Получение и свойства гидрофобного текстильного материала
АННОТАЦИЯ
На основе анализа современной тенденции создания гидрофобных текстильных материалов получены и исследованы свойства двух видов гидрофобных материалов. Материал, полученный обработкой раствором амида высшей карбоной кислоты в уксусной кислоте и акриловой эмульсии, проявляет умеренную гидрофобность. Гидрофобность оценена по времени впитывания воды материалом, которая после обработке в 7-8 раз увеличивается. При гидрофобной обработке х/б полотна полиперфторакрилатом и олигомерным диизоцианатом, при незначительном расходе реагентов, внешний вид, физико-механические и санитарно-гигиенические свойства материала не ухудшаются, а гидроизоляционные свойства значительно улучшаются. Нанесение гидрофобных веществ в материал производится в существующих агрегатах для заключительной отделки текстильных полотен.
ABSTRACT
Based on the analysis of the current trend in the creation of hydrophobic textile materials, the properties of two types of hydrophobic materials are obtained and investigated.
Ключевые слова: гидрофобный текстильный материал, целлюлоза, акриловая и перфторакриловая эмульсия, диизоцианат.
Keywords: hydrophobic textile material, cellulose, acrylic and perfluoroacrylic emulsion, diisocyanate.
УДК 677. 027.62.004.12
Введение
В эпоху высокотехнологичного производства, специализации отраслей экономики, возрастания потребления природных, особенно энергетических ресурсов, объемы производства специальных текстильных материалов для защиты объектов и работающих непрерывно увеличивается. В этом плане наиболее перспективной, способной сохранить целевые свойства материалов в процессе эксплуатации является метод химического закрепления веществ, придающих специальные свойства, к волокнам основного материала. За последние годы в мире предложены различные композиции для придания гидрофобных свойств текстильным материалам. Натуральные текстильные волокна – целлюлоза, белок (фиброин, коллаген, кератин) содержат активные функциональные группы и могут вступить во взаимодействие с функциональными группами модифицирующих веществ, придающих гидрофобные свойства. Целью данной работы является анализ имеющихся гидрофобных материалов, получение нескольких вариантов гидрофобных текстильных материалов с использованием азот и фторсодержащих олигомеров, взаимодействующих целлюлозой, сравнительная оценка их гидроизоляционных и физико-механических свойств.
Вещества, придающие текстильным материалам гидрофобность, состоят из неполярных молекул, значительно уменьшают смачиваемость полотна. При этом материал после обработки должен сохранять положительные качества – внешний вид, текстуру, физико-механическую прочность, воздухопроводность и другие санитарно-гигиенические свойства. Некоторые вещества придают материалу умеренную гидрофобность, уменьшая впитывание воды некоторое время. Другие же вещества придают материалу абсолютные водоотталкивающие свойства, в котором происходит полное растекание капли воды. Такие материалы принято называть «супергидрофобными».
Одним из первых веществ, используемых для гидрофобной обработки материалов, были кремнийорганические вещества, различные варианты которых применяются и в настоящее время. Целлюлозу химически гидрофобизировали с помощью винилтриметоксисилана и N-(2-аминоэтил) -3-аминопропилтриметоксисилана [1], 3-метакрилоксипропилтриметокси-силана [2]. По мнению исследователей, ткань из полиэтилентерефталата, модифицированная неорганическими покрытиями на основе метилтриметоксисилана, демонстрирует превосходную устойчивость к различным типам повреждений при износе, имитируя тем самым супергидрофобные биологические материалы [3]. Для гидрофобной отделки текстильных материалов использованы кремнийорганические соединения на основе олиго (этокси) силоксана [4].
Предпринята попытка изготовления нановолокнистых мембран из супер гидрофобного электроформованного полиакрилонитрила/полиуретана/ диоксида титана, и мембраны продемонстрировали водонепроницаемости и воздухопроницаемости путем модификации покрытия с помощью 2-гидрокси-4-н-октоксибензофенон и фторированный акриловый сополимер [5]. SiO2-покрытия и неорганические/органические полимерные гибридные покрытия были нанесены на текстиль, водопоглощение обработанного текстиля уменьшилось, и достаточно высокие значения были достигнуты только с сильно разбавленными растворами для покрытия. Для достижения гидрофобных текстильных свойств золь был модифицирован перфтороктилтриэтоксисиланом [6].
Для придания специальных свойств текстильным материалам используется привитая сополимеризация к макромолекулам текстильных волокон [7]. Для получения гидрофобных материалов синтезированы привитые сополимеры полистирола с этилцеллюлозой [8] и целлюлозой [9].
