Т., Сага Н. и Накадзава М. (2003). Тепловые эффекты гомогенного жидкостного устройства ER. J. Intel. Мат. Syst. Struct. 14, 87–91. DOI: 10.1142 / 9789812777546_0037

    CrossRef Полный текст | Google Scholar

    Накамура Т., Сага, Н., и Накадзава, М. (2004). Регулировка переменной вязкости устройства с однородной жидкостью ER с учетом его динамических характеристик. Мехатроника 14, 55–68. DOI: 10.1016 / S0957-4158 (02) 00095-8

    CrossRef Полный текст | Google Scholar

    Нгуен, К. Х., и Чой, С. Б. (2010). Оптимальная конструкция автомобильного магнитореологического тормоза с учетом геометрических размеров и теплоты трения в нулевом поле. Smart Mater. Struct. 19: 115024. DOI: 10.1088 / 0964-1726 / 19/11/115024

    CrossRef Полный текст | Google Scholar

    Ольшак, А., Osowski, K., Ksy, A., and Ksy, Z. (2016a). Экспериментальные исследования гидравлических муфт с интеллектуальными жидкостями. Внутр. Преподобный мех. Англ. 10, 364–372. DOI: 10.15866 / ireme.v10i6.8421

    CrossRef Полный текст | Google Scholar

    Ольшак А., Осовски К., Кеси З. и Кеси А. (2018). Исследование гидродинамической муфты с жидкостью MR. J. Intel. Мат. Syst. Struct. 30, 155–168. DOI: 10.1177 / 1045389X18803463

    CrossRef Полный текст | Google Scholar

    Ольшак, А., Зябска, Э., Осовски, К., Куси, А., Куси, З. (2016b). Долговечность гидравлических муфт, заполненных электрореологическими жидкостями. Тех. Пер. Мех. 113, 87–101. DOI: 10.4467 / 2353737XCT.16.288.6120

    CrossRef Полный текст | Google Scholar

    Пападопулос, К.А. (1998). Тормоза и сцепления с использованием жидкостей ER. Мехатроника 8, 719–726.

    Google Scholar

    Парк, Э. Дж., Фалькао Да Луз, Л., и Сулеман, А. (2008). Многопрофильная оптимизация конструкции автомобильного магнитореологического тормоза. Comput. Struct. 86, 207–216. DOI: 10.1016 / j.compstruc.2007.01.035

    CrossRef Полный текст | Google Scholar

    Парк, Э. Дж., Стойков, Д., Фалькао да Луз, Л., и Сулеман, А. (2006). Оценка эффективности конструкции автомобильного магнитореологического тормоза с регулятором скользящего режима. Мехатроника 16, 405–416. DOI: 10.1016 / j.mechatronics.2006.03.004

    CrossRef Полный текст | Google Scholar

    Плохарский Ю., Драбик Х., Выцислик Х., и Ciach, T. (1997). Электрореологические свойства полифениленовых суспензий. Synthet. Металлы 88, 139–145.

    Google Scholar

    Раджу, А., М. Д. Мефтахул, Ф. и Яньчэн, Л. (2016). Достижения в области накопления энергии магнитно-реологического жидкостного демпфера: обзор. Корея-Австралия Rheol. J. 28, 355–379. DOI: 10.1007 / s13367-016-0035-2

    CrossRef Полный текст | Google Scholar

    Сайто Т. и Икеда Х. (2007). Разработка нормально замкнутого типа магнитореологической муфты и ее применение в системе безопасного управления крутящим моментом человека-коллаборативного робота. J. Intel. Мат. Syst. Struct. 18, 1181–1185. DOI: 10.1177 / 1045389X07084755

    CrossRef Полный текст | Google Scholar

    Сапиньски, Б., Росол, М., и Вонжиновски, М. (2016). Оценка энергосберегающей системы подавления вибрации на основе гасителя MR. J. Theor. Приложение. Mech-Pol. 54, 333–344. DOI: 10.15632 / jtam-pl.54.2.333

    CrossRef Полный текст | Google Scholar

    Саркар, К., Хирани, Х. (2013). Синтез и характеристика антифрикционных магнитореологических жидкостей для тормозов. Defense Sci. J . 63, 408–412. DOI: 10.14429 / dsj.63.2633

    CrossRef Полный текст | Google Scholar

    Смит, А. Л., Уличный, Дж. К., и Кеннеди, Л. С. (2007). Привод вентилятора магнитореологической жидкости для грузовых автомобилей. J. Intel. Мат. Syst. Struct. 18, 1131–1136. DOI: 10.1177 / 1045389X07083136

    CrossRef Полный текст | Google Scholar

    Сон, Дж. У., Ганг, Х. Г. и Чой, С. Б. (2018). Экспериментальное исследование крутящих характеристик магнитореологического тормоза с измененной формой магнитопровода. Adv. Мех. Англ. 10, 1–8. DOI: 10.1177 / 1687814017752222

    CrossRef Полный текст | Google Scholar

    Сон, Дж. У., Чон, Дж., Нгуен, К. Х. и Чой, С. Б. (2015). Оптимальная конструкция дискового магнитореологического тормоза для мотоцикла среднего размера: экспериментальная оценка. Smart Mater. Struct. 24: 085009. DOI: 10.1088 / 0964-1726 / 24/8/085009

    CrossRef Полный текст | Google Scholar

    Сонг, В., Ван, С., Чой, С. Б., Ван, Н., и Сю, С.(2018). Тепловые и трибологические характеристики дискового магнитореологического тормоза, работающего по сдвиговому режиму. J. Intel. Мат. Syst. Struct. 30, 722–733. DOI: 10.1177 / 1045389X18770740

    CrossRef Полный текст | Google Scholar

    Takesue, N., Furushoa, J., and Inoue, A. (2003). Влияние конфигурации электродов и типа жидкокристаллического полимера на электрореологический эффект. J. App. Phys. 94, 5367–5373. DOI: 10.1063 / 1.1605811

    CrossRef Полный текст | Google Scholar

    Вайс, Д.(1993). «Высокопрочные магнито и электро-реологические жидкости», в SAE Technical Paper, International Off-Highway & Power Plant Congress & Exposition (Milwaukee, WI), 932451. doi: 10.4271 / 932451

    CrossRef Полный текст | Google Scholar

    Ziabska, E.

    Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *