Что такое атермальное стекло и зачем оно нужно
Атермальные стекла имеют ряд достоинств перед обычными. Однако правильное их использование требует соблюдения нескольких правил. В этом материале мы расскажем об особенностях выбора и эксплуатации таких стекол.
Что такое атермальное стекло?
В процессе производства в состав добавляются оксиды металлов. В результате материал пропускает меньше ИК-излучения (теплового). Оксиды окрашивают поверхность в бронзовый, синий или фиолетовый цвет.
Важно! Тонированное, обработанное специальными напылениями или покрытое пленкой стекло не является атермальным.
Особенности и преимущества
Такие стекла часто устанавливаются в автомобилях. Это обеспечивает владельцу несколько преимуществ:
- приборная панель (и салон в целом) меньше нагреваются;
- при езде в солнечную погоду возникает меньше бликов;
- прочность выше, чем у изделий без оксидов в составе;
- минимальная теплоотдача защищает от замерзания и запотевания;
- минимизируется расход энергии на работу системы климат-контроля в жаркую погоду.
Рекомендуем установить такое стекло, если обивка салона часто выгорает, а микроклимат не соответствует вашим представлениям о комфорте.
Недостаток только один – стоимость. Атермальное стекло обойдется дороже обычного. Однако расходы относительно быстро себя окупают, т. к. уменьшается нагрузка на кондиционер, приходится реже менять элементы салона.
Внешние отличия
Чтобы понять, что перед вами атермальное стекло, обратите внимание на следующие признаки.
- Цвет. Нестандартный состав обеспечивает легкий цветной оттенок.
- Посмотрите на стекло через очки с поляризациоными стеклами. Вы увидите разноцветные разводы (как у бензина, попавшего в воду).
- Маркировка. Производители обозначают свою продукцию словами Tinted и Overtinted. Первый вариант обозначает, что показатель светопропускания составляет от 81. Обозначение Overtinted значит, что светопропускание составляет от 78,5 (этот вариант предназначен для установки в качестве лобового стекла).
При выборе следите, чтобы на поверхности не было трещин и сколов, т. к. они ухудшают износостойкие характеристики.
Атермальные стекла что это
Ещё несколько лет назад об атермальном остеклении автомобилей знали лишь те, кто интересовался особенностями тюнинга транспортных средств. На данный момент многие производители машин стали вносить такие стёкла в основную комплектацию своих моделей. Вследствие этого существенно возрос соответствующий интерес автомобилистов, порождающий большое количество вопросов. Основной из них заключается в следующем: атермальное стекло – что это такое в машине. В этом необходимо детально разобраться, прежде чем использовать такое изделие на собственном автомобиле.
Салон автомобиля – это ограниченное пространство, которое очень быстро реагирует не те или иные условия окружающей среды. Прежде всего, это касается высокой температуры воздуха на улице. Она делает пребывание в машине некомфортным, так как внутри и снаружи машины за короткий промежуток времени нагреваются все поверхности.
Атермальное остекление отличается тем, что оно сводит к минимуму неблагоприятное воздействие солнечных лучей посредством впитывания тепловой энергии. К тому же данная технология способствует пропусканию света, зримого для человека типа.
Таким образом, основные свойства атермального остекления автомобиля заключаются в следующем:
Блокировка попадания определённого количества инфракрасных и ультрафиолетовых лучей в салон транспортного средства. Многие из них задерживаются непосредственно в толщине стекла или же отбиваются от него вследствие специального компонентного состава.
Затемнение стекла и снижение частоты образования на нём бликов. Последние практически отсутствуют, так как стекло создаёт идеальные условия для того, чтобы блокировать неблагоприятное преломление лучей, способное на некоторое время ослепить водителя.
Обеспечение более стабильного температурного режима в салоне автомобиля. Вследствие этого пассажиры машины могут себя чувствовать максимально комфортно и уютно даже в условиях длительной поездки в самые жаркие летние дни по автостраде.
Более значительная прочность в сравнении с обыкновенными типами стёкол. При попадании небольших камней в машину существует высокая вероятность того, что не образуется трещина или какое-либо иное повреждение.
Атермальное стекло на белой машине
Кроме пропускающей способности, атермальные стёкла имеют ещё одно преимущество — прочность
Таким образом, атермальное остекление способствует значительному улучшению комфорта, удобства и безопасности эксплуатации автомобиля. Именно вследствие этого всё большее количество производителей используют данную технологию для производства новых моделей транспортных средств. Это касается как зарубежных компаний, так и некоторых отечественных брендов.
Атермальное стекло большинства производителей позволяет пропускать свет в достаточном объёме для того, чтобы водитель в итоге не столкнулся с проблемой лишения прав. Вместе с тем некоторые эксперты советуют проверить перед покупкой, будет ли новое остекление соответствовать установленным в государстве правилам.
Как отличить атермальное стекло от обыкновенного?
В настоящее время спрос на атермальные стёкла, содержащие ионы серебра, всё время растёт. Вследствие этого на рынке появилось большое количество поддельных товаров, которые не обладают соответствующими свойствами и полезными качествами. Нередко продавцы пытаются выдать обычные стёкла, имеющие солнцезащитную полосу вверху, за атермальные. Для того чтобы не приобрести такую продукцию по завышенной цене, необходимо понимать, как отличить разные типы друг от друга. Это можно сделать следующим образом:
Первоначально необходимо тщательно осмотреть стекло. Нужно обратить внимание на его кромку. Она должна быть хорошо отшлифованной и ровной.
Также следует найти маркировку товара. Все производители атермального стекла указывают на ней такие слова, как INTED или же OVERINTED. Разница между первым и вторым типом заключается лишь в коэффициенте светопропускания. В продукции с маркировкой INTED он составляет 81%, а с OVERINTED – 78,5%. В первом случае стекло отличается лёгким зеленоватым оттенков, а во втором – выраженным зелёным цветом.
Маркировка атермального стекла
Только маркировки с обозначениями INTED и OVERINTED указывают на атермальные стёкла
С использованием солнцезащитных очков, имеющих поляризационный эффект. Через них на поверхности остекления будут заметны радужные разводы, такие как на пятнах разлитого бензина в солнечный день.
Такой эффект обусловлен преломлением солнечных лучей посредством того, что они сталкиваются с небольшими кристаллами компонентов остекления.Посредством сравнения тени и самого стекла. Первая должна быть темнее, чем непосредственно само остекление. Этот способ определения подделки сам по себе не помогает выбрать оригинал, так как обеспечить данный эффект можно и другими методиками. Именно поэтому эксперты рекомендуют, прежде всего, пользоваться поляризационными очками. Они позволяют с большей вероятностью выявить подделку.
Таким образом, если пользоваться всеми вышеперечисленными рекомендациями специалистов, можно без проблем отличить атермальное стекло от обыкновенного. Это позволяет существенно сэкономить деньги и свободное время.
Технология изготовления
Многие автомобилисты путают атермальное остекление с другими технологиями, среди которых необходимо выделить тонирование или же покрытие стёкол специальной пленкой. На самом же деле способ изготовления существенно выделяется из методов, которые более известны широкой аудитории.
Технология изготовления атермального стекла отличается своей сложностью. Она требует использования специального высокотехнологичного заводского оборудования, которое не применяется для производства обычных изделий. Именно поэтому в настоящее время лишь небольшое количество компаний занимается выпуском стёкол данного типа.
Суть изготовления атермального стекла заключается в добавлении к расплавленной массе определённого количества специальных присадок. В них содержатся два главных компонента, которые в итоге и обеспечивают соответствующие свойства и положительные качества. Среди них специалисты выделяют оксиды железа и ионы серебра. Именно поэтому атермальное остекление автомобиля обретает голубоватый или же, что чаще бывает, зеленоватый оттенок. Если же рассматривать его через поляризационные очки, можно увидеть фиолетовый цвет.
Ещё до недавнего времени атермальное стекло не производили. Многие компании занимались изготовлением только лишь специальных атермальных плёнок. Они тоже обладают высокими энергосберегающими свойствами, но имеют совершенно иную технологию формирования. Это связанно с тем, что такие изделия состоят из большого количества слоёв, иной раз достигающих 200 единиц. Каждый из них блокирует определённый процент излучения, вследствие чего к самой поверхности стекла доходит лишь незначительная его часть. Именно поэтому атермальные пленки используются в первую очередь не для тонирования, а для блокировки тепловой энергии, которая способна проникнуть в салон транспортного средства.
Впитывание большого количества ультрафиолетового и инфракрасного излучения. Вследствие этого около 50% всех лучей не проникают в салон и не воздействуют неблагоприятным образом как на водителя, так и на пассажиров.
Противостояние процессам запотевания и замерзания. Из-за этого даже в холодный период времени сохраняется высокая степень обзорности. Владельцу машины не приходится дополнительно очищать стекло от образующегося конденсата вследствие перепада температур внутри салона и снаружи.
Создание комфортной атмосферы внутри машины. Атермальное стекло позволяет не пользоваться встроенными кондиционерами. Это, в свою очередь, сказывается на энергопотреблении машины, а также расходе топлива.
Снижение нагревания салона, которое происходит вследствие попадания внутрь прямых солнечных лучшей. Стекло позволяет снизить температуру приборной панели на 2 градуса.
Улучшение показателей безопасности эксплуатации автомобиля в солнечную погоду. Это обусловлено тем, что атермальное остекление препятствует образованию бликов. К тому же водителю не приходится всё время прищуриваться, из-за чего он меньше устает и больше концентрируется на процессе вождения.
Отсутствие выгорания под воздействием прямых солнечных лучей. Это свойство делает остекление более устойчивым к потере цвета, что сказывается на длительности эксплуатации.
Как и любые другие виды остекления автомобилей, атермальное имеет некоторые недостатки:
Высокая стоимость. Цена данной технологии в два раза больше стандартной.
Не на все модели и марки автомобилей атермальное стекло подходит. В последнее время производители включают его в базовые комплектации но далеко не всех транспортных средств.
Негативное влияние на работу навигаторов. Стёкла такого типа способны воздействовать на некоторые функции отдельных устройств внутри салона автомобиля. Водитель может заметить сбои в телефонной связи, сигналах GPS и радиоволновой передаче.
Прежде чем приобрести атермальное стекло, необходимо обратить внимание на его показатели затемнения. Они не должны превышать установленные на законодательном уровне нормы, так как в таком случае водителя могут лишить прав. Если остекление полностью соответствует стандартам, можно смело его покупать. Это обусловлено тем, что оно способно создать действительно комфортные условия для пребывания в салоне в летний период времени. Зимой же такие изделия будут, наоборот, удерживать тепло внутри, снижая нагрузку на отопительные приборы, что отразится и на расходе топлива. Несмотря на то, что атермальные стёкла дорогие, их приобретение представляет собой действительно удачный способ инвестирования денег.
Сегодня 70% автомобилей уже после схода с завода обладают атермальным лобовым стеклом. Главное отличие атермальных стекол от обычных – в свето- и теплопропускной способности. В силу своих физических характеристик, атермальное стекло намного лучше сохраняет температурный режим в салоне.
Что такое атермальное стекло
Атермальные стекла начали изготовлять в 1959 году, путем нанесения тонкого слоя ионов серебра на обычное стекло. Повторить такую процедуру в домашних условиях невозможно. Первые стекла покрывались серебрянной пленкой из соображений теплоемкости.
Благодаря физико-химическим свойствам серебра, стекло меньше пропускает ультрафиолетовые солнечные лучи, которые способствуют нагреванию. Тем не менее ветровое стекло будет пропускать весь остальной спектр лучей.
Приятным бонусом станут антибликовые свойства стекла. Напыление очень мягко рассеивает свет, не ослепляя встречных водителей. Металлическое покрытие визуально можно сравнить с тонировкой. Однако, в отличие от последней, атермальное стекло не снижает светопропускную способность и является разрешенным ПДД.
Атермальное стекло позволяет на 40% снизить нагрузку с системы климат-контроля автомобиля.
Отличия от обычного стекла
Основное отличие атермального стекла в его функциональности. Визуально понять разницу можно по цвету: если обычное – совершенно прозрачное, то атермальное имеет фиолетовый или зеленый оттенок. Сложнее же определить «на глаз» разницу между атермальным стеклом и тонированным.
Обычное стекло имеет светопропускую способность более 90%, а атермальное – 80–90%. Дополнительной особенностью становится функция «невидимки» для многих радаров, навигаторов и других девайсвов, так как передача сигнала становится хуже из-за металлического напыления.
Автомобилисты считают атермальное стекло более долговечным и ударопрочным. Однако заплатить за такое удовольствие придется в 1,5–2 раза больше.
Как производят атермальные стекла
Производство атермальных стекол – это очень трудоемкий и долгий процесс, который требует уникальных производственных условий.
- Для изготовления стекольной массы используют чистый песок и несколько дополнительных присадок. Массу плавят при температуре 1600°С.
- Чтобы получить дополнительную стойкость к ультрафиолетовым лучам, в массу добавляют несколько видов оксидов металла. Уже после первой закалки, ионы серебра дадут на стекле яркие фиолетовые, зеленые или голубые оттенки.
- Формовочный этап проходит на пластах из олова, так как оно не вступает в реакцию с компонентами массы. Стекло поддается повторной закалке, во время медленного снижения температуры среды до 200°С.
- Пласты стекла режут и придают им необходимую форму. Для этого массу снова плавят и резко остужают. Такая динамика температур придает дополнительную прочность и устойчивость к механическим повреждениям.
- На последнем этапе обрабатывают кромку пластов стекла.
Виды атермального стекла
Производители выпускают всего два основных вида атермального стекла, которые немного различаются по своим свойствам. Отличить их можно при помощи маркировки в углу стеклянной панели.
- Tinted – отличается умеренным теплопоглощением. Интересный факт, что лобовое стекло пропускает 85–90% света, а боковое около 80%;
- Overtinted – данное стекло обладает усиленным теплопоглощением и максимальным температурным комфортом. Однако способность пропускать свет немного ниже и достигает 72% для передних боковых и 78,5% для лобового стекла;
- Иногда можно встретить пометку «Solar». Она означает, что при изготовлении стекла использовалась пленка, которая препятствует излишнему нагреву салона.
При выборе атермального стекла следует обратиться к профессионалу, который точно укажет все преимущества, и недостатки выбранного типа стекла.
Преимущества и недостатки атермальных стекол для автомобиля
Автолюбители уже давно по достоинству оценили атермальный эффект:
- Солнечные лучи, проникающие в салон, не нагревают руль и приборную панель;
- Значительно уменьшается количество бликов на стекле;
- Экономия энергии кондиционеров в жаркий период;
- Обшивка салона не портится;
- В салоне создаются максимально комфортные температурные условия;
- Стекло становится прочнее;
Увы, без недостатков тут не обойтись:
- Высокая ценовая политика из-за применения ионов серебра;
- Узкий ассортимент производителей;
- Нарушает работу радаров, навигаторов и дополнительных девайсов.
Как распознать подделку
К сожалению, на первый взгляд, распознать подделку практически невозможно. Первым делом, на что нужно обратить внимание – маркировка стекла. Если на стекле есть заводские надписи Tinted или Overtinted, можно на 90% быть уверенным в подлинности продукта.
Не факт, что фиолетовый или зеленый оттенки на внешней стороне стекла будут свидетельствовать о качестве. Чтобы оградить себя от подделки можно ориентироваться на тень от выбранного стекла. При применении атермальной технологии – тень будет значительно темнее, чем от тонированного или обычного стекла.
Кроме того, следует обратить внимания на края стекла. Кромка должна быть в идеальном состоянии и, главное, ровной. Повреждения или наличие пленки со 100% вероятностью указывают на подделку.
Особенности монтажа и советы
Монтаж атермального стекла ничем не отличается от установки обычного или тонированного стекла. Тем не менее, следует с особой осторожностью соблюдать все указания, так как атермальное покрытие – удовольствие не из дешевых. Именно от профессионализма мастера зависит качество проделанной работы и длительность защитного эффекта.
Чтобы немного больше понимать процесс установки атермального стекла, стоит посмотреть обучающий ролик:
youtube.com/embed/dGxl9jLgqjY»/>
Следует помнить, что цена полностью отображает качество стекла. В этом случае экономия может очень пагубно сказаться на автомобиле.
Если установка атермального стекла на автомобиль невозможна – есть альтернатива в виде атермальной пленки. Она обладает практически теми же свойствами, что и стекло. Процедура проклейки очень схожа с обычной тонировкой. Бесспорно, это намного дешевле и быстрее, чем замена стекла. Тем не менее, делая выбор в сторону пленки, придется пожертвовать желаемым качеством и прочностью.
Атермальное стекло – надежный способ снизить нагрузку с системы обогрева автомобиля и защитить себя от назойливого солнца. Оспаривать преимущества атермального эффекта глупо, поскольку большинство автомобильных производителей включили атермальное стекло в список обязательных комплектующих ТС. При замене стекла очень важно обращать внимание на производителя, так как сложно отличить подделку от оригинала.
Многие уже, наверное, слышали об атермальных стеклах для автомобилей. Но, мало кто знает что это, для чего и в каких случаях устанавливаются, как за ними ухаживать, и какие у них характеристики. Сегодня детально рассмотрим данный вид стекол.
Атермальное лобовое стекло — что это
Такие модификации автомобильных стекол изобретены недавно, но быстро приобретают популярность по некоторым причинам. Не опытные могут неверно интерпретировать сей термин. Многие думают, что атермальные — это такие, которые окрашены в какой-либо оттенок и имеют солнцезащитную пленку.
Тонировка лобового стекла атермальной пленкой
Существуют атермальные стекла и пленки. Стекла такие изготавливаются на специальном оборудовании. Они имеют бледно-зеленый или бледно-голубой оттенок и маркируются штампом «Overtinted» или «Tinted». Маркировка наносится на правый верхний угол.Именно благодаря маркировке можно определить стекло действительно атермальное или просто покрыто пленкой.
Стекла с логотипами Overtinted и Tinted отличаются по уровню светопропускания. Стекло Tinted пропускает 81% света, а Overtinted — 78,5%.В зависимости от производственных мощностей производителя, стекла могут быть разных цветовых гамм. Могут быть коричневатыми, с оттенками фиолетового цвета, особую популярность набираются атермальные стекла хамелеон, многим нравятся переливающиеся цвета.
Чтобы не попасться на уловку недобросовестных продавцов, которые хотят продать стекла или транспорт с такими стеклами, говоря, что это атермальное лобовое стекло, а на самом деле — это пленка, существует хорошая возможность — проверить логотип, штамп справа вверху.Для тех, кто задумывается, ставить ли атермальные стекла, есть вариант купить атермальную пленку и приклеить ее. Такая пленка не как обычная тонировка. Атермальная пленка состоит из более, чем пару сотен слоев. В составе этой пленки не содержится металл. Клеится также, как и обычная тонировочная пленка: сначала почистить губкой и с мыльным раствором. Существует еще дорогой способ затемнять стекла — это электронная тонировка, которая управляется по кнопке: нажал — затемнилось, нажал — стало прозрачным.
Атермальная пленка продается в рулоне, поэтому ее можно наклеить и на боковые, ветровые стекла. Окрасы тоже разые — от почти прозрачного до хамелеона.
В этом видео показан процесс, как тонировать атермальной пленкой лобовое стекло.
Пленки выбирают из-за дешевизны и, еще, потому что не хотят снимать заводские стекла.
Плюсы и минусы атермального лобового стекла
Атермальные стекла для автомобилей имеют такие преимущества:
- стекло не подвергается нагреву;
- солнечные лучи не нагревают поверхность панели приборов, даже, если она черная;
- низкий показатель количества бликов во время движения;
- уменьшена нагрузка на систему климат-контроля авто;
- салон защищен от перегрева и выгорания;
- устойчивая температура внутри машины даже в зимнее время;
- повышенный комфорт для водителя и пассажиров;
- повышенная прочность атермальных стекол обеспечивает лучшую безопасность;
- до 50% инфракрасных и ультрафиолетовых лучей гасится при прохождении через атермальное стекло;
- четкая цветопередача, то есть объекты не искажаются под различными углами;
- модификация таких стекол соответствует Государственным стандартам (ГОСТ).
Но, как и у всех изделий, не может быть только плюсов. К недостаткам можно отнести следующие пункты:
- стоимость выше, чем цена обычных стекол;
- для российских автомобилей атермальные стекла еще изготавливаются только для некоторых марок и моделей;
- пленка, которая частично гасит ультрафиолетовые лучи, могут привести к тому, что антирадары не будут срабатывать.
На фото атермальное стекло с фиолетовым оттенком
Атермальные стекла в автомобиле что это
Ещё несколько лет назад об атермальном остеклении автомобилей знали лишь те, кто интересовался особенностями тюнинга транспортных средств. На данный момент многие производители машин стали вносить такие стёкла в основную комплектацию своих моделей. Вследствие этого существенно возрос соответствующий интерес автомобилистов, порождающий большое количество вопросов. Основной из них заключается в следующем: атермальное стекло – что это такое в машине. В этом необходимо детально разобраться, прежде чем использовать такое изделие на собственном автомобиле.
Салон автомобиля – это ограниченное пространство, которое очень быстро реагирует не те или иные условия окружающей среды. Прежде всего, это касается высокой температуры воздуха на улице. Она делает пребывание в машине некомфортным, так как внутри и снаружи машины за короткий промежуток времени нагреваются все поверхности. Это влияет на самочувствие как водителя, так и пассажиров транспортного средства.
Атермальное остекление отличается тем, что оно сводит к минимуму неблагоприятное воздействие солнечных лучей посредством впитывания тепловой энергии. К тому же данная технология способствует пропусканию света, зримого для человека типа.
Таким образом, основные свойства атермального остекления автомобиля заключаются в следующем:
Блокировка попадания определённого количества инфракрасных и ультрафиолетовых лучей в салон транспортного средства. Многие из них задерживаются непосредственно в толщине стекла или же отбиваются от него вследствие специального компонентного состава.
Препятствование проникновения большого объёма тепловой энергии в машину. Ввиду этого поверхности приборной панели даже в самые тёплые дни не очень сильно нагреваются при длительном нахождении транспортного средства на солнце.
Затемнение стекла и снижение частоты образования на нём бликов. Последние практически отсутствуют, так как стекло создаёт идеальные условия для того, чтобы блокировать неблагоприятное преломление лучей, способное на некоторое время ослепить водителя.
Обеспечение более стабильного температурного режима в салоне автомобиля. Вследствие этого пассажиры машины могут себя чувствовать максимально комфортно и уютно даже в условиях длительной поездки в самые жаркие летние дни по автостраде.
Более значительная прочность в сравнении с обыкновенными типами стёкол. При попадании небольших камней в машину существует высокая вероятность того, что не образуется трещина или какое-либо иное повреждение.
Защита обшивки от выгорания и выцветания посредством воздействия на неё солнечных лучей. Поэтому салон автомобиля длительное время остаётся как новый.
Атермальное стекло на белой машине
Кроме пропускающей способности, атермальные стёкла имеют ещё одно преимущество — прочность
Таким образом, атермальное остекление способствует значительному улучшению комфорта, удобства и безопасности эксплуатации автомобиля. Именно вследствие этого всё большее количество производителей используют данную технологию для производства новых моделей транспортных средств. Это касается как зарубежных компаний, так и некоторых отечественных брендов.
Атермальное стекло большинства производителей позволяет пропускать свет в достаточном объёме для того, чтобы водитель в итоге не столкнулся с проблемой лишения прав. Вместе с тем некоторые эксперты советуют проверить перед покупкой, будет ли новое остекление соответствовать установленным в государстве правилам.
Как отличить атермальное стекло от обыкновенного?
В настоящее время спрос на атермальные стёкла, содержащие ионы серебра, всё время растёт. Вследствие этого на рынке появилось большое количество поддельных товаров, которые не обладают соответствующими свойствами и полезными качествами. Нередко продавцы пытаются выдать обычные стёкла, имеющие солнцезащитную полосу вверху, за атермальные. Для того чтобы не приобрести такую продукцию по завышенной цене, необходимо понимать, как отличить разные типы друг от друга. Это можно сделать следующим образом:
Первоначально необходимо тщательно осмотреть стекло. Нужно обратить внимание на его кромку. Она должна быть хорошо отшлифованной и ровной.
Также следует найти маркировку товара. Все производители атермального стекла указывают на ней такие слова, как INTED или же OVERINTED. Разница между первым и вторым типом заключается лишь в коэффициенте светопропускания. В продукции с маркировкой INTED он составляет 81%, а с OVERINTED – 78,5%. В первом случае стекло отличается лёгким зеленоватым оттенков, а во втором – выраженным зелёным цветом.
Необходимо узнать название производителя товара. В настоящее время атермальные стёкла изготовляются лишь на высококачественном и дорогом оборудовании, которое не могут себе позволить малоизвестные компании. Именно поэтому необходимо ориентироваться на бренд.
Маркировка атермального стекла
Только маркировки с обозначениями INTED и OVERINTED указывают на атермальные стёкла
С использованием солнцезащитных очков, имеющих поляризационный эффект. Через них на поверхности остекления будут заметны радужные разводы, такие как на пятнах разлитого бензина в солнечный день. Такой эффект обусловлен преломлением солнечных лучей посредством того, что они сталкиваются с небольшими кристаллами компонентов остекления.
Посредством сравнения тени и самого стекла. Первая должна быть темнее, чем непосредственно само остекление. Этот способ определения подделки сам по себе не помогает выбрать оригинал, так как обеспечить данный эффект можно и другими методиками. Именно поэтому эксперты рекомендуют, прежде всего, пользоваться поляризационными очками. Они позволяют с большей вероятностью выявить подделку.
Таким образом, если пользоваться всеми вышеперечисленными рекомендациями специалистов, можно без проблем отличить атермальное стекло от обыкновенного. Это позволяет существенно сэкономить деньги и свободное время.
Технология изготовления
Многие автомобилисты путают атермальное остекление с другими технологиями, среди которых необходимо выделить тонирование или же покрытие стёкол специальной пленкой. На самом же деле способ изготовления существенно выделяется из методов, которые более известны широкой аудитории.
Технология изготовления атермального стекла отличается своей сложностью. Она требует использования специального высокотехнологичного заводского оборудования, которое не применяется для производства обычных изделий. Именно поэтому в настоящее время лишь небольшое количество компаний занимается выпуском стёкол данного типа.
Суть изготовления атермального стекла заключается в добавлении к расплавленной массе определённого количества специальных присадок. В них содержатся два главных компонента, которые в итоге и обеспечивают соответствующие свойства и положительные качества. Среди них специалисты выделяют оксиды железа и ионы серебра. Именно поэтому атермальное остекление автомобиля обретает голубоватый или же, что чаще бывает, зеленоватый оттенок. Если же рассматривать его через поляризационные очки, можно увидеть фиолетовый цвет.
Ещё до недавнего времени атермальное стекло не производили. Многие компании занимались изготовлением только лишь специальных атермальных плёнок. Они тоже обладают высокими энергосберегающими свойствами, но имеют совершенно иную технологию формирования. Это связанно с тем, что такие изделия состоят из большого количества слоёв, иной раз достигающих 200 единиц. Каждый из них блокирует определённый процент излучения, вследствие чего к самой поверхности стекла доходит лишь незначительная его часть. Именно поэтому атермальные пленки используются в первую очередь не для тонирования, а для блокировки тепловой энергии, которая способна проникнуть в салон транспортного средства.
Впитывание большого количества ультрафиолетового и инфракрасного излучения. Вследствие этого около 50% всех лучей не проникают в салон и не воздействуют неблагоприятным образом как на водителя, так и на пассажиров.
Способность менять насыщенность цвета стекла в зависимости от того, какая мощность внешнего освещения дороги. Ввиду этого снижается степень усталости глаз, что крайне важно при длительных поездках на значительные расстояния между городами.
Противостояние процессам запотевания и замерзания. Из-за этого даже в холодный период времени сохраняется высокая степень обзорности. Владельцу машины не приходится дополнительно очищать стекло от образующегося конденсата вследствие перепада температур внутри салона и снаружи.
Создание комфортной атмосферы внутри машины. Атермальное стекло позволяет не пользоваться встроенными кондиционерами. Это, в свою очередь, сказывается на энергопотреблении машины, а также расходе топлива.
Снижение нагревания салона, которое происходит вследствие попадания внутрь прямых солнечных лучшей. Стекло позволяет снизить температуру приборной панели на 2 градуса.
Улучшение показателей безопасности эксплуатации автомобиля в солнечную погоду. Это обусловлено тем, что атермальное остекление препятствует образованию бликов. К тому же водителю не приходится всё время прищуриваться, из-за чего он меньше устает и больше концентрируется на процессе вождения.
Отсутствие выгорания под воздействием прямых солнечных лучей. Это свойство делает остекление более устойчивым к потере цвета, что сказывается на длительности эксплуатации.
Как и любые другие виды остекления автомобилей, атермальное имеет некоторые недостатки:
Высокая стоимость. Цена данной технологии в два раза больше стандартной.
Не на все модели и марки автомобилей атермальное стекло подходит. В последнее время производители включают его в базовые комплектации но далеко не всех транспортных средств.
Негативное влияние на работу навигаторов. Стёкла такого типа способны воздействовать на некоторые функции отдельных устройств внутри салона автомобиля. Водитель может заметить сбои в телефонной связи, сигналах GPS и радиоволновой передаче.
Прежде чем приобрести атермальное стекло, необходимо обратить внимание на его показатели затемнения. Они не должны превышать установленные на законодательном уровне нормы, так как в таком случае водителя могут лишить прав. Если остекление полностью соответствует стандартам, можно смело его покупать. Это обусловлено тем, что оно способно создать действительно комфортные условия для пребывания в салоне в летний период времени. Зимой же такие изделия будут, наоборот, удерживать тепло внутри, снижая нагрузку на отопительные приборы, что отразится и на расходе топлива. Несмотря на то, что атермальные стёкла дорогие, их приобретение представляет собой действительно удачный способ инвестирования денег.
Сегодня 70% автомобилей уже после схода с завода обладают атермальным лобовым стеклом. Главное отличие атермальных стекол от обычных – в свето- и теплопропускной способности. В силу своих физических характеристик, атермальное стекло намного лучше сохраняет температурный режим в салоне.
Что такое атермальное стекло
Атермальные стекла начали изготовлять в 1959 году, путем нанесения тонкого слоя ионов серебра на обычное стекло. Повторить такую процедуру в домашних условиях невозможно. Первые стекла покрывались серебрянной пленкой из соображений теплоемкости.
Благодаря физико-химическим свойствам серебра, стекло меньше пропускает ультрафиолетовые солнечные лучи, которые способствуют нагреванию. Тем не менее ветровое стекло будет пропускать весь остальной спектр лучей.
Приятным бонусом станут антибликовые свойства стекла. Напыление очень мягко рассеивает свет, не ослепляя встречных водителей. Металлическое покрытие визуально можно сравнить с тонировкой. Однако, в отличие от последней, атермальное стекло не снижает светопропускную способность и является разрешенным ПДД.
Атермальное стекло позволяет на 40% снизить нагрузку с системы климат-контроля автомобиля.
Отличия от обычного стекла
Основное отличие атермального стекла в его функциональности. Визуально понять разницу можно по цвету: если обычное – совершенно прозрачное, то атермальное имеет фиолетовый или зеленый оттенок. Сложнее же определить «на глаз» разницу между атермальным стеклом и тонированным.
Обычное стекло имеет светопропускую способность более 90%, а атермальное – 80–90%. Дополнительной особенностью становится функция «невидимки» для многих радаров, навигаторов и других девайсвов, так как передача сигнала становится хуже из-за металлического напыления.
Автомобилисты считают атермальное стекло более долговечным и ударопрочным. Однако заплатить за такое удовольствие придется в 1,5–2 раза больше.
Как производят атермальные стекла
Производство атермальных стекол – это очень трудоемкий и долгий процесс, который требует уникальных производственных условий.
- Для изготовления стекольной массы используют чистый песок и несколько дополнительных присадок. Массу плавят при температуре 1600°С.
- Чтобы получить дополнительную стойкость к ультрафиолетовым лучам, в массу добавляют несколько видов оксидов металла. Уже после первой закалки, ионы серебра дадут на стекле яркие фиолетовые, зеленые или голубые оттенки.
- Формовочный этап проходит на пластах из олова, так как оно не вступает в реакцию с компонентами массы. Стекло поддается повторной закалке, во время медленного снижения температуры среды до 200°С.
- Пласты стекла режут и придают им необходимую форму. Для этого массу снова плавят и резко остужают. Такая динамика температур придает дополнительную прочность и устойчивость к механическим повреждениям.
- На последнем этапе обрабатывают кромку пластов стекла.
Виды атермального стекла
Производители выпускают всего два основных вида атермального стекла, которые немного различаются по своим свойствам. Отличить их можно при помощи маркировки в углу стеклянной панели.
- Tinted – отличается умеренным теплопоглощением. Интересный факт, что лобовое стекло пропускает 85–90% света, а боковое около 80%;
- Overtinted – данное стекло обладает усиленным теплопоглощением и максимальным температурным комфортом. Однако способность пропускать свет немного ниже и достигает 72% для передних боковых и 78,5% для лобового стекла;
- Иногда можно встретить пометку «Solar». Она означает, что при изготовлении стекла использовалась пленка, которая препятствует излишнему нагреву салона.
При выборе атермального стекла следует обратиться к профессионалу, который точно укажет все преимущества, и недостатки выбранного типа стекла.
Преимущества и недостатки атермальных стекол для автомобиля
Автолюбители уже давно по достоинству оценили атермальный эффект:
- Солнечные лучи, проникающие в салон, не нагревают руль и приборную панель;
- Значительно уменьшается количество бликов на стекле;
- Экономия энергии кондиционеров в жаркий период;
- Обшивка салона не портится;
- В салоне создаются максимально комфортные температурные условия;
- Стекло становится прочнее;
Увы, без недостатков тут не обойтись:
- Высокая ценовая политика из-за применения ионов серебра;
- Узкий ассортимент производителей;
- Нарушает работу радаров, навигаторов и дополнительных девайсов.
Как распознать подделку
К сожалению, на первый взгляд, распознать подделку практически невозможно. Первым делом, на что нужно обратить внимание – маркировка стекла. Если на стекле есть заводские надписи Tinted или Overtinted, можно на 90% быть уверенным в подлинности продукта.
Не факт, что фиолетовый или зеленый оттенки на внешней стороне стекла будут свидетельствовать о качестве. Чтобы оградить себя от подделки можно ориентироваться на тень от выбранного стекла. При применении атермальной технологии – тень будет значительно темнее, чем от тонированного или обычного стекла.
Кроме того, следует обратить внимания на края стекла. Кромка должна быть в идеальном состоянии и, главное, ровной. Повреждения или наличие пленки со 100% вероятностью указывают на подделку.
Особенности монтажа и советы
Монтаж атермального стекла ничем не отличается от установки обычного или тонированного стекла. Тем не менее, следует с особой осторожностью соблюдать все указания, так как атермальное покрытие – удовольствие не из дешевых. Именно от профессионализма мастера зависит качество проделанной работы и длительность защитного эффекта.
Чтобы немного больше понимать процесс установки атермального стекла, стоит посмотреть обучающий ролик:
Следует помнить, что цена полностью отображает качество стекла. В этом случае экономия может очень пагубно сказаться на автомобиле.
Если установка атермального стекла на автомобиль невозможна – есть альтернатива в виде атермальной пленки. Она обладает практически теми же свойствами, что и стекло. Процедура проклейки очень схожа с обычной тонировкой. Бесспорно, это намного дешевле и быстрее, чем замена стекла. Тем не менее, делая выбор в сторону пленки, придется пожертвовать желаемым качеством и прочностью.
Атермальное стекло – надежный способ снизить нагрузку с системы обогрева автомобиля и защитить себя от назойливого солнца. Оспаривать преимущества атермального эффекта глупо, поскольку большинство автомобильных производителей включили атермальное стекло в список обязательных комплектующих ТС. При замене стекла очень важно обращать внимание на производителя, так как сложно отличить подделку от оригинала.
Дата публикации: 21 сентября 2018 .
Категория: Автотехника.
Салон автомобиля является замкнутым пространством с небольшой площадью, при этом его большая часть покрыта стеклами, поэтому в жаркое время года нахождение в машине превращается в настоящий кошмар. Помимо этого, стандартное лобовое стекло пропускает ультрафиолет, который губителен для пластиковых и кожаных поверхностей.
Чтобы избавиться от этих неприятностей многие используют тонировку. Однако такой материал (особенно если он приобретен у недобросовестного поставщика) не всегда отвечает требованиям ГОСТ по светопропускной способности (не менее 75% для лобового стекла и не меньше 70% для боковых). Также пленка, приклеенная некачественно, будет пузыриться или отрываться кусками. Поэтому намного лучше установить в авто атермальное стекло, которое способно поглощать и отражать солнечную энергию.
Атермальное стекло и атермальная тонировка одно и то же или нет
Пленочный светофильтр представляет собой несколько пластин, склеенных между собой. Такая тонировка наносится на любое прозрачное стекло и позволяет защитить салон машины от вредного влияния солнечного света, но, не скрывая, что находится в машине от любопытных глаз.
Если же речь идет об атермальном остеклении, то оно также призвано противостоять УФ-излучению. Однако в этом случае имеется ввиду стекло, которое было произведено по особой технологии. То есть на него не просто наклеили светофильтр. Хоть идея атермального остекления не нова, изготовление такого стекла требует дорогостоящего специализированного оборудования. Это связано с тем, что в процессе производства в стандартное расплавленное стекло добавляют присадки (в строгом соотношении и количестве), в качестве которых чаще всего используется оксид железа и ионы серебра.
Полезно! Атермальные лобовые стекла способны поглощать порядка 50% ИК-излучения и солнечной энергии. Пленка же отталкивает инфракрасные лучи и энергию до 93%.
Таким образом, атермальная пленка и стекло представляют собой два совершенно разных продукта. Разумеется, второй обойдется дороже, а пленку при желании можно приобрести и приклеить самостоятельно. Однако, качество первого материала значительно выше.
Преимущества атермального остекления
АС обладает массой достоинств помимо препятствия нагреванию салона машины в летний зной. Атермальное стекло также:
- Прочнее и долговечнее стандартного стекла. Если во время движения в машину попадет небольшой камень, то с наибольшей вероятностью он не оставит трещины или другого серьезного повреждения.
- Немного затемняет поверхность, поэтому снижается образование бликов. Поэтому даже если водитель забыл солнечные очки, преломления света не будет таким сильным, чтобы ослепить его.
- Позволяет сэкономить топливо, так как не придется лишний раз включать систему кондиционирования.
- В зимнее время позволит, наоборот, сохранять тепло. Это объясняется тем, что оно намного дольше промерзает.
- Выполняет роль теплозащитного экрана. Все происходящее снаружи автовладелец видит четче, поэтому его глаза меньше устают.
- Не требует обновления (например, как покрытия типа «антидождь»).
Таким образом салон машины не будет нагреваться и выгорать. При этом автовладелец получает более прочное лобовое стекло, которое будет сложнее повредить и злоумышленнику, решившему попасть внутрь ТС.
Полезно! В отличие от тонировки разных типов, АС разрешено для использования и никак не противоречит закону о светопропускной способности.
Атермальное остекление действительно повышает уровень комфорта водителя и пассажиров транспортного средства, поэтому некоторые крупные автопроизводители (зарубежные и отечественные) начали выпускать новые модели машин, в которых даже в базовой комплектации устанавливаются более прочные АС. Однако, даже такой весомый аргумент не означает, что конструкции этого типа лишены минусов.
Недостатки АС
Основной минус заключается в том, что производство таких изделий слишком затратное. В итоге стоит такое автомобильное стекло чуть ли не в 2 раза дороже обычно. Хотя, если учесть его долгий срок службы и то, что водителю не придется жечь больше бензина в летнее время или менять выгоревшею обивку, то такое стекло со временем удастся «отбить».
Второй минус касается только тех, кто любит использовать такие гаджеты, как антирадары и навигаторы. К сожалению, из-за компонентов, которые входят в состав такого стекла, оно в прямом смысле может глушить сигнал. Поэтому могут возникнуть проблемы.
Третий минус – такие изделия сложно найти для любого автомобиля. Конечно в интернете есть подделки на любой вкус и цвет, но покупать фальшивку нет никакого смысла. Лучше дождаться, когда в продаже появится именно заводская модель.
К слову, контрафактные модели, которые наводнили рынок в связи растущей популярностью АС, являются еще одним недостатком. Но, его можно исключить, если обратить внимание на несколько нюансов.
Как отличить подделку от оригинала
Находчивости жуликов никогда нет предела, поэтому сегодня некоторые недобросовестные продавцы умудряются продавать под видом атермальных стекол даже обычные изделия с солнцезащитной полоской. Чтобы не заплатить большие деньги за простую «стекляшку» нужно держать ухо востро и обратить внимание на следующие детали:
- Маркировка. На стекле обязательно должно присутствовать слово «Tinted» (уровень светопропускания 81% для лобового и 80% для боковых стекол) или «Overtinted» (78,5% и 72%). Также нужно обратить внимание на то, что изделия «Tinted» будут отличаться легким зеленоватым оттенком, у «Overtinted» более насыщенный зеленый цвет.
- Стоимость. Атермальное стекло не может стоить столько же, сколько и обычное. Учитывая сложности его производства, цена должна быть минимум на 10-15% выше.
- Кромка стекла. Если изделие изготовлено качественно, то производитель не допустит «косяков» в виде некачественной обработки краев изделия. Поэтому нужно провести рукой по кромке. Если чувствуются шероховатости, неровности или зазубрины, то с наибольшей вероятностью такое АС было изготовлено в кустарных условиях.
Также существует еще два простых способа проверки изделия:
- Надеваем солнцезащитные очки с эффектом поляризации и смотрим на поверхность стекла. Если на ней как будто появляются радужные переливы, как на луже пролитого бензина, то такое изделие настоящее.
- Ставим стекло на солнце таким образом, чтобы от него образовалась тень. Если она темнее самого изделия, то АС настоящее, если светлее, то это явно подделка.
Если говорить об оттенке настоящего стекла, то он не обязательно будет чистым зеленым. Поверхность может отличать и голубоватым, фиолетовым или коричневатым оттенком.
Атермальное лобовое стекло
Атермальные стекла появились на рынке не так давно, и среднестатистический автовладелец знает о них не так много. А отсутствие информации всегда порождает массу версий, а также изрядную путаницу. К примеру, существует миф о том, что теплопоглощающее стекло можно определить по цвету: оно зеленое или фиолетовое. Чем и пользуются мошенники, называя атермальными тонированные стекла, стекла с солнцезащитной полосой, просто любые «подкрашенные» автостекла, и реализуя их по соответствующей цене. Итак, что же такое атермальное лобовое стекло, и что о нем необходимо знать, чтобы не приобрести «невесть что» и жаловаться впоследствии, что от приобретения никакого толку?
Атермальное лобовое стекло – это не тонировка, не напыление, всяческие пленки тоже не имеют к атермальному стеклу ни малейшего отношения. Процесс его производства довольно сложен и под силу только предприятиям с современным оборудованием, владеющим современными технологиями. Таких на территории бывшего СССР один –два и обчелся. Кустарным образом атермальное теплопоглощающее стекло не производится.
Отсюда вывод: смотрим на маркировку. Если на ней обозначен малоизвестный производитель, скорее всего, вам предлагают подделку. Кроме того на маркировке должен быть указан тип стекла, к примеру, TINTED или OVERTINTED. Это и значит, что стекло атермальное. Кроме того, уважающий себя производитель все делает аккуратно. Если кромки стекла обработаны неровно, на краях остатки пленки, — это признак того, что производилось оно кустарным способом и теплопоглощающим не может быть по определению, каким бы цветом не было окрашено.
Слабый цветной оттенок атермального стекла – это побочный эффект введения в стекломассу в процессе производства стекла специальных добавок (обычно используется оксид железа). За счет этих добавок стекло приобретает свойства поглощать и частично отражать инфракрасную (тепловую) часть солнечного света. Ультрафиолетовое излучение оно тоже задерживает, но это заслуга практически любого стекла, не только атермального. В результате атермальное лобовое стекло предохраняет интерьер салона от выгорания и поддерживает в автомобиле комфортный для пассажиров климат. Можно обходиться без кондиционера и дорогостоящих климатических установок.
Атермальное лобовое стекло — Статьи
Атермальное лобовое стекло используется для увеличения уровня комфорта внутри салона автомобиля. Оно позволяет снизить уровень нагрева пластиковых компонентов приборной панели. Также плёнка данного типа уменьшает уровень ультрафиолетового излучения.
Лобовые стёкла этого вида появились в продаже недавно. Некоторые водители принимают обыкновенную солнцезащитную полосу за плёнку вышеназванного типа. На плёнку нанесены ионы серебра, что позволяет пропускать определённый процент солнечного света, который слабее нагревает приборную панель. Также она защищает лобовое стекло от появления ледяного «налёта» зимой.
Некоторые производители создают готовые атермальные стёкла. Если вам не нужна такая защита, вы можете в любое время поменять лобовое стекло. Изделие изготавливается при помощи специального оборудования и благодаря нанесению ионов серебра конструкция приобретает синеватый или зеленоватый оттенок. Бывают различные уровни пропускания света, например, фиолетовый. Рекомендуется приобретать лобовое стекло с атермальной плёнкой только у проверенных производителей. Иногда это может быть просто стекло с полоской солнцезащитного вида.
Почему водители выбирают атермальную тонировку?
Эффект тонировочных плёнок отличается действенностью — продукт популярен среди современных водителей. Тонировка лобового стекла атермальной плёнкой:
Сохранение хорошего обзора. После наклеивания материала стекло остаётся прозрачным. Единственная перемена – это лёгкое изменение зелёного и синего цвета (зависит от типа продукта). Эксперты отмечают, что от синеватого цвета глаза быстрее устают и поэтому рекомендуется покупать продукцию серии ATR, так как в этом случае нагрузка на глаза снижается. Защита от перегрева салона. Обивка меньше выгорает – ваш салон дольше будет сохранять первоначальный вид. Тонировка данного типа отлично подойдёт для кожаного салона, так как под воздействием солнца кожа начинает трескаться и терять свои «тягучие» свойства. Пластик также негативно реагирует на солнечный свет. Он становится жёстким и даже может потрескаться. Цвет ткани постепенно теряет свет. Атермальная тонировка отлично защищает машину от УФ излучения.Следует отметить, что большинство современных производителей создают отличную теплоизоляцию салона, и поэтому повышение температуры воздуха происходит из-за воздействия солнечного света.Если оставить машину летним днём без укрытия, то температура внутри может подняться до 70 градусов. После того, как вы попадёте в салон, находиться там будет невозможно. Атермальная плёнка позволит снизить уровень нагрева и повысить комфорт во время движения.
Экономия ресурса кондиционера. Из-за снижения уровня нагрева кондиционер можно не включать на полную мощность. Это снизит траты на бензин летом. Всё законно. Плёнка изготавливается с нанесением нанокерамического покрытия. Также используется слой графита, который отвечает за отражение ультрафиолетового излучения. Если уровень пропускания света выше 70%, то продукт соответствует государственным стандартам.Рекомендуем покупать только качественный продукт. Он может стоить дороже, однако грамотного водителя в первую очередь интересует уровень задержки УФ излучения и снижение нагрева запчастей салона. Можно купить дешёвый вариант, однако его характеристики могут быть неудовлетворительными и зачем тогда вообще тратить деньги?