Поверхностная обработка тканей из хлопка, полиамида и полиэфира проводилась в высокочастотной плазме холодного воздуха с последующей реакцией прививки стиролом и химической обработкой специальными гидроизоляционными продуктами [10]. Гидрофобные свойства полученных материалов оценивали путем определения времени поглощения и угла контакта капли воды на поверхности. Чтобы улучшить водоотталкивающую способность хлопчатобумажной ткани, хлопчатобумажную ткань прививали с использованием мономера гексафторбутилметакрилата методом радикальной полимеризации с переносом атома [11]. Прививка поликапролактама [12], полиуретана [13] способствует приданию гидрофобных свойств целлюлозе.Фторсодержащие средства, обладающие превосходными гидрофобными и олеофобными свойствами, являются хорошими отделочными средствами, используемыми для обработки текстильных, кожаных, бумажных и других поверхностей [14]. Полимеризация гомогенного раствора высокофторированных акриловых мономеров может быть достигнута в сверхкритическом диоксиде углерода [15] и растворе различных углеводородных мономеров [16] с использованием методов свободных радикалов.
Для придания гидрофобных и водоотталкивающих свойств текстильным материалам используются гидроксилсодержащие соединения и диизоцианаты: полиэтиленгликоль и толуилен-2,4-диизоцианат [17], поликапролактон, фенил изоцианат и 2,4-диизоцианат [18], толуилен-2,4-диизоцианат и полиэфиры с концевыми ОН-группами [19].
Наночастицы очень интересны из-за их поверхностных свойств, которые позволяют придавать обычным продуктам новые функциональные возможности [20]. Нанотехнология на молекулярном уровне может использоваться для развития желаемых текстильных характеристик, в том числе водоотталкивающих свойств [21]. Водоотталкивающие свойства в наномасштабе с использованием нефторированных соединений золь-гель методом стали важной проблемой при модификации поверхности. Наночастицы кремнезема, которые получают этим способом, наносят на текстильную поверхность путем модификации гидрофобных силанов и силановых сшивателей [22]. Покрытие текстиля химически или физически модифицированными золями кремнезема с диаметром частиц менее 50 нм позволяет многократно изменять их физико-механические, оптические, электрические и биологические свойства [23].
Пористая мембрана, состоящая из бамбукового целлюлозного волокна с наночастицами Ag/Ag2O, может придать мембране угол контакта с водой 140±3,0°, что свидетельствуют о значительном уменьшении смачиваемости [24].Анализ известных работ показал, что для придания гидрофобности текстильным материалам, следует обрабатывать их с неполярными веществами, которые химически связываются с волокнами или образуют не растворимую пленку на их поверхности. Растворы и композиции придают водоотталкивающие свойства материалам в различной степени в зависимости от состава и назначения. В литературе нет достаточной информации о промышленной реализации какого-либо метода придания гидрофобных свойств, некоторые работы носят чисто научный характер, отсутствуют данные о технологии нанесения, не вписываются в традиционную технологию аппретирования текстильных материалов, требуют дополнительного оборудования, разработки и доработки методов.
Экспериментальная часть
Объектами исследования являются х/б полотно, амид высшей карбоновой кислоты, акриловая эмульсия, эмульсия полиперфторакрилата, эмульсия олигомерного диизоцаната, уксусная кислота, персульфат калия.
Подготовка текстильного материала. Для удаления воско-жировых примесей и остатка шлихтующего вещества суровую ткань нагревают в мыльно-содовом растворе, содержащем 5 г/л мыла и 10 г/л соды, при температуре 90-95 оС в течение 2 часов. Затем ткань промывают и выдерживают в 3%-ном растворе гидроксида натрия в течение 1 часа.
Аппретирование материала амидом высшей карбоновой кислоты. Необходимое количество амида растворяют в уксусной кислоте, добавляют акриловую эмульсию, персульфат калия и воду. Смесь тщательно перемешают в электрическом смесителе до образования однородной эмульсии без включений, комочков и не диспергировавшихся частиц. Композицию наносят на подготовленный текстильный материал в пропитывающей ванне отделочного оборудования. Пропитанный текстильный материал проходит через отжимные валики (остаточный привес 100-120%), сушится при комнатной температуре, далее подвергается термической обработке при температуре 120-140оС (рис. 1).
Аппретирование материала перфторполимером и диизоцианатом. Эмульсию полиперфторакрилата и олигомерного диизоцианата разбавляют водой и вносят в ванну для пропитки. Композицию наносят на подготовленный текстильный материал в пропитывающей ванне отделочного оборудования. Пропитанный текстильный материал проходит через отжимные валики (остаточный привес 80-100%), сушится при температуре 60-70оС, далее подвергается термической обработке при температуре 150-170оС.
Физико-механические свойства текстильных материалов (поверхностная плотность, устойчивость к истиранию, воздухопроводность, водоупорность, прочность и относительное удлинение при растяжении) исследованы на сертификационном центре «CENTEXUZ» ТИТЛП по известным методикам согласно стандартам DIN 51 221, DIN 53 834, ISO 2062 [25].
