MPI-двигатель — что это такое?
MPI-двигатель — означает инжекторный двигатель, в котором использована многоточечная система впрыска топлива. Она и дала название этому силовому агрегату — Multi Point Injection. Другими словами, на каждый цилиндр мотора приходится свой инжектор (форсунка). Эта схема была разработана и воплощена концерном Volkswagen. Исторически для автомобилестроителей из Вольфсбурга система MPI была первой инжекторной системой впрыска топлива. Сейчас подобный тип агрегата уже не соответствует современным экономическим и экологическим требованиям, предъявляемым к автомобильным двигателям. До недавнего времени можно было говорить, что этот тип двигателя снят с производства и последней моделью автомобиля концерна, где он использовался, была Шкода Октавиа второй серии. Но неожиданно произошло возрождение MPI-двигателя, и он вновь стал востребован! Сохраним интригу и расскажем об этом в конце статьи. А сейчас скажем, что наиболее яркими представителями этого семейства двигателей последних лет явились силовые агрегаты 1,4 (80 л.
Особенность MPI-двигателя в многоточечной системе впрыска
Содержание
- MPI-двигатель в подробностях
- Достоинства и недостатки MPI-двигателей
- Преимущества
- Недостатки
MPI-двигатель в подробностях
О первой и основной отличительной черте этих силовых агрегатов мы уже сказали — это многоточечность подачи топлива. Но те, кто знаком поближе с автомобильными моторами могут сказать, что, например, и TSI-двигатели также имеют многоточечный впрыск. Поэтому переходим ко второму отличию — отсутствию наддува. То есть никаких турбокомпрессоров для нагнетания топливной смеси в цилиндры нет. Обычный бензиновый насос, который подаёт топливо под тривиальным давлением 3 атмосферы в специальный впускной коллектор, где оно затем смешивается с воздухом и засасывается через впускной клапан в цилиндр. Как видим, в этом моменте очень похоже на работу карбюраторного мотора. Никакого непосредственного впрыска топлива в цилиндр, как в TSI или GDi-схемах нет и в помине.
Третья отличительная черта — наличие водяной системы охлаждения топливной смеси. Это объясняется тем, что в районе головки цилиндра развиваются довольно высокая температура, а топливо поступает под сравнительно низким давлением. Поэтому оно может попросту вскипеть и образовать газовоздушные пробки.
Достоинства и недостатки MPI-двигателей
Преимущества
Вначале о достоинствах, причём настолько весомых, что и сейчас многие с удовольствием эксплуатируют автомобили с такими моторами. Особенно в нашей стране, где требования к экологичности не такие жёсткие, как в Европе (чему яркий пример наличие нещадно чадящих «копеек» и прочей отечественной и зарубежной предантикварной движимости). Да и стоимость топлива всё же не так кусает, как у европейцев.
- Простота конструкции. Конечно, это не карбюратор, но и не TSI с его насосом высокого давления и турбокомпрессором. А простота конструкции автоматически означает доступность по цене самого агрегата и его возможного ремонта.
- Более низкие требования к качеству топлива. MPI-двигатель вполне себя хорошо чувствует и на 92 бензине. А попробуйте залить его, например, в современный Volkswagen Passat. Такая некоторая всеядность, кстати, несколько нивелирует один из недостатков таких моторов (о них чуть ниже) — более низкую экономичность.
- Меньшая склонность к перегреву.
MPI-двигатели не имеют особых требований к качеству топлива
Ещё одним достоинством, правда, напрямую не связанным с рассматриваемой схемой инжекторного силового агрегата, является наличие резиновых опор под двигателем. Это существенно позволяет снизить шум и вибрацию при движении.
Недостатки
- Меньшая экономичность. Ничего не поделаешь. Многоточечный впрыск — это, конечно, хорошо, но наддув совместно с непосредственным впрыском топлива в цилиндр (как TSI системах) лучше.
- Слабоватый крутящий момент и недостаток мощности. Всё же возможности схемы, предусматривающей соединение воздуха с бензином в коллекторе, а не в цилиндре, несколько ограничены.
Так что для любителей драйва и гонок на светофорах MPI-двигатель не подойдёт. Слишком вял.
И всё же, если суммировать достоинства и недостатки, то итоговый результат делает эти силовые агрегаты вполне ещё конкурентоспособными, особенно для наших отечественных реалий. Неслучайно для российской Skoda Yeti немцы отказались от турбированного 1,2-литрового движка TSI, предпочтя ему проверенную и неприхотливую 1,6-литровую MPI-лошадку.
В российской версии Skoda Yeti установлен MPI-двигатель
Теперь, мы думаем, будет понятно, что это такое MPI-двигатель. Если возникли вопросы по этой статье, спрашивайте. Обязательно ответим.
Особенности двигателей MPI
Советы автомобилистамVasilenkov Send an email 12.04.20180 279 5 минут
Статья о двигателе MPI — особенности мотора, его эксплуатация, достоинства и недостатки. В конце статьи — видео о разборе мотора MPI.Статья о двигателе MPI — особенности мотора, его эксплуатация, достоинства и недостатки. В конце статьи — видео о разборе мотора MPI.
Содержание статьи:
- Топливная система
- Требования к топливно-воздушной смеси для MPI-двигателей
- Преимущества и недостатки MPI-моторов
- В условиях России
- Видео о разборке мотора MPI
В конце прошедшего столетия двигатели MPI (Multi-Point-Injection) с многоточечным распределенным впрыском топлива пришли на смену карбюраторным и считались самой передовой технологией в моторостроении. Данная технология была разработана в концерне Volkswagen. Первый двигатель с системой MPI был установлен на модели Volkswagen Polo, а позднее ими стали оснащать модели Golf и Jetta.
Последние несколько лет моторы MPI устанавливались только на моделях Skoda, а последней Шкодой с технологией MPI стала Skoda Octavia 2-й серии (3-ю серию уже стали оснащать более современными моторами – TSI и FSI).
Сегодня большинство опытных автовладельцев со стажем считают двигатели MPI давно устаревшими и почти раритетными. Такого же мнения придерживаются и специалисты из Volkswagen, считая данный тип двигателя уже не соответствующим современным европейским требованиям по экономичности и экологичности.
Однако несмотря на это, моторы MPI до сих пор имеют репутацию самых надежных и практичных из всех инжекторных агрегатов.
Топливная система
Каждому цилиндру – отдельный инжектор с форсункой!
Главная особенность инжекторных MPI-двигателей с распределенным впрыском топлива — это наличие у каждого цилиндра своего отдельного инжектора с форсункой. С помощью инжекторов осуществляется дозированный впрыск топлива в каждый отдельно взятый цилиндр, с распылением через форсунки. Такой способ позволяет равномерно распределять топливную смесь по всем цилиндрам. При этом, в отличие от TSI-двигателя, в конструкции MPI отсутствует топливная рейка и нет прямого впрыска топлива в цилиндр, который есть в системах FSI и TFSI.
Важно! Моторы с технологией MPI работают с опережением зажигания, из-за чего педаль газа становится очень чувствительной к воздействию.
Отсутствие турбонагнетателя
Еще одной значимой особенностью MPI-моторов является полное отсутствие в их конструкции турбонагнетателя при многоточечной системе впрыска. Вместо него MPI-моторы снабжены обычным бензонасосом с давлением в 3 атм. Порядок работы MPI-системы выглядит следующим образом:
- из бензобака топливо подкачивается бензонасосом в инжектор;
- электронный блок управления впрыском подает сигнал на инжектор, и топливо распыляется под давлением через форсунку на цилиндровый впускной клапан.
Система распределения впрыска топлива состоит из следующих элементов:
- устройства для доставки топлива к инжекторам;
- блок зажигания;
- устройство для дозировки воздушной массы;
- устройство для регулировки токсичности отработанных газов.
Контур водного охлаждения
Контур водного охлаждения в MPI-двигателях предназначен для охлаждения горючей смеси. При работе агрегата головка цилиндров очень сильно нагревается, а топливо подается под небольшим давлением. В результате возникает большая опасность появления газо-воздушной пробки, что может привести к перегреву с закипанием. Наличие контура водяного охлаждения горючей смеси предотвращает возникновение такого перегрева.
Требования к топливно-воздушной смеси для MPI-двигателей
Топливно-воздушная смесь для MPI-двигателей должна иметь следующие качественные характеристики:
- Газообразность. Для эффективного сгорания топливно-воздушной смеси до начала ее воспламенения должно произойти полное испарение бензина.
- Гомогенность (однородность). Испаряемое топливо должно хорошо перемешаться с кислородом, содержащимся в воздушной массе. Неполное смешивание топлива в местах с большим содержанием кислорода повышает риск возникновения детонации.
В местах с повышенным обогащением топливо сгорает не полностью, что приводит к снижению КПД мотора.
- Объем закачанного топлива должен быть пропорционально достаточным для смешивания с закачанным в цилиндр воздухом. Например, для более полного сгорания топливно-воздушной смеси потребуется перемешать 1 кг бензина с 14.7 кг воздушной массы. При увеличении или уменьшении количества воздуха произойдет, соответственно, либо обеднение, либо переобогащение топливной смеси. Однако следует помнить, что узость диапазона пропорционального изменения состава смеси приводит к небольшому КПД бензинового MPI-двигателя, например, по сравнению с циклом дизельного ДВС.
Механизм контроля гидропривода
Двигатели MPI оснащаются специальным механизмом контроля гидропривода, с муфтой с пресс-масленкой для ограничения дифферентов. Дополнительно указанный механизм контроля снабжен специальными мягкими опорами, которые автоматически настраиваются под рабочий режим двигателя и снижают шум с вибрацией.