Тонировка и ГОСТ
Как проверить, что тонировка соответствует требованиям закона? Есть простая формула, которая позволяет подсчитать уровень светопропускания. Мы уже отмечали, что способность стекла пропускать свет не должна быть менее 70 процентов. Нужно помнить один существенный факт – процент светопропускания плёнки и стекла складывается. Стекло также отражает часть солнечного света (около 10%).
Чтобы подсчитать реальный уровень пропускания света нужно умножить показатели светопропускания для стекла и атермальной тонировки. Допустим, качественная плёнка пропускает 80% света, а лобовое стекло 90%. Суммарно эти два «препятствия» пропустят 72% света, что соответствует требованиям закона.
Следует сказать и б/у транспортных средств. Стекло на таких машинах может пропускать до 70% света. В этом случае при использовании атермальной плёнки уровень светопропускания может быть ниже 70%, а это значит, что в случае проверки этого показателя сотрудником ГИБДД вы можете получить штраф.
Как создают атермальную плёнку?
В автосервисе вам наклеивают специальную плёнку зеленоватого или синеватого цвета. Но из чего состоит этот продукт? Когда мы говорим о тонировке данного типа, то на материал наносится специальный материал, который повышает уровень отражения УФ излучения и понижает степень задержки солнечного света. Атермальная тонировка может быть создана двумя способами:
Напыление на стёклах. В этом случае создаётся атермальное лобовое стекло. На поверхность наносится тонкий слой металлического напыления. Стекло сохраняет прозрачность и появляется слабый оттенок зелёного цвета. Это не ограничивает обзор водителя и глаза не устают. Тонировка наносится производителем автомобиля. Если такой вид тонировки делается в автосервисе, то качество напыления может быть низким, так как для этого нужно не только современное оборудование, но и особые условия. Атермальная плёнка. А вот эту услугу можно спокойно заказывать в любом автосервисе, так как для наклеивания плёнки не нужны специальные навыки. Вы даже можете сделать это самостоятельно, однако если у вас нет никакого опыта в этой сфере, лучше доверить это профессионалам. Процесс отличается простотой – плёнка просто наклеивается на лобовое, боковое или заднее стекло. Это даёт хороший результат.Можно ли приобрести готовое атермальное стекло? Да, это более чем возможно. В состав такого атермального стекла входит оксид металла, который позволяет снизить теплопроводимость. Оно также отлично защищает от УФ излучения. Обычно такой продукт имеет зеленоватый оттенок. Остекление может иметь различную степень светопропускания, и мы рекомендуем уточнять этот показатель у продавца перед покупкой.
Выбор остаётся за вами – вы можете выполнить тонирование плёнкой, заказать напыление или просто заказать установку атермальных стекол. Вы получите надёжную защиту от солнечного света, и сохраните компоненты приборной панели и салона. Остаётся выбрать, каким образом будет проходить установка. Если вы в состоянии поставить новое стекло самостоятельно и обладаете соответствующим инструментом, то мы можем вас только поздравить. Однако большинство автомобилистов заказывают эту услугу в автосервисе.
Здесь очень важно подобрать проверенного исполнителя, который ответственно относится к выполняемой работе. Мы рекомендуем пользоваться услугами официально зарегистрированных компаний, которые заработали хорошую репутацию среди клиентов. На сайте Uremont.com вы сможете найти хорошие автосервисы, которые смогут выполнить установку автостекла и произвести гарантийный ремонт в случае брака.
Атермальное стекло vs атермальная пленка: 5 преимуществ пленки в сравнении со стеклом
Защитить водителя и салон автомобиля от солнечного излучения поможет и атермальное стекло, и атермальная пленка. Их функциональные свойства схожи:- оберегает глаза водителя и пассажиров от прямых солнечных лучей;
- защищает от проникающего тепла;
- предотвращает нагрев салона внутри авто;
- сохраняет цвет материалов отделки.
Что такое атермальное стекло?
Это тонированные стекла, которые защищают салон от инфракрасного и ультрафиолетового солнечного излучения.
99 % автомобилей не оборудуется атермальным стеклом. Заказать его изготовление можно только под определенные марки машин, как правило, премиального сегмента, и то, далеко не для всех моделей.
Чем отличается атермальное лобовое стекло от обычного?
Главное отличие в его технических параметрах. Атермальное лобовое стекло, в отличие от обычного, обладает защитой от инфракрасного и теплового излучения. Также зачастую атермальное стекло можно визуально отличить и по цвету: если обычное стекло прозрачное, то у атермального светло-зеленоватый или фиолетовый оттенок.
Если вы посмотрите на такое стекло через поляризационные очки, то увидите радужный «бензиновый» эффект.
Что такое атермальная пленка?
Это полимерный многослойный затемняющий материал. Каждый слой блокирует определенное количество излучения, поэтому в продаже представлены атермальные пленки с разной степенью светопропускаемости.
Тонировочная атермальная пленка устанавливается с целью защиты внутренней часть авто от теплового и инфракрасного излучения.
Атермальная пленка и стекло: в чем разница?
Основное различие — эффективность. Стекло поглощает до 80% IRR и UVR. У пленки показатели лучше: 100% поглощения ультрафиолета, 99% блокирования инфракрасного излучения.
Сравнение атермального стекла и пленки
Атермальное стекло имеет достаточно преимуществ, но проигрывает альтернативе. Сравним:
Атермальное стекло | Атермальная пленка |
Цена выше стандартного лобового. | Дешевле атермального стекла. |
Тяжело найти в продаже, далеко не все производители выпускают. | Легко найти в специализированном интернет-магазине. |
Нет гарантии, что найдете на определенную модель автомобиля. | Клеится на стекла любого авто. |
Вывод: Пленка — хорошая и надежная замена атермальному стеклу. Подходит на любую машину и имеет все нужные функции.
Какую атермальную пленку на стекла лучше выбрать?
Основные параметры при выборе: защита от инфракрасного и ультрафиолетового спектра (IRR и UVR соответственно). Собираетесь купить атермальную пленку? Выберите из 3 серий:
- Х5. IRR — 93%, UVR — 99%. Показатели выше среднего. В серии есть множество пленок, которые характеризуются параметром светопропускания в 80%.
- Х7. Премиальный вид пленки с показателями IRR — 100%, UVR — 99%. Способность пропускать свет — 70%.
- JK. IRR — 95%, UVR — 100%. Параметры светопропускания данной серии пленок — 73%.
Если вам нужна помощь в выборе атермальной пленки на боковые стекла, обращайтесь за помощью к консультантам интернет-магазина Vissbon.
Атермальное лобовое стекло
Главная » Статьи » Атермальное лобовое стеклоКоличество автомобилей в мире сегодня превышает все нормы, практически каждый человек имеет собственное транспортное средство и использует его для каких либо своих целей. Автомобиль как и любой механизм требует от водителя постоянного ухода, многие водители упорно игнорируют данный пункт и очень зря. В результате они сильно теряют в качестве езды и снижают комфорт от данной процедуры именно из-за ряда повреждений определенных деталей машины. На одной такой детали стоит остановится более детально, она имеет название лобовое стекло и сегодня водители практически ничего о ней не знают.
Что такое лобовое стекло?
Данный элемент автомобиля расположен на передней его части и используется для обеспечения обзора водителю. Так же лобовое стекло имеет достаточно большую площадь, которая позволяет защищать салон автомобиля от негативного влияния факторов внешней среды. Производится лобовое стекло методом триплекс и при установке имеет свои угол наклона, который подбирается конструкторами определенной марки автомобиля, что бы обеспечить минимальное сопротивление воздуху при движении машины относительно основных законов аэродинамики.
Что такое атермальное стекло?
Атермальное стекло это подобие атермальной пленки, которая часто используется при тонировке лобового стекла. Атермальное стекло уже по сути имеет такое покрытие и сегодня пользуется хорошей популярностью среди водителей всего мира, включая отечественных автолюбителей. Данное стекло отлично защищает внутреннюю часть автомобиля от негативного влияния солнечных лучей, давая следующие преимущества:
- Салон автомобиля не выгорает от постоянного воздействия лучей ультрафиолета и как следствие не теряет свой внешний вид.
- Внутренняя часть автомобиля не нагревается до критических температур, значение которых иногда доходит вплоть до 70 градусов. Это может быть опасным для здоровья водителя и пассажиров, не говоря уже о какой либо комфортной езде.
Влияние на стоимость
Поскольку атермальное стекло отличается по производству, ведь имеет встроенное атермальное покрытие, то и стоимость соответственно данного стекла больше. Но это не критично, ведь наличие на стекле специального датчика дождя или же пункт оригинальности намного сильнее влияют на стоимость стекла, делая ее выше. Атермальное же стекло водитель может купить не сильно дороже обычного, зато главным будет возможность не тонировать лобовое стекло. Не некоторых атермальных лобовых стеклах так же установлена тонировочная полоса.
Подделки на рынке
Поскольку атермальное лобовое стекло набрало достаточную популярность, то соответственно на рынке появилось огромное количество мошенников, которые выпускают подделки. Зачастую мошенники пытаются вам продать обычное стекло, но с нанесением на его поверхность специального тонировочного покрытия. Это стекло не имеет ничего общего с атермальным, ведь атермальное стекло получает свои характеристики и особенности именно при производстве.
Как отличить подделку?
Для начала стоит посоветовать покупать стекла только в надежных местах, это максимально обезопасит вас от встречи с мошенниками. Если же есть возможность осмотреть стекло лично, то стоит обратить особое внимание на наличие специальной маркировки на стекле. Сегодня существует 2 производителя, которые выпускают атермальные лобовые стекла:
Продукция любой из этих фирм имеет на своей поверхности определенного рода маркировку, которую ставит сам производитель и именно отсутствие такой наклейки зачастую и выдает поддельное стекло.
Атермальные стекла с особыми дисперсионными свойствами
Щавелев О.С., Полухин В.Н., Молев В.И. Методы изготовления атермальных стекол с особыми дисперсионными свойствами // Физика горения и взрыва. Хим. Стекла, 6 , № 2, 233–240 (1980).
CAS Google ученый
Д. Стачел и В. Гётц, «Zusammenhänge zwischen athermalen Eigenschaften und Glaszusammensetzung», Silikattechn. , 35 , No.6. С. 172–175 (1984).
CAS Google ученый
Т. Изумитани и Х. Торатани, «Температурный коэффициент электронной поляризуемости в оптических стеклах», J. Non-Cryst. Твердые тела, 40 , № 3, 611–619 (1980).
Артикул CAS Google ученый
Л. Прод’Хомм, «Новый подход к термическому изменению показателя преломления стекол», Phys.Chem. Стекло, 1 , № 4, 119–122 (1960).
Google ученый
Бацанов С.С. Электроотрицательность и химическая связь. Сибирск. Отдел. Акад. Новосибирск, АН СССР, 1962.
Google ученый
Кожеваткин С.Г. Атермальные фосфатные стекла с особым дисперсионным поведением: Дисс. Канд. Техн. Наук, Москва (1991).
А. М. Ефимов, “О природе корреляции между относительной парциальной дисперсией и коэффициентом дисперсии оптических сред. Очки нормальные и специальные », Опт. Спектроск., 67 , № 5, 1127–1133 (1989).
Google ученый
ATHERMAL Welding Black Glass, 10 рупий / штука Synergic Solutions
О компании
Год основания 2010
Юридический статус фирмы Партнерство Фирма
Характер бизнеса Дистрибьютор / Партнер по сбыту
Количество сотрудников До 10 человек
Годовой оборот R. 1-2 крор
Участник IndiaMART с марта 2011 г.
GST33ABVFS0397Q1Z5
Код импорта и экспорта (IEC) 32140 *****
Мы «Synergic Solutions », основанная в 2010 году в Коимбаторе, Тамил Наду. Наша организация была авторизованным дистрибьютором известных организаций, таких как «MESSER CUTTING SYSTEMS» STANVAC CHEMICALS INDIA LTD и SUPERON SCHWEISSTECHNIK INDIA LTD »для продвижения продукции мирового класса, включая сварочных принадлежностей, машин для плазменной резки, продуктов газовой резки с кислородным топливом, Промышленные смазочные материалы, специальности ТОиР, сварочные электроды для технического обслуживания и ремонта и покрытия для промышленной защиты.Мы верим в установление долгосрочных и взаимовыгодных отношений с нашими клиентами, предоставляя им непревзойденное качество продукции для сварки и резки, кислородно-топливной продукции, специальных смазочных материалов для ТОиР и промышленных смазочных материалов. Благодаря нашей хорошо налаженной дистрибьюторской сети мы смогли доставлять нашу продукцию по всей Индии и за границу.
Мы также экспортируем по всему миру различный ассортимент продукции, подходящей для машиностроительной отрасли, в зависимости от потребностей и требований клиентов.Наши своевременные поставки повышают уровень удовлетворенности наших клиентов при размещении повторных заказов.
Видео компании
Купить атермальное сварочное стекло черного цвета (упаковка из 2 шт.) В Интернете по лучшим ценам в Индии
Предпочтительный партнер Индии по закупкам промышленных товаров и Поставки ТОиР.
Shakedeal — надежный партнер по закупкам для многих организации в сфере банковского дела, финансов, информационных технологий, производства и консалтинга.В онлайн-торговая площадка предлагает широкий выбор подлинных и высококачественных промышленные и ТОиР поставки. Выбирайте из обширной коллекции электроинструментов, оборудование для обеспечения безопасности, предметы первой необходимости для офиса и упаковочные материалы по доступной цене. цены онлайн.
Выберите из обширного ассортимента электроинструментов в Интернете.
Мы предлагаем электроинструменты всех ведущих производителей (Aegon, Bosch, Black & Decker, Makita, Dewalt, Foster и др.) На свою платформу. Вы можете выбирать из обширная коллекция электроинструментов, как аккумуляторных, так и проводных.От дрели, шлифовальные машины, пилы и шлифовальные машины к резчикам по мрамору, в интернет-магазине есть все инструменты, необходимые для ваших проектов. Приобретите угловые шлифовальные машины Bosch, перфораторы, Колочные пилы и фрезы для мрамора Aegon по бесконкурентным ценам.
Популярные электроинструменты, такие как мойки высокого давления, фрезерные станки, строгальные станки, плитки резаки и отвертки были лидерами продаж на онлайн-рынках. Популярный электроинструменты, такие как мойки высокого давления, фрезерные станки, строгальные станки, плиткорезы и отвертки были лидерами продаж. Эйгон, Эндико, Йош, Тапария, Юрий и Ruhi занимает центральное место в области электроинструментов.
Высококачественная промышленная защитная обувь по привлекательным ценам.
Магазин промышленной защитной обуви по выгодным ценам в Интернете. На своей платформе онлайн-магазины продают все виды защитной обуви. Вы можете получить обувь из ПВХ, защитную обувь со стальным носком, резиновые сапоги, обувь из полиуретана на подошве, плюсневую кость обувь, нескользящая и электрическая защитная обувь по бесконкурентным ценам в Интернете.Получать Allen Cooper, защитная обувь со стальным носком Tiger Lorex, JCB, Bata, Karam, Stanley, Acme Шторм и защитная обувь Hillson по конкурентоспособным ценам при покупке в Интернете. выбирать из обширного ассортимента защитной обуви для ваших сотрудников в Интернете.
Делайте покупки в Интернете для самых разных Контрольно-измерительное оборудование.
Наша торговая площадка предлагает высококачественный воздух -измерительные приборы качества скорости, автомобильные испытания, испытания материалов, электронные и стендовые испытания, испытания электроэнергии, давление-вакуум измерительные приборы, приборы для измерения температуры-влажности и компоновка измерительные инструменты на своей торговой онлайн-платформе по доступным ценам. Купить Мультиметры Fluke, инфракрасные термометры, светодиодные светомеры Fluke, Mitutoyo штангенциркуль с нониусом, цифровые штангенциркули Mitutoyo, тестеры изоляции Waco, Waco цифровые токоизмерительные клещи и цифровые термометры Mextech по лучшим ценам в Интернете.