ИК-спектры записывали в таблетках бромида калия на спектрометре System 2000 FT–IR фирмы Parker–Elmer в интервале длин волн 400–4000 см-1. Отнесение характеристических полос поглощения проводили согласно литературным данным [26].
Результаты и их обсуждение
Экспериментальные исследования проведены с целью оценки возможности использования некоторых гидрофобизирующих веществ для получения супергидрофобного текстильного материала, в том числе в разработке гидроизоляционного полотна для укрытия хлопкового бунта.
Произвели обработку поверхности х/б ткани гидрофобной композицией, содержащей амид высшей карбоновой кислоты (АВКК) – 25-150 г/л, уксусную кислоту – 10-35 г/л, акриловую эмульсию – 50-150 г/л, персульфат калия – 1% от массы амида. Исследована зависимость гидрофобных свойств материала от концентрации компонентов композиции и режимов формирования гидрофобного слоя (табл. 1).
Таблица 1.
Зависимость времени впитывания воды материалом от концентрации амида карбоновой кислоты, акриловой эмульсии и уксусной кислоты.
№ |
Концентрация вещества, g/l |
Время впитывания, мин |
||
АВКК |
Акриловая эмульсия |
Уксусная кислота |
||
1 |
0 |
0 |
0 |
2 |
2 |
25 |
200 |
25 |
4 |
3 |
50 |
200 |
25 |
10 |
4 |
100 |
200 |
25 |
15 |
5 |
125 |
200 |
25 |
15 |
6 |
100 |
50 |
25 |
8 |
7 |
100 |
100 |
25 |
12 |
8 |
100 |
250 |
25 |
15 |
9 |
100 |
200 |
10 |
10 |
10 |
100 |
200 |
15 |
12 |
11 |
100 |
200 |
20 |
14 |
12 |
100 |
200 |
30 |
15 |
Определены предельные концентрации АВКК – 100 г/л, акриловой эмульсии – 200 г/л и уксусной кислоты – 25 г/л, выше которых время впитывания не увеличивается. Влияние температуры термообработки исследовано в интервале 80-160оС, максимальная время впитывания достигнута при 140оС и времени 10 мин. Наряду с ухудшением впитывания воды, увеличивается краевой угол смачивания, безусловно гидрофобность обработанного материала повышается. Но при обработке материала композицией на основе АВКК эффекта растекания капли воды не наблюдается, т.е. материал не оказался супергидрофобной.
При обработке текстильного полотна другим составом, содержащим эмульсию полиперфторакрилата 30-40 г/л, эмульсию олигомерного диизоцианата 10-15 г/л, получен супергидрофобный материал, который не впитывает воду и в котором наблюдается раскатывание капли воды. Исследуя влияние количества компонентов композиции, режимов сушки и термообработки определены оптимальные технологические параметры – сушка при температуре 70оС в течение 2 часов, термообработка при 160оС в течение 3 минут.
Для выяснения химизма процессов были сняты ИК-спектры исходных веществ и продуктов их взаимодействия (рис. 2). В ИК-спектрах волокон материала наблюдаются полосы поглощений, характерных для целлюлозы [27]. Полоса поглощения при 2906 см-1 относится к валентным колебаниям при 1373 см-1 – к деформационным колебаниям СН–групп, при 1457 см-1 – к валентным колебаниям СН2–групп, при 1164 см-1 – к деформационным колебаниям ОН– и групп. Валентные колебания СОС мостика имеют полосу поглощений при 1060 см-1 (ассиметричные) и 895 см-1 (симметричные). Полосу поглощений при ~1637 см-1 исследователи относят к колебаниям молекул адсорбированной воды. Широкая полоса поглощения при 3435 см-1 относится к валентным колебаниям гидроксильных групп.
В ИК-спектре волокон, обработанных гидрофобной композицией сохраняются основные полосы поглощений целлюлозы, вместе с тем наблюдается смещение некоторых полос и появление новых полос поглощения в областях 1715, 1690, 1521 см-1. Новые полосы поглощений относятся, скорее всего, к валентным колебаниям новых π-связей карбонильной группы, С–N связей уретановой группы продукта взаимодействия целлюлозы с диизоцианатом.
Полоса поглощений в области 2890-2900 см-1 считается ответственным за аморфную область целлюлозы, а полоса поглощений в области 1370-1375 см-1 – за кристаллическую область [28]. Чем больше интенсивность сигнала (площадь, разграниченная спектральной и базовой линиями), тем больше соответственно степень кристалличности или аморфности целлюлозы. В спектре обработанных волокон наблюдается увеличение интенсивности полосы поглощения при 1373 см-1, большое число резких полос, что связано с наличием больших областей высокой молекулярной и структурной упорядоченности.
Рисунок 2. ИК-спектры волокон необработанного (а) и обработанного (б) гидрофобной композицией х/б полотна
При термообработке происходит полиприсоединение с образованием сетчатой структуры, которую можно представить следующей схемой:
Исследованы физико-механические свойства обработанных и необработанных гидрофобной композицией текстильных полотен (табл. 2).
Таблица 2.
Зависимость физико-механических свойств полотен от гидрофобной обработки
Полотно |
Не обработанное |
Обработанное |
Число нитей на 10 sm, шт. |
||
Основа Уток |
200х2 крученая 90х2 крученая |
200х2 крученая 90х2 крученая |
Поверхностная плотность, g/m2 |
502,4 |
546,4 |
Прочность к истиранию, циклы |
23000 |
26500 |
Прочность (относительное удлинение) при разрыве, N (%): |
||
Основа уток |
865 (21) 432 (15) |
855 (38) 499 (12) |
Воздухопроводность, sm3/sm2·sek |
2,85 |
3,05 |
Водоупорность, H2O mm |
90 |
385 |
По данным таблицы 2 получены положительные результаты. После гидрофобной обработки при сохранении, даже незначительном улучшении основных физико-механических и санитарно-гигиенических свойств, водоупорность полотна возрастает более чем в 4 раза. Материал с такими свойствами можно использовать как гидроизоляционное брезентовое полотно для укрытия хлопковых бунтов.
Выводы
Гидрофобная обработка текстильного материала акриловой эмульсией и раствором амида высшей карбоновой кислоты уменьшает впитывание влаги в несколько раз, образуется материал с умеренной гидрофобностью. При гидрофобной обработке х/б полотна эмульсией полиперфторакрилата и олигомерного диизоцианата образуется супергидрофобный текстильный материал, которую рекомендуется использовать для гидроизоляционного укрытия хлопковых бунтов.
Список литературы:
1. Wolski K., Cichosz S., Masek A. Surface hudrophobisation of lignocellulosic waste for the preparation of biothermoelastoplastic composites // European Polymer Journal. 2019, V. 118. P. 481-491.
2. Yu Q., Yang W., Wang Q., Dong W., Du M., Ma P. Functionalization of cellulose nanocrystals with γ-MPS and effect on the adhesive behavior of acrylic pressure sensitive adhesives // Carbohydrate Polymers. 2019, V. 217. P. 168-177.
3. Rosu C., Lin H., Jiang L., Breedveld V., Hess D.W. Sustainable and long-time ‘rejuvenation’ of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion // Journal of Colloid and Interface Science. 2018, V. 516. P. 202-214
4. Кольцова Ю.А. Теоретическое обоснование и разработка технологии гидрофобной отделки текстильных материалов с использованием кремнийорганических соединений на основе олиго(этоки)силоксана. Дисс. канд. тех. наук. Москва, 2001. https://www.dissercat.com/content/teoreticheskoe-obosnovanie-i-razrabotka-tekhnologii-gidrofobnoi-otdelki-tekstilnykh-material
5. Xu Y., Sheng J., Yin X., Yu J., Ding B. Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance // Journal of Colloid and Interface Science. 2017, V. 508. P. 508-516.
6. Mahltid B., Fischer A. Inorganic/organic polymer coatings for textiles to realize water repellent and antimicrobial properties – A study with respect to textile comfort // Journal of Polymer Science, Part B: Polymer Physics. 2010, V. 48, Issue 14. P. 1562-1568.
7. Nabiev N., Md. Raju A., Quan H., Rafikov A. Exatraction of collagen from cattle skin and synthesis of collagen based flame retardant composition and introduction into cellulose textile material by graft colypolimerization // Asian Journal of chemistry. 2017, V. 29, №11. P. 2470-2475.
8. Shen, D.a, Yu, H.a, Huang, Y. Synthesis of graft copolymer of ethyl cellulose through living polymerization and its self-assembly // Cellulose. 2006, V. 13, Issue 3. P. 235-244.
9. Roy D., Guthrie J.T., Perrier S. Graft polymerization: Grafting poly(styrene) from cellulose via Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization // Macromolecules. 2005, V. 38, Issue 25. P. 10363-10372.
10. Loghin C., Muresan R., Ursache M., Muresan A. Surface treatments applied to textile materials and implications on their behavior in wet conditions // Industria Textila. 2010, V. 61, Issue 6. P. 284-290.
11. Li S.W., Xing T.L., Li Z.X., Chen G.Q. Water repellent finishing on cotton fabric via atom transfer radical polymerization // Journal of Donghua University. 2015, V. 32, Issue 1. P. 7-12.
12. Mohammed K., Julien B., Mohamed N.B. Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry // European Polymer Journal. 2008, V. 44. P. 4074-4081.