Купить сельское хозяйство, сад и Инструменты для ландшафтного дизайна онлайн по лучшим ценам.
С широким ассортиментом воздуходувок, щеток и соломы резаки, газонокосилки и т. д. и другое оборудование, мы предлагаем все подлинное качество Сельскохозяйственный, садовый и ландшафтный инвентарь вам по лучшим ценам.В сети платформы предлагают все ведущие бренды, такие как Makita, Bosch, Dongcheng, Ferm, Lu Shyong, Josch, Kisankraft, Keyul и т. Д., Чтобы помочь вам выбрать лучшие инструменты для твои нужды. Приобретите ручные лопаты, кусторезы, опрыскиватели и множество щеток. аксессуары для резаков по конкурентоспособным ценам в Интернете.
Предлагает широкий спектр индивидуальных решений для корпоративных подарков онлайн.
Мы делаем корпоративные подарки легкими для вас. Получить эстетично разработанные и индивидуальные решения для подарков в Интернете.Делайте покупки в Интернете для персонализированных корпоративные подарки, подарки премиум-класса и рекламные товары. Предлагаем привлекательные скидки на оптовые заказы и годовые контракты. Воспользуйтесь потрясающими скидками на дарить решения покупками в Интернете.
Приобретайте светодиодные фонари и лампы по привлекательным ценам в Интернете.
Выберите из широкого спектра вариантов светодиодного освещения от такие бренды, как Bajaj, Wipro, Syska, Havells и многие другие на нашем сайте рынок. Сэкономьте на счетах за электроэнергию, переключившись на светодиодное освещение.Получать лучшее освещение для ваших домов, офисов и рабочих зон, сделав выбор в пользу качества Светодиодные фонари и лампы. Приобретайте светодиодные лампы по самым выгодным ценам в Интернете.
Покупайте самые качественные офисные принадлежности в Интернете.
Предлагаем качественные канцелярские товары по оптовым ценам. Добраться до выберите из широкого ассортимента канцелярских товаров от Linc, Canon, Pearl, Casio, HP, Reynolds Epson, Kores, JK, Natraj, Luxor по привлекательным ценам только на Шакедил. Файлы, папки, держатели документов, блокноты, ручки и множество других предметы первой необходимости доступны по бесконкурентным ценам.Выберите предпочтительный для Индии партнер по закупкам ваших канцелярских товаров.
Купите в Интернете оригинальные подшипники по экономичным ценам
Предлагаем вам широкий ассортимент подшипников по оптимальным ценам. Выбирайте из превосходного ассортимента радиально-упорных подшипников, шариковых подшипников, игольчатые роликоподшипники, сферические роликоподшипники, упорные роликовые подшипники, конические роликоподшипники и роликоподшипники drac онлайн. Получите интересные предложения на подшипники таких марок, как NBC, SKF и FAG.Самыми продаваемыми подшипниками являются шарики NBC. подшипник 6203zzm, FAG 509043 и SKF 30205 J2 / Q.
Выбирайте из обширной коллекции недорогих клеи, герметики и ленты онлайн.
Наша онлайн-торговая площадка предлагает клеи, герметики и ленты по экономичным ценам. Вы можете выбрать из огромной коллекции февикола, аралдита. и клеи Camlin по доступным ценам на нашей торговой площадке. Покупка клея, связующие вещества, стандартные эпоксидные клеи, клеи на основе синтетических смол, стены штукатурки и шпатлевки по выгодным ценам.Некоторые самые продаваемые клеи: Camlin -150 мл Kokuyo, Pidilite -0,5 г Fevikwik Instant Adhesive, Pidilite — 100 г февикола, пидилита -22 г Fevi Bond, Camlin -25 г клея Krafty с Трубка аппликатора, Kores-Glue Stick, Faber Castell — 15 грамм Коробка из 20 штук Клей-карандаш.
Эксклюзивная коллекция уборочного оборудования, доступная в Интернете.
Лучшая коллекция промышленного клинингового оборудования на захватывающей цены на нашей платформе растут. На онлайн-платформах размещены все ведущие такие бренды уборочного оборудования, как 3M, Karcher, Bosch и Hitachi на своем Платформа. Выбирайте из ассортимента аппаратов для мытья под давлением, швабр, пылесосов и промышленный скруббер. Некоторые самые продаваемые чистящие средства — Cumi CCW 90 — 90. Барная машина для мойки автомобилей, Karcher WD 1 — Пылесос для влажной и сухой уборки 15 л, Schevaran — 5 Дезинфицирующее средство для мытья полов без зародышей, Fem — Ручная стирка 5 литров, Venus Безопасность — Универсальная Vsorb Pad серого цвета и т. Д.
Делайте покупки в Интернете для всех ваших погрузочно-разгрузочных работ и упаковки потребности.
Положите все свои заботы о транспортировке материалов и упаковке.Купить качественные упаковочные материалы по сниженным ценам на нашей платформе. Выберите из широкий ассортимент подъемников, тележек, тележек, штабелеукладчиков, стеллажей, ящиков, лестницы, гофрированная бумага, стрейч-пленка, стропы, храповые ремни, термоколь, пузырчатая пленка и гофроящики по экономичным ценам. Некоторые популярные модели ящиков: Aristoplast 5436295 CL — 48 литров General Crate и Supreme. SCL 302010 — Полностью закрытый ящик объемом 4 литра 300×200.
Покупайте оригинальные ручные инструменты в Интернете
Заходите на нашу онлайн-торговую площадку для покупки качественных ручных инструментов. и аксессуары по привлекательным ценам.Гаечные ключи, гаечные ключи, отвертки и молотки доступны в Интернете. Выберите в Интернете свои любимые бренды ручного инструмента. Немного популярными моделями ручных инструментов являются Taparia toolbox ptb 16, Taparia 1005 universal. набор инструментов, набор инструментов Taparia 1021-home, Kisankraft kk atp 9210 — 2,4 метра телескопический секатор для деревьев, Taparia t-8 — отвертка torx 75 мм, Stanley 70-964e — Набор комбинированных ключей на 12 шт. И насос для консистентной смазки ведра Venus.
Магазин всех видов сварочного инструмента по доступным ценам. онлайн.
Выбирайте из широкого ассортимента сварочных аппаратов, сварочной проволоки, сварочные электроды, флюсы, паяльные инструменты, сварочные завесы, экраны, газовые аксессуары для резки и сварки на нашей платформе. Купить качественную дуговую сварку аппараты, аппараты для сварки MIG, аппараты для точечной сварки и аппараты для сварки TIG по сниженным ценам онлайн. Интернет-магазины содержат все виды углеродистой стали. электроды, чугунные электроды, режущие электроды из легированных сплавов, низколегированные электроды, электроды из низкоуглеродистой стали и электроды из нержавеющей стали по оптовым ценам.Приобретайте сварочные электроды ведущих производителей, таких как Sun weld, Superon и Адор.
Купить двигатель и силовое оборудование в лучшем случае онлайн Цены
Вы можете выбирать из широкого диапазона двигателей и мощности. варианты трансмиссии по разумным ценам на нашем онлайн-рынке. Существование Ведущий интернет-рынок Индии B2B, на котором можно найти все типы ремней, звездочек, цепи и моторы по сниженным ценам. Однофазные и трехфазные двигатели от Sona доступны по оптовым ценам.Приобретите стандартные роликовые цепи от Renold по адресу лучшие цены. Renold DR 1278 — 12,70×7,85 мм, дуплексная цепь длиной 1 метр и
Renold TR 1911 — 19,05×11,70 мм, триплексная цепь длиной 1 метр популярные модели роликовых цепей. Купить целый ассортимент классических ремней, ремней FHP, Ремни с подшивкой, шестиугольные ремни, узкие ремни и ремни для ткацких станков по лучшим ценам на онлайн-площадках.
Получите отличные предложения по оптовым покупкам и контрактам с годовой процентной ставкой (ARC)
Получите гарантированные поставки промышленных товаров и товаров ТОиР по конкурентоспособным ценам. цены, выбирая наши предложения оптовых закупок и годовых контрактов.Положите вашу Управление запасами заботится о том, чтобы дать отдых и доверие ведущей B2B-площадке Индии для предоставление вам материалов самого высокого качества по доступным ценам. Бизнесы могут оптимизировать свою рентабельность, закупая расходные материалы по доступным ценам с помощь в контрактах на годовую ставку. ARC могут помочь предприятиям снизить цену проблемы с колебаниями.
Самый популярный в Индии партнер по закупкам товаров для бизнеса и ТОиР через Интернет.
Shakedeal верит в предоставление лучших услуг и покупок опыт для своих клиентов. Получите эксклюзивные цены на все ведущие бренды онлайн. Воспользуйтесь лучшими услугами нашей дилерской и дистрибьюторской сети в Пан Индии. города, включая Национальный столичный регион Дели, Ахмадабад, Бангалор, Калькутту, Ченнаи, Мумбаи и Хайдарабад.
Атермальная флюидизация стекол | Nature Communications
Фотоманипуляция аминоазобензола SAM
Изучаемая азосистема (dMR) является производным красителя метилового красного 19 , показанного на рис.1а, синтезированы и ковалентно прикреплены к стеклянным подложкам с образованием плотных фотоактивных SAM, как показано на рис. 1b. Освещение азобензолов поляризованным светом создает анизотропную ориентацию молекул, поскольку молекулы стремятся выстраиваться в направлении, в котором фото-рандомизация их ориентации минимизирована, то есть с моментами фотовозбуждения транс-цис (приблизительно по длинной оси молекулы) по нормали к падающей поляризации 20,10,11 . Мы изучили фотоориентацию и релаксацию dMR SAM путем временного воздействия на них поляризованного света с длиной волны 514 нм и измерения динамики результирующего двулучепреломления в плоскости на длине волны 632 нм с использованием высокочувствительного поляриметра 21 . Два актиничных луча 514 нм, один линейно поляризованный насос (LP, плоская поляризация p ) и один циркулярно поляризованный (CP) насос освещают образец при падении, близком к нормальному, и могут включаться и выключаться с помощью 40 Время отклика -мкс при использовании электрооптических затворов на сегнетоэлектрических жидких кристаллах.
Рис. 1. Самособирающийся связанный молекулярный монослой dMR.( a ) молекулярная структура дМР, синтезированная и связанная со стеклом, демонстрирующая поверхность VDW азохромофорного ядра, молекулярный дипольный момент d (розовый), длинную ось азо-ядра и переход хромофора момент т (синий).Угол между осью сердечника и плоскостью поверхности составляет ψ ≈25 °. ( b ) Эскиз структуры в плоскости с ориентацией в плоскости, возникающей в результате падающего света, поляризованного вдоль p (зеленая стрелка), показывающий VDW-проекции ядер dMR на плоскость поверхности (желто-зеленый), крепления страховок к поверхности (голубой), ориентация диполя d и его азимутальная ориентация φ . Этот рисунок хорошо отображает экспериментальную среднюю поверхностную плотность.( c – e ) Все фотоиндуцированные изменения в dMR SAM происходят из-за отдельных событий, в которых поглощение одного фотона указанной поляризации возбуждает молекулу (розовая), вызывая изомеризацию и переориентацию. ( d ) Из-за привязок соседние молекулы должны проходить друг над другом или протискиваться мимо соседних привязок, что приводит к локально ориентированному стекловидному состоянию, стабилизированному большим барьером U th ~ k B ( 7500 К). Изолированное поглощение фотонов производит такие события с квантовой эффективностью QELF ~ 1 (одно событие / поглощенный фотон / молекула), потому что фотоиндуцированная атака барьера происходит при T = 800 K, что превышает стеклование для такой локальной переориентации.
Ядро метилового красного дМР прикреплено к поверхности стекла короткой алкильной единицей из четырех одинарных связей C – C, что дает средний угол между длинной осью ядра и плоскостью поверхности ψ ~ 25 ° , показанный на рис. 1a 22,19 , и допускает переориентацию и трансляцию ядра на ~ 1 нм. На рисунке 1b схематически показана геометрия локально ориентированного состояния с молекулами, представленными стержнями, имеющими азимутальную ориентацию φ и отношением длины к ширине, соответствующим отпечатку ван-дер-ваальсова (VDW) формы ядра на рис.1а, с привязными ремнями, случайно прикрепленными к поверхности, в местах, обозначенных синими кружками. Измерения оптического поглощения (дополнительное примечание 1) дают площадь поверхности на молекулу S = 0,55 нм 2 . Сравнение с площадью отпечатка VDW S м = 0,45 нм 2 на рис. 1b показывает, что монослой плотно упакован, с моментами перехода n-π * π-π *, представленными t , практически параллельно плоскости интерфейса (рис.1а).
Ориентация в плоскости была индуцирована в монослоях освещением LP, так что поляризация зонда и средняя длинная ось молекулы в плоскости, директор n ≡ t ( φ ), были равны + 45 ° и -45 ° от поляризации LP соответственно. В этой геометрии индуцированное двулучепреломление в плоскости Δ n может быть получено из передачи T через анализатор скрещенного зонда с использованием Δ n ( λ / πd ) T 1/2 , где d = 0.5 нм — это средняя толщина азосердца, принимаемая за толщину пленки SAM (Дополнительные методы, дополнительные рисунки S1 и S2). Сверхнизкая утечка поляриметра при погасании, T мин = 2,4 × 10 −10 , позволяет измерять двулучепреломление SAM в плоскости всего Δ n ~ 0,001.
Во время освещения dMR SAM, изначально рандомизированного по ориентации из-за тепловых флуктуаций, пучком накачки LP, начиная с t = 0, двулучепреломление в плоскости Δ n ( t ) Δ n ( t ) = n || — n ┴ , где n || (┴) — индекс поляризации, параллельной (нормальной) n , увеличивается с увеличением падающей оптической плотности энергии, F (энергия / площадь) от некоторого небольшого начального фонового значения Δ n <~ 0. 001, до Δ n ~ 0,14, как показано на рис. 2а и дополнительном рис. S4. Это двойное лучепреломление может быть связано с упорядочением в плоскости изомеров транс , поскольку они имеют большую анизотропию оптической поляризуемости, чем цис 23 , и, как правило, большую анизотропию в их ориентационном распределении в условиях ориентационного горения дырок (Дополнительные примечания 2 и 3) 24,25,26 . Двулучепреломление Δ n , которое пропорционально параметру двумерного (2D) ориентационного порядка S =
( a ) Δ n ( t ) индуцированный светом LP, включенным при t = 0. Вставка: Δ n ( t ) зависит только от средней поглощенной энергии / площади F A , а при F A = 1 фотон, поглощенный на молекулу (1 Па / моль), a достигается значительная часть насыщенного порядка.Сплошная желтая линия — Δ n ( t ) от Q G ( t ) (уравнение 2). Почти линейный рост Δ n ( F ) при низком уровне F — это инкрементное накопление в Δ n из потока событий однофотонного локального выравнивания, изолированных и случайных в пространстве-времени. ( b ) Измеренный распад Δ n ( t) / Δ n ( t = 0) (сплошные символы), первоначально записанный светом LP с изменяющейся F и удаленный начиная с t = 0 либо термически, либо CP-светом с интенсивностью I CP = 1 Вт см −2 . Δ n ( т ) ≈ ( т / τ т ) — η при большом т и хорошо подходят для Q G ( т ) (сплошные кривые), что дает время масштабирования τ t (ромбики, логарифмический график «угол») и η , показатель степени затухания. Для сравнения показан экспоненциальный спад (пурпурная пунктирная кривая). Степенной закон показывает экспоненциальное распределение высот коллективных барьеров, с η = T / T м , которое уменьшается и, таким образом, T м , которое увеличивается при написании F .Для каждого F , η больше в случае CP, что дает большую эффективную температуру для стирания CP, T CP ~ 750 K. Для термического стирания время испытания для пересечения коллективного барьера составляет τ t ~ 2 с ( τ t обозначается как τ th в этом режиме), в то время как для стирания CP при высокой интенсивности CP τ ph ( I CP ) при F A = 1 Па / моль (вертикальные оранжевые линии) ( τ t обозначается как τ ph ( I CP ) в этом режиме).( c ) Время испытаний τ t = τ th и соответствующие барьеры T th для местного пересечения барьера (коллективные попытки барьера) во время термической релаксации. τ t существенно не изменяются при записи F A даже при низком значении F A , где события записи изолированы, что указывает на то, что они определяются локальными ограничениями, присутствующими в неписаной SAM. ( d ) На большом F A , δ Δ n ( F A ) (черная линия) — рост Δ n ( F A ) выше прогноз модели релаксации (желтая кривая). δT м ( F A ) — рост на T м выше комнатной температуры (фиолетовая линия). Связанный логарифмический рост δ, Δ n и δT м указывает на «истощение» или ориентационное «деформационное упрочнение» 52 .