13. Barbara Pilch-Pitera. Blocked polyisocyanates containing monofunctional polyhedral oligomeric silsesquioxane (POSS) as crosslinking agents for polyurethane powder coatings // Progress in Organic Coatings. 2013, V. 76. P. 33- 41.
14. Zhou Y.M., Huang J.Y., Xu Q.H. Advances in fluorine-containing finishing agents // Huagong Xiandai/Modern Chemical Industry, 2001. V. 21, Issue 5. P. 9-12
15. DeSimone J. M., Guan Z., Elsbernd C.S. Synthesis of fluoropolymers in supercritical carbon dioxide // Science. 1992, V. 257, Issue 5072. P. 945-947.
16. Thomas R.R., Anton D.R., Graham W.F., Darmon M.J., Sauer B.B., Stika, K.M., Swartzfager, D.G. Preparation and surface properties of acrylic polymers containing fluorinated monomers // Macromolecules. 1997, V. 30, Issue 10. P. 2883-2890.
17. Баданова А.К., Кричевский Г.Е., Таусарова Б.Р., Кутжанова А.Ж., Баданов К.И. Разработка и исследование нового способа гидрофобной отделки целлюлозных текстильных материалов // https://pandia.ru/text/80/641/23775.php
18. Paquet O., Krouit M., Bras J., Thielemans W., Mohamed M. Naceur rface modification of cellulose by PCL grafts // Acta Materialia. 2010, V. 58. P. 792-801.
19. Ibrahim N.A., Amr A., Eid B.M., Almetwally A.A., Mourad M. M. Functional finishes of stretch cotton fabrics // Carbohydrate Polymers, 2013. V. 98. P. 1603- 1609.
20. Rivero P.J., Urrutia A., Goicoechea J., Arregui F.J. Nanomaterials for Functional Textiles and Fibers // Nanoscale Research Letters. 2015, V. 10, Issue 1. P. 1-22.
21. Sawhney A.P.S., Condon B., Singh K.V., Pang S.S., Ii G., Hui D. Modern Applications of Nanotechnology in Textiles // Textile Research Journal. 2008, V. 78, Issue 8. P. 731-739.
22. Erayman Y., Korkmaz Y. Modification of superhydrophobic textile surfaces with sol-gel method by using nonfluorinated compounds // Tekstil ve Muhendis. 2017, V. 24, Issue 105. P. 41-52.
23. Mahltid B., Haufe H. Bottcher H. Functionalisation of textiles by inorganic sol-gel coatings // Journal of Materials Chemistry. 2005, V. 15, Issue 41. P. 4385-4398.
24. Wang Y., Zhang X., Zhang X., Zhao J., Zhang W., Lu C. Water repellent Ag/Ag2O bamboo cellulose fiber membrane as bioinspired cargo carriers // Carbohydrate Polymers. 2015, V. 133. P. 493-496.
25. Методическое указание по выполнению научно-исследовательских и лабораторных работ по испытанию продукции текстильного назначения. Ташкент: ТИТЛП, 2007, 96 с.
26. Тарасевич Т.Б. ИК спектры основных классов органических соединений. Справочные материалы. Москва: МГУ, 2012, 55 с.
27. Дехант И, Данц Р, Киммер В, Шмольке Р. Инфракрасная спектроскопия полимеров, Химия, Москва, 1976, 472 с.
28. Рабек Я. Экспериментальные методы в химии полимеров. Пер. с англ., М.: Мир, 1983, ч.1. С.251.
ХиМиК.ru — ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ — Химическая энциклопедия
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ (от греч. hydor-вода и phobos-боязнь, страх), сильное притяжение в воде между неполярными частицами (молекулами, остатками сложных молекул, частицами дисперсной фазы и т. п.). Причина гидрофобного взаимодействия-большая энергия водородной связи между молекулами воды, превосходящая энергию их взаимод. с неполярными частицами. Термодинамич. невыгодность контакта воды с неполярными в-вами (рассматриваемая как гидрофобность) и предопределяет сильное притяжение их молекул друг к другу.
Гидрофобное взаимодействие между неполярными атомными группами (углеводородными, галогенуглеродными и т.п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние на их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Гидрофобное взаимодействие обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Гидрофобное взаимодействие-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами («маслами», гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С гидрофобным взаимодействием связана неустойчивость водных пленок между неполярными фазами, коагуляция и структурообразование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.).
Экспериментальные исследования гидрофобного взаимодействия основываются на изучении р-римости инертных газов, углеводородов и др. неполярных в-в в воде, разнообразных термодинамич. и кинетич. св-в водных р-ров орг. соед., сил взаимод. между макроскопич. неполярными пов-стями. Они тесно связаны с изучением структуры воды с применением разл. спектроскопич. методик (оптич. спектроскопии, диэлькометрии, ЯМР, рассеяния нейтронов и др.).