Термическое и световое стирание: медленная динамика
На рисунках 2b и 3a показано Δ n ( t ) анизотропных dMR-SAM, первоначально записанных светом LP из F и соответствующего F A значения отображаются и стираются либо тепловыми колебаниями при T = 300 K, либо освещением именно CP-светом. Здесь t = 0 — время, в которое пучок LP выключен, а пучок CP включен в случае фото стирание.Эти данные о распаде показывают сверхмедленную, стеклообразную релаксацию без существенного уменьшения нормализованного ориентационного порядка Q ( t ) = Δ n ( t ) / Δ n (0) для t < τ t , «угол» на логарифмическом графике, полученный из масштабирования времени последующего затухания по степенному закону и обозначенный ромбиками на рис. 2b и 3a. Для теплового случая τ t = τ th ~ 2 с и степенной закон затухает при большом времени Δ n ( t ) / Δ n (0) ~ ( t / τ th ) — η , измеряется до нескольких часов.Угол тепловой 2D XY ориентационной релаксации сравнительно анизотропных, но не связанных молекул в свободно подвешенных смектических жидкокристаллических пленках C составляет τ th ~ 10 −11 с (дополнительное примечание 4) 28,29,30,31, 32,33 , предполагая, наряду с рис. 1c – e, что два основных фактора вызывают такую медленную ориентационную динамику: (i) Высокая плотность упаковки в плоскости, почти такая же, как у чистого твердого красителя, способствует тенденции к азо ядра, которые связываются посредством дипольного и VDW взаимодействия их почти плоских хромофорных ядер, что приводит к сильным структурным корреляциям в плоскости 34 , которые значительно усиливают энергетические барьеры, препятствующие движению молекул друг мимо друга. (ii) Локальная переориентация ограничивается тросами до дискретных прыжков, как показано на рис. 1c – e, где молекулы должны проходить друг над другом или друг за друга, и для этого они должны либо растягивать, либо сгибать тросы.
Рис. 3. Эволюция от теплового к оптическому стиранию двулучепреломления в плоскости.( a ) Изменение релаксации двулучепреломления SAM с увеличением интенсивности стирания. Начальная плотность энергии записи LP зафиксирована на уровне F = 25 мДж см −2 . Крайние правые данные (черные точки, I CP = 0) показывают термическое стирание.Сплошная черная линия — это уровень утечки поляриметра, вычтенный в ( b ). ( b ) Подбор выбранных данных релаксации к модели (уравнение 2; пурпурные кривые). Для термического распада (температура атаки барьера T = 300 K) измеренное значение η = 0,51 показывает, что наведенная средняя высота барьера составляет T м = 590 K. При достаточно высоком I CP фото -индуцированные попытки являются доминирующими и генерируют локальные T ~ 800 K, независимо от I CP .Подходящие времена масштабирования (атака барьера) τ t = τ th и τ t = τ ph ( I CP ) показаны ромбиками. Спады являются бимодальными в режиме «кроссовера», где термическое и фотоиндуцированное время испытаний сравнимо со сплошными голубыми линиями, рассчитанными на основе модели релаксации, обобщенной для бимодального поведения (дополнительное уравнение S17). Вертикальные оранжевые линии обозначают F A = 1 Па / моль.( c ) Средняя обратная скорость τ t для успешного прохождения локальных молекулярных ориентационных барьеров и, следовательно, для испытаний коллективных барьеров ориентации в зависимости от интенсивности падающего света CP I CP . При низком уровне I CP , τ t имеет свою тепловую ценность ( τ t = τ th ~ 2 с), требуя ~ 10 11 молекулярных флуктуаций комнатной температуры для преодоления T th ~ 7500 K локальный барьер, а при высоком I CP мы находим τ t ~ τ ph ( I CP ), что почти равно to (1 Па / моль) / I ACP , где I ACP — интенсивность поглощенного CP (дополнительное примечание 1, дополнительное уравнение S2).Это указывает на то, что в среднем каждый поглощенный фотон генерирует тест на пересечение локального барьера, свидетельствующий о стекловании (псевдоожижение), которое стирает локальный барьер. Этот фотоиндуцированный обход процесса тепловых испытаний ответственен за ориентационную флюидизацию за счет освещения CP, что прямо проявляется здесь как ориентационная вязкость, которая уменьшается обратно пропорционально увеличению интенсивности ( γ 1/ I CP ).
Эта медленная тепловая релаксация указывает на активированный, ограниченный барьером процесс распада, который обычно описывается законом Аррениуса, τ () = τ r exp (/ k B T ), где 1/ τ r — скорость попыток преодоления барьера на шкале времени молекулярной ориентационной флуктуации, не более τ r ~ 20 пс 18 — высота барьера, а τ () — характерное время экспоненциальной релаксации, как показано на рис.4а. Однако явно неэкспоненциальный характер релаксации, явно показанный на рис. 2b, предполагает, что τ () следует обобщить, чтобы включить распределение энергетических барьеров, f (), понятие, согласующееся с неоднородной природой монослой, отмеченный в пунктах (i) и (ii) выше. Минимальный распад для τ < τ t показывает, что f () имеет «барьерную щель», то есть небольшую плотность барьеров ниже минимальной энергии U t , которая может быть в тепловом случае оценивается как U th / k B ≡ T th ~ ln ( τ th / τ r ) T ~ ln (10 11 ) T ~ 25 * 300 K ~ 7500 K, большое значение, вероятно, из-за плотности монослоя и ограничений троса. Поэтому полезно записать = U t + U , определяя плотность f ( U ), нормализованную в U , и соответствующее τ ( U ) = τ r расширенный ( U t + U ) / k B T = τ t exp ( U / k B ) с τ t = τ r exp ( U t / k B T ).Обратное «испытательное» время 1/ τ t (~ 0,5 Гц для термического распада), полученное от пробного барьера U t , затем служит в качестве скорости попыток пересечь барьеры, распределенные с f ( U ). Запись Q ( t ) = ∫ g ( t / τ ) H ( τ ) dτ , где распределение времен релаксации τ ( U ) = τ t exp ( U / k B T ) равно H ( τ ( U )) = f ( U ) / | d τ ( U ) / d U | , дает релаксацию в форме Q ( t ) = G ( t / τ t ), показывая, что это время испытания барьера τ t , которое становится масштабное время релаксации (дополнительное примечание 5). Для общности мы предположили, что динамика релаксации параметра порядка для каждой моды или события τ растянута экспоненциально, Q τ ( t ) = exp- ( t / τ ) α . Однако обнаружено, что динамический показатель моды α существенно влияет только на динамику записи фотографий.
Рисунок 4: Краткое описание релаксационных процессов, относящихся к dMR SAM.( a ) Дельта-функция распределения высот барьеров, f ( U ) = δ ( U — U t ), приводит к термически активируемой релаксации Аррениуса, для которой функция убывания экспоненциальна во времени Q ( t ) = exp (- t / τ t ), с временем масштабирования τ t , определяемым зазором барьера, U t , а скорость молекулярных флуктуаций τ r −1 .( b ) Распад для ориентационного стекла локальных доменов, стабилизированных минимальным локальным энергетическим барьером U t , с коллективными междоменными взаимодействиями, дающими дополнительную энергию U , распределенную по экспоненциальному закону при больших U , f ( U ) = exp (- U / U м ), как и для приведенного здесь распределения Шера / Шлезингера 43 . Результатом является функция затухания с ‘углом’ при τ t , определяемая U t , и степенным асимптотическим затуханием Q ( t ) = ( t / τ t ) — η определяется показателем степени η = k B T / U m .( c ) В терморелаксирующей dMR SAM, U th и, следовательно, τ th определяются локально, в ориентированных стекловидных кластерах из нескольких молекул, первоначально созданных в результате однофотонно-индуцированной изомеризации. U m увеличивается с усилением коллективного взаимодействия таких ориентированных кластеров, так что η = k B (300 K) / U m уменьшается с увеличением плотности записи.( d ) При CP-фоторазрушении dMR SAM эффективная температура атаки барьера, также установленная в событиях однофотонно-индуцированной изомеризации, составляет T loc = 800 K, расплавляя локальное коллективное стеклообразное состояние и вызывая атаки на барьерах из-за взаимодействия с соседними молекулами с единичной квантовой эффективностью. Более быстрое затухание по степенному закону, которое приводит к η = k B (800 K) / U m , свидетельствует о том, что все барьеры в f ( U ) атакуются при T eff = 800 K, и, таким образом, даже высокие энергетические барьеры в f ( U ) достаточно локализованы, обязательно в пространственно-временном объеме 1 нм / 10 пс для события фотоориентации.
Следуя идее распределения высот барьеров, мы обнаружили, что f ( U ) предсказано на основе моделей статистики экстремальных значений, описывающих плотность энергий самых глубоких минимумов в суровых энергетических ландшафтах 35,36, 37,38,39,40,41 , в частности, из университетского класса Гамбеля 35 , дают прекрасное описание нашего отдыха. В частности, как впервые отметили Пфистер и Шер, 42 и Шлезингер 43 , наблюдаемая кинетика степенного закона при больших t возникает естественным образом, если высокоэнергетический хвост f ( U ) является экспоненциальной в пределе большого значения U , что также прогнозируется на основе статистики экстремальных значений и моделей Гамбеля 44,35,39 . Экспоненциальное распределение хвоста и его релаксационная динамика показаны на рис. 4б. Нормализованное распределение Гумбеля (дополнительное примечание 5)
, где β — параметр, а Γ (1/ β ) — гамма-функция, отсекаемая как двойная экспонента для U <0, чтобы создать барьерную щель, и является экспоненциальной при большом U , f G ( U ) ~ exp- ( U / U м ), с константой затухания U м средняя высота барьера экспоненты хвост.Для β = α / η , f G ( U ) дает эффективное распределение времен релаксации H G ( τ ) = [ α / Γ ( η / α ) τ т ] [эксп- ( τ т / τ ) α ] [ τ / τ 9017 т ( η +1) , который затем можно проинтегрировать, как написано выше, чтобы получить релаксацию параметра порядка:
Таким образом, Gumbel H G ( τ ) дает функцию релаксации, которая проста, но обеспечивает высококачественные соответствия наших данных релаксации Δ n ( t ) (пурпурные кривые на рис. 2b и 3b), где мы берем Q G ( t ) = Δ n ( t ) / Δ n (0). Q G ( t ) масштабируется на τ t и при длительном времени, где Q G ( t ) <1, мы имеем Δ n ( t ) Q G ( т ) ( т / τ т ) — η = ( т / τ т ) — T B / U m = ( t / τ t ) — T / Tm , степенной закон спада во времени зависит только от: (i) параметра η , который представляет собой показатель степени затухания η = T / T м , определяемый соотношением энергии тепловой активации k B T к U m = k B T m , характеристическая энергия масштабирования экспоненциального хвоста записанного barr распределение по высоте; и (ii) частота попыток пересечения барьера 1/ τ t , которая устанавливает временной масштаб. Затухание в течение длительного времени является степенным, потому что в ходе релаксации, как только барьеры ниже определенной энергии U ( t ) были пересечены, средняя высота оставшихся барьеров всегда была U ( t ) + U м . В Q G ( t ) время «угла» на графиках log – log в значительной степени определяет τ t , при этом значения соответствия показаны ромбиками на рис. 2, 3, 4 а по данным рис.3c. Большой наклон — т в значительной степени определяет η . Обнаружено, что динамический показатель моды составляет α ~ 0,8, управляя в первую очередь начальной записью, описываемой как Δ n ( t ) 1– Q G ( t ) (рис. 2a и дополнительный Рис. S5). Наши основные результаты вытекают из аппроксимации распада следующим образом.
Стекловидная релаксация SAM: два различных процесса преодоления барьеров
Мы идентифицируем локальный процесс, который определяет τ t , и коллективный процесс, который увеличивает η с увеличением плотности записи. Мы начнем с обсуждения τ t , отметив, что запись и стирание фотографий происходит посредством серии дискретных случайных событий поглощения фотонов, которые при используемых здесь интенсивностях (<1 кВт · см −2 ) широко распространены. разделены в пространстве-времени в результате их короткой продолжительности (~ 10 пс) и небольшого пространственного измерения (~ 1 нм, дополнительное примечание 5), как подробно описано в обсуждении событий изомеризации ниже. Это можно увидеть из рис. 3c, где доля времени, затрачиваемого освещенной молекулой на фото-события, показана в зависимости от интенсивности, в данном случае для стирания CP.Таким образом, при записи изначально случайного состояния при низкой плотности энергии, F A <1 Па / моль, двулучепреломление, которое растет почти линейно со временем, или F A (рис. 2a), является средняя мера локальной ориентации изолированных групп из нескольких молекул, каждое событие ориентации вызвано одним фотоном. Термический распад Q G ( t ) соответствует рис. 2b, где τ t = τ th оказывается независимым от плотности записи до F A <1 Па / моль (рис.2c) в сочетании с данными вставки на рис. 2a, которые показывают, что индуцированная Δ n ( t ) зависит только от плотности энергии даже для самой медленной (низкой интенсивности) записи, указывают на то, что тепловое время жизни изолированные ориентированные маломолекулярные кластеры в случайном монослое в противном случае составляют τ th ~ 2 с в режиме F A <1 Па / моль. Это ясно показывает, что ограничения, определяющие τ th и, следовательно, U th , являются локальными.Оценка локальной ориентационной вязкости γ может быть получена путем предположения, что ориентационная диффузия определяется константой D = k B T /8 πγa 3 . Принимая 1 / D ~ τ th ~ 2 с и радиус a ~ 0,5 нм, получаем γ ~ 10 8 пуаз, количественно определяя стеклообразную природу ориентации dMR.
Переходя к η , Q G ( t ) подходит на рис.2b показывают, что для F A > 1 Па / моль, где локальные области испытывают множественные события поглощения во время записи, показатель затухания η увеличивается с увеличением F A . Поскольку термическое стирание происходит при T ≈300 K, поведение η = T / T м для термических распадов показывает, что T m ( F A ) увеличивается с 500 K до 1200 K по мере того, как F A увеличивается с 0.5–250 Па / моль, что свидетельствует о расширении экспоненциального хвоста f ( U ) до более высоких энергий и, таким образом, об углублении барьеров, определяющих f ( U ). Рис. 2d показывает, что в целом F A , и T m ( F A ) и записанное двулучепреломление Δ n ( F A ) из рис. увеличивается как журнал ( F A ), указывая на то, что постепенно улучшенный порядок записи создает все более глубокие барьеры.Усиление очень глубоких барьеров, ответственных за хвосты степенного закона в течение длительного времени, предполагает коллективный процесс, происходящий из взаимной стабилизации локально ориентированных доменов нескольких молекул, который усиливается, когда каждая местность испытывает множественные ориентирующие события в расширенном во времени процесс написания. Молекула должна преодолеть свой локальный ориентационный барьер U th , который существенно не меняется с F A , чтобы протестировать барьеры, задаваемые f ( U ), которые становятся глубже с увеличение F A .