В теоретич. аспекте гидрофобное взаимодействие рассматривают в рамках общей проблемы влияния среды на меж молекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды пространственной сетки прочных водородных связей. Для такого внедрения требуется значит. затрата работы, т.е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в той или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит. расстояния по цепочкам водородных связей и обусловливать дальнодействие сил гидрофобного взаимодействия. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы; энтропийная природа гидрофобного взаимодействия и проявляется в его усилении при повышении т-ры.
Поскольку эффективный потенциал взаимод. молекул в жидкой среде (т. наз. потенциал средней силы) представляет собой суммарный результат взаимод. большого числа молекул, точное определение его параметров является сложной теоретич. задачей, решаемой в рамках разл. моделей жидкого состояния (см. Жидкость). Энергия гидрофобного взаимодействия неполярных молекул в воде, отвечающая глубине потенциальной ямы, т.е. эффективная энергия межмол. связи, может превосходить энергию дисперсионного взаимодействия этих же молекул в отсутствие среды (в вакууме). В отличие от потенциала взаимод. молекул в отсутствие среды потенциал гидрофобного взаимодействия имеет осциллирующий характер (наблюдается чередование минимумов и максимумов с периодом порядка диаметра молекул среды).
Взаимод. между неполярными частицами, аналогичные по своей природе гидрофобному взаимодействию, имеют место не только в воде, но и в др. жидкостях с высокой когезионной энергией (высоким поверхностным натяжением), напр. в формамиде и глицерине. Это позволяет говорить о более общем явлении -лиофобном взаимодействии. Лиофобное взаимод. в принципе может осуществляться и между полярными в-вами. Так, адгезия гидрофильных стеклянных частиц усиливается при погружении в ртуть и сопровождается образованием вакуумной полости в контакте между частицами вследствие несмачивания гидрофильных поверхностей ртутью.
===
Исп. литература для статьи «ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ»: Пчелин В. А., Гидрофобные взаимодействия в дисперсных системах,
М., 1976; Коагуляционные контакты в дисперсных системах, М., 1982. В.
В. Я минский.
Страница «ГИДРОФОБНОЕ ВЗАИМОДЕЙСТВИЕ» подготовлена по материалам химической энциклопедии.
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
Объяснение: Гидрофобность и гидрофильность | Новости Массачусетского технологического института
Иногда вода растекается равномерно при попадании на поверхность; иногда он превращается в мельчайшие капельки. Хотя люди замечали эти различия с древних времен, лучшее понимание этих свойств и новые способы управления ими могут принести новые важные приложения.
Материалы с особым сродством к воде — те, по которым она распределяется, обеспечивая максимальный контакт, — известны как гидрофильные. Те, которые естественным образом отталкивают воду, вызывая образование капель, известны как гидрофобные. Оба класса материалов могут оказать значительное влияние на работу силовых установок, электроники, крыльев самолетов и опреснительных установок, а также других технологий, говорит Крипа Варанаси, доцент кафедры машиностроения Массачусетского технологического института. Улучшение гидрофильных и гидрофобных поверхностей может привести к созданию бутылок с кетчупом, из которых приправа просто скользит наружу, стаканов, которые никогда не запотевают, или электростанций, которые выжимают больше электроэнергии из заданного количества топлива.
Фото предоставлено Ронг Сяо и Ненадом Мильковичем
Гидрофильные и гидрофобные материалы определяются геометрией воды на плоской поверхности, а именно углом между краем капли и поверхностью под ней. Это называется контактным углом.
Если капля распространяется, смачивая большую площадь поверхности, то краевой угол меньше 90 градусов и такая поверхность считается гидрофильной, или влаголюбивой (от греческого слова вода, hydro и любовь, филос ). Но если капля образует сферу, едва касающуюся поверхности — как капли воды на раскаленной сковороде — краевой угол больше 90 градусов, а поверхность гидрофобна или боится воды.
Но терминология на этом не заканчивается: большинство текущих исследований гидрофобных и гидрофильных материалов сосредоточено на крайних случаях, а именно на супергидрофобных и супергидрофильных материалах. Хотя определения этих терминов менее точны, поверхности, на которых плотные капли образуют контактный угол более 160 градусов, считаются супергидрофобными. Если капли распределены почти плоско, с краевым углом менее примерно 20 градусов, поверхность является супергидрофильной.
«Во многих случаях в технике полезно экстремальное поведение», — говорит Эвелин Ванг, доцент кафедры машиностроения Массачусетского технологического института, специализирующаяся на супергидрофобных материалах. Например, поверхности конденсаторов на опреснительных установках или электростанциях лучше всего работают, когда они супергидрофобны, поэтому капли постоянно соскальзывают и могут быть заменены новыми. И наоборот, для приложений, где вода течет по поверхности, чтобы предотвратить ее перегрев, желательно иметь супергидрофильный материал, чтобы обеспечить максимальный контакт между водой и поверхностью.
Почему происходят эти явления? По сути, это вопрос химии поверхности, который определяется характеристиками используемых материалов. Форма поверхности также может усиливать эффекты: например, если материал гидрофобный, создание наноструктуры на его поверхности может увеличить площадь контакта с каплей, усилив эффект и сделав поверхность супергидрофобной. Точно так же наноструктурирование гидрофильной поверхности может сделать ее супергидрофильной. (Однако есть исключения, когда специальные виды узоров могут изменить обычные свойства материала.)
Все становится сложнее, когда что-то движется — как это часто бывает в реальных ситуациях. Например, при наклоне плоской поверхности любые капли на ней могут начать скользить, искажая свою форму. Таким образом, помимо измерения статических краевых углов, полное понимание свойств поверхности также требует анализа того, как различаются краевые углы на ее наступающих (передних) и отступающих (задних) краях, когда поверхность наклонена.
Поскольку в природе полно гидрофобных и гидрофильных поверхностей, основы этого явления известны ученым уже как минимум два столетия. Например, лист лотоса является хорошо известным примером гидрофобного материала, защищающего водное растение от заболачивания. Некоторые виды, такие как жук стенокара из африканской пустыни Намиб, сочетают в себе обе черты: на спине и крыльях насекомого есть гидрофильные шишки, которые способствуют конденсации из тумана; они окружены гидрофобными желобами, которые собирают образовавшиеся капли и направляют их к пасти жука, что позволяет ему выжить в одном из самых засушливых мест на Земле.
Одной из областей современного интереса к гидрофобным и гидрофильным поверхностям является энергоэффективность. Супергидрофобные поверхности, разрабатываемые исследователями из Массачусетского технологического института и других организаций, могут улучшить теплопередачу в конденсаторах электростанций, повысив их общую эффективность. Такие поверхности также могут повысить эффективность опреснительных установок.
Новые технологии также внесли свой вклад в эту область: возможность создавать наноструктурированные поверхности с выступами или гребнями всего в несколько миллиардных долей метра в поперечнике позволила создать новое поколение водозахватывающих и водоотталкивающих материалов; новые изображения движущихся поверхностей с высоким разрешением позволили лучше понять вовлеченные процессы.
Исследования, проводимые с помощью новых технологий, позволяют понять и управлять этим поведением на уровне деталей, немыслимом десять или два года назад. Но иногда новые методы показывают, насколько хорошо ученые разобрались в давних вещах: «Удивительно, — говорит Варанаси, — что некоторые вещи, которые мы можем проверить сейчас, были предсказаны столетие назад».
Гидрофобный – определение и примеры
Гидрофобный Определение
Гидрофобный буквально означает «боязнь воды». Гидрофобные молекулы и поверхности отталкивают воду. Гидрофобные жидкости, такие как масло, отделяются от воды. Гидрофобные молекулы обычно неполярны, то есть атомы, составляющие молекулу, не создают статического электрического поля. В полярных молекулах эти противоположные области электрической энергии притягиваются к молекулам воды. Без противоположных электрических зарядов на молекулах вода не может образовывать водородные связи с молекулами. Затем молекулы воды образуют больше водородных связей друг с другом, а неполярные молекулы слипаются.
Гидрофобный эффект вызван слипанием неполярных молекул. Большие макромолекулы могут иметь гидрофобные участки, которые будут сворачивать молекулу так, чтобы они могли располагаться близко друг к другу, вдали от воды. Многие аминокислоты в белках являются гидрофобными, что помогает белкам приобретать сложную форму. Гидрофобный эффект распространяется на организмы, так как многие гидрофобные молекулы на поверхности организмов помогают им регулировать количество воды и питательных веществ в их системах.
Пример гидрофобных
Клеточных мембран
Клеточные мембраны состоят из макромолекул, известных как фосфолипиды . Фосфолипиды имеют атомы фосфора в головках молекул, которые притягивают воду. Хвост молекулы состоит из липидов, которые являются гидрофобными молекулами. Гидрофильные головки направлены в сторону воды, а гидрофобные хвосты притягиваются друг к другу. Небольшими группами фосфолипиды образуют мицелл . Как видно на картинке ниже, мицелла представляет собой небольшой гидрофобный шарик. Гидрофобные хвосты вытесняют воду из центра шара.
Клеточные мембраны состоят из двух фосфолипидных слоев, известных как фосфолипидный бислой . Середина листа состоит из гидрофобных хвостов, которые вытесняют воду и могут отделять содержимое клетки от внешней среды. Клетки имеют множество специальных белков, встроенных в мембрану, которые помогают транспортировать гидрофильные молекулы, такие как вода и ионы, через гидрофобную среднюю часть мембраны.