Переход фотоэразирования к независимому от интенсивности приподнятому локальному T
Если известен T м ( F A ), рис. 2b позволяет сравнить термическое затухание и затухание CP для записи с F A = 0,5, 12 и 60 Па / моль, и тем самым определение из η = T CP ( F A ) / T m ( F A ) эффективной температуры T CP для кругового поляризованного стирания, в данном случае при интенсивности стирания I CP = 1000 мВт см −2 .Большие наклоны для случая CP показывают, что эффективная температура для атаки барьеров f ( U ) во время стирания CP больше, чем T = 300 K. Расчет T CP из T CP ( F A ) = ηT м ( F A ) дает аналогичные эффективные температуры стирания, T CP = 760 K, 710 K и 770 K для трех значений из письменного F общий для термической и CP-стертой релаксации, соответственно. Это постоянство является доказательством ключевого результата: значения T м и, следовательно, распределения высоты барьера одинаковы для термического стирания и стирания CP. Взяв T CP = 750 K, мы можем затем определить барьер T м ( F A ) для различных значений F A , вплоть до T м ( F A = 675 Па / моль) = 1670 K, что недоступно термически, потому что термический распад становится чрезвычайно медленным для таких больших F A .
На рис. 3a и b показаны серии релаксационных кривых dMR SAM, ориентированно записанные с фиксированной поляризованной плотностью записи F A = 1,25 Па / моль и стертые либо термически, либо с возрастающей интенсивностью I CP CP свет. Для термического стирания ( I CP = 0, T = 300 K) мы измеряем η = T / T м = 0,51, что соответствует средней высоте ориентационного барьера T м = 590 К, индуцированный F A = 1. 25 па / моль при письме. Подгонка этих данных к уравнению 2 дает время испытания, τ t , показанное ромбами для каждой кривой на фиг. 2b и 3a. Также показано время, в течение которого поглощенная плотность энергии во время стирания составляет один фотон на молекулу ( F A = 1 Па / моль). Для термического стирания τ th ≡ τ t ( I CP = 0) порядка нескольких секунд. τ t ( I CP ), показанный на рис.3c, начинает уменьшаться с увеличением I CP в режиме кроссовера, где испытательная скорость с фотоусилителем становится сопоставимой с термической: τ t ( I CP ) ~ τ th . Для I CP > ~ 100 мВт см −2 , где τ t ( I CP ) << τ th , мы маркируем управляемую фотонами асимптотическую вариацию τ t ( I CP ) как τ ph ( I CP ) на рисунках 3a – c и 4d. В переходном режиме τ t ( I CP ) ~ τ th ( I CP ~ 10 мВт · см −2 ) распады соответствуют бимодальному модели (сплошные голубые кривые на рис. 3b), с температурным наклоном на короткое время и наклоном фото-события на долгом времени (дополнительное примечание 6). При высоком I CP , где τ t ( I CP ) < τ th , η насыщается при I CP — независимое значение как η CP = 1.50. Это соответствует эффективной температуре T CP = η CP T м = 890 K, которая, согласно нашей модели энергетического ландшафта, является температурой локальной структуры, как она пробные попытки преодолеть свои ориентационные барьеры. Это несколько больше, чем T CP = 740 K для SAM на рис. 2a, что типично для варианта SAM-to-SAM T CP , который, по нашим данным, в среднем составляет T CP. = 800 ± 100 К.Тот факт, что температура T CP становится независимой от I CP , когда она достаточно велика, чтобы испытания были преимущественно генерированными фотонами, показывает, что T CP не связано со средним потоком энергии. Скорее T CP можно понимать как эффективную локальную температуру, особенность локальных переходных процессов, которые являются полностью изолированными пространственно-временными событиями даже при самых высоких интенсивностях, используемых здесь. На рисунке 3c показано изменение τ t с I CP , и мы видим, что в режиме высокого I CP τ ph ( I CP ) изменяется как 1/ I CP (черная пунктирная линия) и очень близко к τ t = (1 Па / моль) / I ACP (сплошная оранжевая линия), время, необходимое для F A , чтобы вырасти до F A = 1 Па / моль (дополнительное уравнение S2). Это почти равенство указывает на то, что процесс стирания CP имеет квантовую эффективность, QELF ~ 1: для каждого поглощенного фотона генерируется одна попытка преодоления барьера на молекулу.
Возвращаясь к нашей модели релаксации как локальной ориентационной диффузии, ограниченной вязкостью γ , и отмечая также, что γ τ t , мы сразу видим, что гораздо более быстрые распады, вызванные CP-светом (рис. 2b и 3а) за счет уменьшения τ ph ( I CP ) при увеличении I CP , является проявлением ориентационного флюидизации.Поэтому на рис. 3c мы также изображаем это поведение как фотоиндуцированное снижение относительной вязкости γ ( I CP ) / γ (0) с уменьшением вязкости в ~ 10 раз −5. , найденный уже при относительно небольшой интенсивности лазера 1 кВт / см −2 . На рисунке 3c затем прямо показано, что ключевым признаком этой флюидизации является переход с увеличением I CP до вязкости, которая обратно пропорциональна интенсивности света. Из-за низкой плотности событий в пространстве-времени (верхняя ось) освещение не производит заметного среднего нагрева, то есть псевдоожижение является «атермальным».
События фотоабсорбции / изомеризации
Поглощение фотона на длине волны 514 нм выделяет энергию hν = 2,4 эВ в азо-ядро дМР, достаточную для возбуждения одной гармонической степени свободы до = 29000 К. Появляется некоторая часть этой энергии. в форме, которая локально проверяет распределение молекулярного ориентационного барьера при эффективной температуре T CP ~ 800 K.Быстрая спектроскопия 45,46,47 , квантовое / молекулярно-динамическое моделирование 18,48 и молекулярно-динамическое моделирование 17 дают полуколичественную картину этого процесса, указывая на то, что он в основном механический, с энергией фотонов когерентная сила, временно действующая на окружающую среду поглощающей молекулы 49,50 , следующим образом. После поглощения фотонов и электронного возбуждения азо-ядро возвращается в основной электронный коллектор в конфигурации переходного состояния, из которой когерентное изменение внутримолекулярной конфигурации происходит по одному из нескольких возможных путей, например, от транс до цис или транс до транс , все из которых уменьшают внутреннюю потенциальную энергию на ~ 2 эВ (45 ккал на моль), что составляет почти всю поглощенную энергию фотонов 18,48 . Например, преобразование ядра из транс в цис осуществляется за счет изменения двугранного угла CNNC на 180 °. В вакууме это преобразование представляет собой плавное скольжение по поверхности потенциальной энергии основного состояния в виде квазиэкспоненциальной затухающей релаксации (характерное время = 0,4 пс) 18 . В этом процессе колебательные моды молекулы термализуются, при этом энергия сводится в основном к полностью возбужденным низкочастотным колебаниям, и молекула достигает внутренней температуры ~ 1100 К 45 .Однако в растворе почти вся энергия такого когерентного изменения формы молекулы высвобождается в виде ориентационной и трансляционной работы, совершаемой над соседними молекулами 18,47,48 . В частности, детальное моделирование Tiberio et al. 18 показывают, что для азобензола в растворителе изменениям молекулярной формы преимущественно противодействуют межмолекулярные вязкие силы, а не внутримолекулярная диссипация, что приводит к затухающей релаксации в гораздо более длительном временном масштабе (~> 10 пс), чем в вакууме, a ожидаемая динамика (дополнительное примечание 7) и подтвержденная экспериментом 46 . В этом случае распад становится слишком медленным, чтобы возбуждать молекулярные колебания, и потенциальная энергия азо идет главным образом на создание когерентного движения растворителя, а также на вращение и поступательное движение азо-ядра. Выделенная энергия 2 эВ соответствует ~ 30 гармоническим степеням свободы при 800 К, с помощью которых можно атаковать ориентационные барьеры молекулы. Тот факт, что квантовая эффективность для барьерных испытаний, QE ~ 1, больше, чем для транс — цис изомеризации (0.3 < QE транс-цис <0,7) 9 указывает на то, что поглощенная энергия фотона передается соседям возбужденной молекулы, независимо от того, дойдет ли она до цис или вернется к транс 18 . МД моделирования Teboul et al. 17,51 также показывают локализованное временное усиление среднеквадратичного смещения молекул и динамическую неоднородность в кластерах, окружающих изомеризующиеся молекулы. Однако это моделирование трудно использовать напрямую, потому что суммарная вложенная энергия не указывается.
Фотофлюидизация: стеклование локальных барьеров
Этот анализ показывает, что в плотной среде фотонно-индуцированное изменение формы молекулы азоядра происходит в масштабе времени 10 пс, достаточно медленно, чтобы вызвать когерентный переходный процесс силы на соседние молекулы (в отличие от молекулярных колебаний 49,50 ), вкладывая ~ 2 эВ механической энергии, достаточной для создания ориентационного события с эффективной локальной температурой T = 800 K.Если бы только вращение вокруг коротких молекулярных осей было таким возбужденным (что маловероятно), то верхняя оценка ~ 30 молекул могла бы быть непосредственно задействована. Поскольку, как правило, существуют поступательные, другие вращательные и низколежащие колебательные моды, которые также будут возбуждены, фактическое количество участвующих молекул должно быть меньше, вероятно, ограничено группами ближайших соседей (~ 7 молекул). Как отмечалось выше, начальная запись оставляет такую группу с барьером U th ~ k B (7500 K) для переориентации.С этим барьером и температурой фотоиндуцированной атаки T = 800 K, количество событий поглощения фотонов для генерации испытания будет exp [7,500K / 800K], то есть QELF <10 −4 , что на порядки меньше наблюдаемого QELF ~ 1. Это сравнение подразумевает, что в процессе локального пересечения барьера должен происходить переход стекла в псевдоожиженное состояние при температурах между 300 и 800 K, что дает гораздо меньший эффективный барьер при температуре атаки T = 800 K, чем при T = 300 К.Эксперименты не дают прямой информации о природе этого перехода, но его существование неудивительно, так как T = 800 K превышает температуру стеклования ( T g ) большинства органических сред, и моделирование свидетельствует о том, что индуцированная динамическая неоднородность в азо-легированной полимерной системе сообщалось 51 . Таким образом, температура T loc = 800 K локальная, управляемая светом температура расплавляет коллективные локальные структуры, возможно, несколько молекул H- или J-агрегатов, которые сдерживают переориентацию, чтобы дать возможность группе молекул выполнить «испытание». проверить при T loc = 800 K барьеров, возникающих при взаимодействии с соседними ориентированными молекулами.Небольшая часть времени, в течение которого молекула принимает участие в событии, показанном на рис. 3c для интенсивностей, используемых здесь, гарантирует, что флюидизация производится потоком случайно происходящих, изолированных, дискретных событий фотоориентации. В каждом из этих событий T loc = 800 K конкурирует с барьером переориентации U , распределенным от участка к участку с f ( U ). Эта конкуренция представляет собой процесс, включающий коллективное поведение молекулы и только ее ближайших соседей, поскольку, как обсуждалось в предыдущем разделе, только несколько молекул могут быть временно нагреты до этой температуры. Такой поток случайных фотоориентационных событий, встречающих экспоненциальное распределение высот барьеров, приводит к наблюдаемым затуханиям степенного закона. В этом случае локальный стеклование, при котором группа из нескольких молекул «плавится», переориентируется и «повторно замерзает», явно является механизмом постоянного макроскопического изменения (формы), обнаруживаемого в азо-системах 17,14 .
Запись в большом количестве F: сопряженное старение порядка и средней высоты барьера
Медленное старение, показанное на рис.2d, с Δ n ( F A ) и T m ( F A ), увеличиваясь как ln F A с F A в диапазоне 10 < F A <10 4 Па / моль, указывает на ограниченный барьером процесс записи. Барьеры, встречающиеся при письме, — это как раз те, которые устанавливаются и должны быть преодолены в обратном порядке во время стирания, то есть характерный масштаб энергии для записи составляет T m . Затем, принимая пробную частоту, сгенерированную фото, ν w , для записи (для преодоления препятствий для достижения ориентированного состояния), шкала энергии, записанная в момент времени t , задается просто условием «исчерпания», определение δU м ( t ) как энергетическая граница между низкими барьерами, которые в среднем уже были пересечены в момент времени t ( P ( t )> 1) и высокими еще пересечение 52 : 1≈ P ( t ) = tν w exp (- δU m ( t ) / k B T ).Решение для δT m ( t ) дает δT m ( t ) ≈ T ln ( tν w ) или δT 36 m m ≈ T ln ( F A / F A w ), где F Aw — плотность потока, необходимая для пробного письма. Из рис. 2г, при F A = 10 3 Па / моль имеем δT м / T ≈4.3, что дает F / F w = 74 и, следовательно, F w = 14 Па / моль в качестве пробной скорости записи, выраженной как плотность энергии, поглощенная изотропным образцом (фактическая абсорбция будет примерно половину этого значения из-за индуцированного ориентационного упорядочения). Таким образом, в этом асимптотическом режиме каждая молекула должна пройти через цикл транс — цис — транс ~ 10 раз, чтобы провести испытание, при котором дальнейшее поляризованное освещение может усилить связь между локальными стеклообразными доменами и увеличить T m .В то время как одиночные записывающие фотоны эффективно создают локальные стеклообразно ориентированные домены, требуется много записывающих фотонов, чтобы связать их вместе, чтобы установить как лучший порядок, так и барьерное распределение, имеющее хвост, простирающийся в сторону более высоких энергий. Эта связь порядка и высоты барьера также может быть понята как пример ориентационного деформационного упрочнения (дополнительное примечание 8) 52 .
Атермальное превосходство: SiC по сравнению с телескопами из алюминия и стекла для малых спутников — Aperture Optical Sciences
ВВЕДЕНИЕ Узлы оптических телескопов(OTA), выполненные из карбида кремния (SiC), обеспечивают преимущества в производительности для космических приложений, но в основном используются в государственном секторе.Новое поколение легких и термостойких конструкций доступно в продаже, что позволяет распространить применение SiC на небольшие спутники.
Одной из основных проблем при проектировании спутниковых телескопов является способность сохранять рабочие характеристики в тепловых условиях низких околоземных орбит (НОО). В этом примечании к применению сравниваются анализы термостабильности двух аналогичных OTA, разработанных AOS, одного из карбида кремния и одного из алюминия со стеклянными зеркалами. Влияние изменений температуры в условиях замачивания на разрешенное расстояние до земли (GRD) исследуется с помощью анализа изображений.
SiC обладает наивысшим сочетанием удельной жесткости (E / ρ) и термической стабильности (k / α) среди всех материалов оптического качества. Эти свойства делают SiC идеальным для поддержания оптических и механических характеристик во время запуска и в динамических тепловых условиях низкой околоземной орбиты (НОО).
Рис. 1. Свойства материала и расчетная удельная жесткость в зависимости от коэффициента термической деформации для широко используемых материалов для зеркал. Свойства POCO Graphite SuperSiC-Si, 6061-T6 Aluminium и Corning HPFS Fused Silica
при комнатной температуреSiC vs.ТРАДИЦИОННЫЕ ТЕЛЕСКОПЫ AL-GLASS
Небольшие спутниковые OTA обычно требуются для соответствия оптическим характеристикам в диапазоне температур приблизительно от -30 ° C до + 40 ° C для приложений LEO. Проведенный анализ исследует влияние фокуса и GRD в зависимости от температуры. Конструкция телескопа, использованная в анализе, представляет собой двухзеркальную отражающую систему с прозрачной апертурой 125 мм, предназначенную для обеспечения GRD ≤ 7,5 м для длин волн ближнего ИК-диапазона на высоте 500 км.