В эукариотических клетках органеллы образуются внутри клеток из более мелких мешочков, созданных из двойных слоев фосфолипидов. Ученые использовали гидрофобные свойства фосфолипидов для создания еще одной структуры для доставки лекарств и питательных веществ в клетки. Как видно на графике выше, 9Липосомы 0039 представляют собой небольшие мешочки, которые можно наполнить лекарством. С правильными белками, встроенными в мембрану, липосома сольется с мембраной клетки-мишени и доставит лекарство внутрь клетки.
Листья растений
Листья многих растений имеют гидрофобное покрытие. Важно, чтобы дождь и вода не впитывались через листья, так как это нарушит поток питательных веществ, который зависит от прохождения воды от корня к листу. Если бы воде было позволено проходить осмосом через клеточную мембрану в лист, это изменило бы осмотическое давление в листьях, и вода не могла бы подниматься от корней. Даже водные растения защищают свои листья гидрофобными веществами, что обеспечивает вытягивание питательных веществ из корней и поток воды в одном направлении через растение. Ниже приведен пример очень гидрофобного листа, из-за которого капли воды скатываются с листа.
Перья птиц
Многие водоплавающие птицы должны защищать свои перья от проникновения воды и выделять гидрофобные масла на свои перья, которые препятствуют проникновению воды. Если вы когда-нибудь слышали термин «как вода с утки», эта фаза относится к гидрофобности утиных перьев. Утки и многие другие водоплавающие птицы проводят значительное количество времени под водой, собирая пищу. Однако они также должны летать, когда выходят из воды. Если бы вода проникла в их перья, птицы стали бы слишком тяжелыми, чтобы летать. Птицы наносят на свои перья гидрофобные масла, которые они выделяют из своей кожи и специальных желез. Когда они ныряют под воду, масла образуют гидрофобный барьер, препятствующий проникновению воды. Затем, когда они появляются, они просто стряхивают воду и могут летать.
- Гидрофильный – Молекулы или вещества, которые притягиваются к воде.
- Polar – Молекулы, имеющие статический электрический заряд, которые могут взаимодействовать с водой.
- Неполярный – Молекулы, которые не имеют статического электрического заряда и гораздо чаще взаимодействуют с другими неполярными молекулами, чем с водой.
- Липофильный – Вещества, которые притягиваются к жиру, в отличие от гидрофобных.
Викторина
1. Некоторые аминокислоты гидрофобны, а некоторые гидрофильны. Гидрофобные аминокислоты имеют тенденцию объединяться в крупные белки. Почему важен порядок аминокислот в белке?
A. Порядок определяет форму белка
B. Не имеет значения, если присутствуют все аминокислоты
C. Белки узнаются по последовательности аминокислот
Ответ на вопрос №1
правильно. Благодаря гидрофобным эффектам, таким как взаимодействие гидрофобных аминокислот и многие другие связи, белки приобретают сложную структуру. Эти формы белка невероятно важны. Белки, используемые в распознавании клеток, принимают определенную форму, которую другие клетки могут «узнавать» по белкам, соответствующим их форме, подобно замку и ключу. Если аминокислоты в белке не в порядке, белок не будет складываться в правильную форму и будет работать со сбоями.
2. Создается вещество, имеющее очень сильные электрические диполи на молекулах, но не взаимодействующее с водой из-за сильного взаимодействия, которое она имеет сама с собой. Как бы вы описали молекулу?
A. Гидрофильный и полярный
B. Гидрофобный и неполярный
C. Гидрофобный и полярный
Ответ на вопрос № 2
C верно. Хотя это было бы необычно, это вещество было бы гидрофобным и полярным. Полярность — это состояние, вызванное статическими электрическими зарядами на молекулах, которые притягиваются друг к другу. Обычно эти заряды притягивают воду, но это только потому, что они позволяют воде образовывать водородные связи с веществом. Если бы было создано вещество, препятствующее образованию водородных связей, оно было бы гидрофобным. Таким образом, молекула может быть как гидрофобной, так и полярной.
3. Многие рептилии, даже рептилии, живущие в пустыне, имеют гидрофобную чешую на внешней стороне тела. Зачем пустынной рептилии гидрофобное покрытие?
A. Для защиты от вредных солнечных лучей
B. Барьер также защищает от испарений
C. Для защиты от кислотных дождей
Ответ на вопрос №3
3
4 9 верен . Чешуя многих рептилий защищает животных от потери воды из-за испарений. В то время как многие амфибии, не имеющие чешуи, не могут уйти очень далеко от источника воды, многие рептилии живут в среде, почти лишенной воды. Пустынные животные быстро высохли бы, если бы не их гидрофобная кожа и чешуя, защищающая их от испарения.