Рисунок 2 и 3: Вид в разрезе 125-мм телескопа AOS
Графики функции рассеяния точки (PSF) показаны при -30, -20, +20 и + 40 ° C для телескопов из карбида кремния и алюминия и стекла.Узкий PSF соответствует меньшему размытию изображения на детекторе. Преобладающим воздействием на телескоп в результате изменения температуры является смещение оптики, которое вызывает расфокусировку (и, следовательно, размытость изображения на детекторе). На рисунке 12 показано сравнительное смещение фокуса в системах SiC и алюминий-стекло. Размытие изображения иллюстрируется PSF в результате различных сдвигов фокусного расстояния (рис. 4-11). Затем рассчитывается влияние на GRD. (Рисунок 13). Эта разница в чувствительности к тепловому поглощению также является показателем относительной чувствительности к температурным градиентам, которые гораздо сложнее исправить на низких околоземных орбитах.
Рис. 13: Зависимость разрешенного расстояния от земли (GRD) от температуры для телескопов из карбида кремния и стекла и алюминия от -30 до + 40 ° C.
ВЫВОДЫ:
• Система SiC поддерживает расчетный GRD в типичном требуемом диапазоне температур (± 35 ° C).
• Характеристики системы алюминий-стекло быстро ухудшаются даже после ± 2 ° C по сравнению с оптимальным значением GRD.
Тепловые свойства SiC позволяют создавать телескопические системы, превосходящие по характеристикам алюминиево-стеклянные телескопы.В условиях выдержки смещение фокуса SiC номинально равно нулю. Кроме того, SiC демонстрирует до 37 раз лучшие характеристики в диапазоне температур для разрешенных расстояний до земли по сравнению с алюминиево-стеклянными телескопами в условиях термической выдержки. Реальные сценарии представляют собой более сложные задачи, которые раскрывают еще более широкие преимущества оптимизированного выбора материалов.
АВТОРЫ:
Дэйв Эйкенс; Savvy Optics Corp., Честер, CT 06412
Кевин Дальберг, Чип Раган, Флемминг Тинкер; Aperture Optical Sciences Inc., Meriden, CT 06450
СПРАВОЧНИК:
1. KJ Kasunic, D Aikens, D. Swabowski, C. Ragan, F. Tinker, «Технические и стоимостные преимущества телескопов из карбида кремния для малых спутниковых изображений», SPIE Optical Engineering and Applications, Сан-Диего, 2017, статья № 10402-11.
2. Тинкер, Ф., Синь, К., «Асферическая обработка стекла и оптики SiC», Изготовление и тестирование оптики, Монтерей, Калифорния, США, 24-28 июня 2012 г., Figuring and Finishing Science (OM4D),
3.«Справочник SAGE по дистанционному зондированию», T. A. Warner, M.D. Nellis, G.M. Foody, (SAGE Publications Ltd., Лондон, 2009 г.), 101-102.
4. F.P. Инкропера, Д. ДеВитт, Т. Бергман, А. Лавин, «Введение в теплопередачу», (Wiley Publishing, Нью-Джерси, 2006), пятое издание.
5. Свойства материала SuperSiC [онлайн], POCO Graphite, http://poco.com/MaterialsandServices/tabid/124/Default.aspx [22 июня 2017 г.].
Что такое изоляция и как она работает?
Что общего у стеклянных пивных бутылок, бутылок из нержавеющей стали и шерсти белого медведя?
Да, все они отличные изоляторы, но причина может вас удивить!
Что такое изоляция?
Чтобы узнать, что делает изолятор отличным, давайте сначала посмотрим, что такое изоляция.Существует много видов изоляции — тепловая, звуковая, электрическая и т. Д. Для наших целей мы будем говорить о теплоизоляции, которая уменьшает теплопередачу между объектами за счет отражения теплового излучения или уменьшения теплопроводности и конвекции от одного объекта к другому. другой (подробнее об этом чуть позже). Проще говоря, теплоизоляция — это то, что сохраняет ваш кофе горячим в изолированной кружке, а руки в перчатках — в тепле.
Типы теплообмена
Распространенное заблуждение состоит в том, что изоляция защищает от холода, тогда как на самом деле функция изоляции заключается в уменьшении передачи тепла, что означает, что она удерживает тепло внутри.Тепловая энергия будет передаваться к близлежащим объектам с более низкой температурой, что вы можете почувствовать, когда горячий кофе наливается в вашу кофейную кружку, если передача не замедляется или не останавливается термоизолятором.
Чтобы понять, что делает хороший теплоизолятор, вам нужно знать три метода теплопередачи: проводимость, конвекцию и излучение.
Проводимость : Процесс, посредством которого тепло передается из области с большей кинетической энергией (более высокой температурой) в область с более низкой кинетической энергией (более низкая температура), например. грамм. прикосновение к горячей ручке. Происходит при физическом контакте и является наиболее распространенной формой передачи тепла.
Конвекция : Процесс, при котором газ или жидкость нагреваются, а затем удаляются от источника, например ощущение горячего воздуха над кипящей кастрюлей.
Излучение : Процесс передачи тепла посредством электромагнитных волн, например тепло от солнца.
Теплоизоляторы
Задача теплоизолятора — уменьшить теплопередачу, сохраняя объект в горячем или холодном состоянии.Прекрасным примером термоизолятора является бутылка для воды из нержавеющей стали, которая сохраняет холодные напитки прохладными, а горячие — горячими — и все это в одном устройстве! Но вот что вызывает недоумение — нержавеющая сталь не является хорошим теплоизолятором — на самом деле, это лучший проводник.
Superior Glove поговорил с Полом Фошером, главным инженером NOVO Engineering, чтобы разобраться в этой загадке.
«Бутылка для воды из нержавеющей стали — такой интересный пример, потому что многие люди не понимают, что изоляция не из нержавеющей стали, а из-за вакуума», — пояснил Фаучер.«Бутылка из нержавеющей стали на самом деле представляет собой две бутылки, расположенные одна над другой с небольшим промежутком между ними. Это пространство лишено воздуха и фактически создает вакуум — именно этот вакуум обеспечивает изоляцию ».
Фаучер объяснил, что вакуум — один из самых известных изоляторов, но сам воздух также является отличным изолятором и основным фактором, влияющим на изоляционные свойства таких предметов, как прихватки для духовки и изоляция из стекловолокна. Именно воздушные карманы в этих материалах замедляют теплопередачу намного больше, чем сами материалы.
«НАСА фактически использует воздушные карманы, чтобы не дать космическим шаттлам сгореть при возвращении на Землю».
Теплоизоляторы для тканей
Когда дело доходит до теплоизоляционных материалов для тканей, производители всегда боролись за размер и эффективность. Чем крупнее перчатка или предмет одежды, тем лучше изоляционные свойства, но тем неудобнее для человека, который их носит.
«Утеплитель для вашей одежды работает примерно так же, как и для вашего дома — изолирующая ткань соткана вместе с большим пространством для воздуха.Использование полых тканей и их свободное плетение — лучший способ изолировать одежду, но, как и домашняя изоляция, это создает объемный материал, который не всегда практичен для пользователя », — пояснил Адам Бахрет, владелец и ведущий инженер Apex Ridge. консалтинговая компания по проектированию надежности продукции.
«Такие изделия, как стекло и керамика, превращаются в фантастические изоляторы, когда их разбивают на волокна и вплетают в ткань», — поясняет Бахрет. «Одна из самых больших проблем, связанных с изоляционными тканями, предназначенными для удержания тепловой энергии, заключается в том, как добиться этих изоляционных свойств без огромного объема.Такие ткани, как Thinsulate®, успешно справляются с этой задачей, обеспечивая отличную изоляцию в тонкой ткани ».
Одна из самых креативных, но эффективных форм изоляции, с которой когда-либо сталкивался Бахрет, включала в себя оригинальный способ утепления домов в странах третьего мира. Идея невероятно проста, но работает очень хорошо. Стеклянные пивные бутылки используются для создания стены и скрепляются строительным раствором. Полость и круглая форма бутылок делают их отличными теплоизоляторами, а прозрачность бутылок пропускает много естественного света.Это функциональный и экономичный способ построить утепленный дом.
Будущее изоляции
Как будет выглядеть изоляция в будущем? Будут ли открыты новые материалы, которые кардинально изменят способ изготовления и ношения изолирующей одежды? Пол Фошер так считает.
Фактически, Фаучер считает, что будущее изоляции уже наступило — это слишком дорого.
«Я думаю, что в будущем вы увидите новые изоляторы с микротрубками и микросферами, основанные на технологии, используемой для производства углеродных нанотрубок (микротрубок). Они будут использоваться для обеспечения желаемых изоляционных свойств тонких, пригодных для носки тканей, пленок и даже формованных деталей », — прогнозирует Фаучер.
«Микропробирки — микроскопически маленькие и прекрасные изоляторы из-за своей полости, которая задерживает воздух. Они очень похожи на пуховые перья, которые также являются полыми, чтобы изолировать тепловую энергию. Любой, у кого есть пуховик, знает, что изоляционные свойства у него отличные. Благодаря своим микроскопическим размерам микротрубки продвигают эту изоляцию на новый уровень, обеспечивая меньший объем и лучшую способность удерживать тепло.”
Цена на технологию микропробирок по-прежнему делает ее непрактичной для потребительских целей. По его мнению, по мере снижения цен мы будем видеть все больше и больше подобных технологий, используемых в изоляционных тканях.
Разрабатывается ли перчатка с микропробирками для Superior Glove? Вам придется подождать и посмотреть!
Загадка стеклянной бутылки, бутылки из нержавеющей стали и волос белого медведя
Мы наконец вернулись к нашей первоначальной головоломке — что общего у всех этих предметов, что делает их такими прекрасными изоляторами? Если вы прочитали статью и не перешли сразу к основанию, то вы уже знаете, что именно полость обеих бутылок обеспечивает их превосходные изоляционные свойства. Воздух, плохой проводник и хороший изолятор, задерживается в полостях стеклянной бутылки, в то время как бутылки из нержавеющей стали идут еще дальше, создавая вакуум для замедления тепловой энергии.
А как насчет шерсти белого медведя?
Как и пуховые перья, шерсть белого медведя на самом деле полая. Этот полый центр задерживает воздух и изолирует белого медведя от сильного холода Арктики. Наверное, поэтому они всегда выглядят такими счастливыми на морозе!
Ищете перчатки, чтобы зимой сохранить теплоизоляцию рук? Ознакомьтесь с нашей линейкой зимних перчаток!
_____________________________________________________________________________________
Спасибо Полу Фаучеру из NOVO Engineering и Адаму Бахрету из Apex Ridge за их вклад в эту статью.
Пол Фаучер — главный инженер в NOVO Engineering, консалтинговой фирме, которая предоставляет комплексные инженерные услуги по разработке аппаратного и программного обеспечения от концепции до пилотного производства. Фоше имеет разносторонний опыт работы в области машиностроения и физики. Он получил степень бакалавра медицинских наук в Государственном университете Сан-Диего и имеет более 25 лет инженерного опыта.
novoengineering.com
Адам Бахрет — основатель, владелец и ведущий инженер Apex Ridge, инженерной консалтинговой фирмы, специализирующейся на проектировании надежности для разработки продуктов с такими клиентами, как Google, Boeing, Amazon Robotics и Hyundai.Бахрет — эксперт по надежности механических и электрических систем с более чем 20-летним опытом разработки продукции. Он получил степень магистра в области машиностроения в Северо-Восточном университете и является национально сертифицированным инженером по надежности ASQ, а также членом IEEE.
www.apexridge.com
Вопрос: Является ли стекло проводником тепла?
Ответы экспертов info
Стекло на самом деле является изолятором.
Он не позволяет электронам легко перемещаться от атома к атому, как это наблюдается в таких веществах, как медь и другие металлы, которые являются отличными проводниками как тепла, так и электричества.
Стекло — плохой проводник тепла?
Стекло — очень плохой проводник тепла. Он имеет одну из самых низких возможных теплопроводности, которую может иметь твердое тело (без захваченного в нем воздуха), в основном из-за отсутствия упорядоченной кристаллической структуры. Поскольку это изолятор, электронный вклад в теплопроводность очень мал.
Стекло — плохой изолятор?
Такие материалы, как стекло и пластик, плохо проводят электрический ток и называются изоляторами.Они используются для предотвращения прохождения электричества там, где в нем нет необходимости или где это может быть опасно, например, через наши тела.
Стекло лучше проводит тепло, чем пластик?
Оконное стекло лучше, чем большинство пластиков, и, безусловно, лучше, чем «прозрачное» стекловолокно. Так и с электрическими проводниками, одни лучше других. Например, стекло является очень хорошим изолятором при комнатной температуре, но становится проводником при нагревании до очень высокой температуры.
Является ли древесина проводником тепла?
Материалы, которые хорошо проводят тепловую энергию, называются теплопроводниками. Металлы — очень хорошие проводники тепла. Такие газы, как воздух, и такие материалы, как пластик и дерево, являются теплоизоляторами.1 ноя 2012 г.
Хорошо ли проводит тепло стекло?
Стекло не так хорошо проводит тепло, как металл, но это отличный изолятор, благодаря которому оно хорошо сохраняет тепло. Из-за этого стекло во многом похоже на темный металл — продукты поглощают больше тепла и быстрее выпекаются, что делает стекло хорошим выбором для пирогов и некоторых хлебов.9 ноя 2010
Увеличивает ли стекло нагревание?
Внутри сосуда тепло, вырабатываемое солнечной энергией, не может уйти — стекло не пропускает тепловое излучение. В результате температура внутри стеклянной емкости со временем должна была повышаться. Фактическая температура зависит от того, насколько солнечно на вашем рабочем месте.1 июн 2017
Воздух — это проводник или изолятор?
Воздух представляет собой скопление газов и не является хорошим проводником или радиатором.Воздух отлично справляется с конвекцией, но количество тепла, которое может быть передано, минимально, поскольку малая масса вещества не может удерживать большое количество тепла. Воздух используется как изолятор в охладителях и стенах зданий.
Почему стекло холодное?
Хотя стекло все еще может казаться прохладным для вашей теплой руки, оно должно быть значительно теплее, чем на улице. Слишком холодное внутреннее стекло означает, что в пространство между стеклами попадает слишком много холодного воздуха. 24 марта 2017 г.
Из чего сделано стекло?
Вы не поверите, но стекло изготавливается из жидкого песка. Вы можете сделать стекло, нагревая обычный песок (который в основном состоит из диоксида кремния), пока он не расплавится и не превратится в жидкость. Вы не найдете такого на местном пляже: песок тает при невероятно высокой температуре 1700 ° C (3090 ° F). 31 декабря 2019 г.
Что такое 5 изоляторов?
Изоляторы препятствуют электрическому току и создают плохие проводники. Некоторые общие проводники — медь, алюминий, золото и серебро. Некоторые распространенные изоляторы — это стекло, воздух, пластик, резина и дерево.
Бетон хороший проводник?
Бетон.Хотя бетон плохо проводит электричество по сравнению с металлами, он лучше проводит электричество, чем стекло и другие материалы. Бетонная смесь с низким удельным сопротивлением способствует коррозии стальных конструкций, встроенных или прикрепленных к ней.
Какой изолятор лучший?
A: Лучшим изолятором в мире на данный момент, скорее всего, является аэрогель с кремнеземными аэрогелями, имеющими теплопроводность менее 0,03 Вт / м * К в атмосфере. аэрогеля, предотвращающего таяние льда на горячей плите при 80 градусах Цельсия! Аэрогель обладает удивительными свойствами, потому что он в основном состоит из воздуха.8 фев 2015
Что такое хороший проводник тепла?
Медь
Что делает хороший проводник тепла?
По сути, когда дело доходит до теплопроводности, не все вещества одинаковы. Металлы и камень считаются хорошими проводниками, поскольку они могут быстро передавать тепло, тогда как такие материалы, как дерево, бумага, воздух и ткань, являются плохими проводниками тепла. Материалы, плохо проводящие тепло, называются изоляторами. 8 декабря 2014 г.
Что такое теплопроводник?
Металлы, такие как сталь, медь и алюминий, являются отличными проводниками тепла, другие материалы, такие как дерево, пенопласт, асбест и подобные материалы, являются очень плохими проводниками тепла.