Преимущества и недостатки MPI-моторов
Моторы MPI обладают следующими преимуществами:
- Пропорциональная точность при смешивании топлива с воздухом. Горючее впрыскивается через форсунки непосредственно на цилиндровые впускные клапаны, что исключает возможность неравномерного заполнения. Момент впрыска топлива через форсунку точно определяется управляемым импульсом. Количество поступающего топлива будет зависеть от продолжительности открытого состояния форсунки. В целом, топливная система управляется ЭБУ (электронным блоком управления) или, проще говоря, бортовым компьютером. Блок управления (ЭБУ) способен рассчитать (на основе информации с датчиков) не только момент впрыска, но и необходимое количество топлива для приготовления качественной топливно-воздушной смеси.
- Минимальные потери при испарении бензина. Близкое расположение форсунок к впускным клапанам исключает необходимость значительного переобогащения горючей смеси для прогрева двигателя.
Также близость форсунок к клапанам позволяет топливу дольше сохраняться в жидком состоянии после впрыска, что приводит к снижению накала в камере сгорания. При повышении степени сопротивления к детонации есть возможность изменять степень сжатия с усилением мощности двигателя.
- Такт впрыска с увеличенным давлением. Увеличение давления на впрыске дает возможность превращать топливо в мелкую дисперсию, что значительно улучшает сгорание топливно-воздушной смеси.
- Благодаря способности ЭБУ (Engine-ECU) считывать определенные данные (число оборотов, скорость, фактическая и рекомендуемая нагрузка, и др.) происходит точный расчет времени впрыска и количества бензина. Это позволяет MPI-двигателям выдавать оптимальную мощность при относительно небольшом расходе топлива.
Помимо всего прочего, MPI-моторы неприхотливы к качеству топлива и способны эффективно работать на бензине АИ-92 даже с повышенным содержанием серы. Конструкция мотора очень проста, но является достаточно надежной, чтобы пробежать без серьезных поломок 300 тыс. км (при условии правильного технического обслуживания).
Кроме этого, простота конструкции двигателя позволяет сэкономить на его ремонте. Также конструкция MPI-двигателя выгодно отличается от более сложных конструкций двигателей TSI, имеющих достаточно сложные и дорогостоящие в ремонте насосы повышенного давления и турбокомпрессоры. Плюс, MPI-двигатель меньше и реже перегревается.
Преимущество MPI в сравнении с карбюратором и моноинжектором
Преимущество системы MPI обусловлено недостатками карбюраторов и моноинжекторов. Проще говоря, технология MPI была разработана для того, чтобы устранить недостатки карбюраторных и моноинжекторных технологий, которые не позволяли точно дозировать подачу топлива и снижать его потерю в процессе прогрева двигателя.
Технологически, подача топлива осуществлялась через карбюратор (или моноинжектор) напрямую во впускной коллектор, что приводило к повышенному расходу топлива и большей токсичности выхлопа. При холодном запуске мотора большая часть поступавшего топлива конденсировалась (оседала) на непрогретом коллекторе, в результате чего топливно-воздушную смесь нужно было переобогащать.
Недостатки MPI-моторов
- Медленный старт и разгон. По мнению опытных водителей, MPI-моторы обладают меньшей динамикой. И это действительно так. Потеря динамичности происходит во время смешивания топлива с воздухом непосредственно в выпускных каналах, перед его подачей в цилиндры. О том, что моторы MPI не предназначены для быстрого старта и разгона, также говорит и наличие 8-миклапанной системы с набором ГРМ.
- Небольшая экономичность. Моторы MPI уступают по экономичности расхода топлива TSI-двигателям с наддувом и прямой подачей топлива в цилиндр.
В Интернете можно встретить негативные отзывы о MPI-моторах с объемом 1.6 л, которыми оснащалось большое число моделей VAG-Group (Volkswagen Polo Sedan, Skoda Yeti, Octavia). Однако наибольшая часть негатива касается только моторной модификации CFNA. Данная модификация двигателей начинает стучать и перерасходовать масло при холодном запуске даже после небольшого пробега. Но связаны эти неприятности не с инжекторным впрыском MPI, а со спецификой конструкции цилиндропоршневого блока.
Судя по тем же отзывам в Интернете, проблема со стуком при холодном запуске меньше коснулась моторной модификации CWVA (с таким же объемом 1.6 л). Но платой за устранение стука стал еще больший перерасход масла. Дело в том, что увеличение нагрузки на ЦПГ при холодном запуске конструкторы из Volkswagen решили компенсировать новыми маслосъемными кольцами, оставляющими на стенках цилиндров более толстый слой масла.
В условиях России
Моторы с технологией MPI прекрасно подходят для использования в российских условиях.
- Они не требовательны к качеству топлива, что актуально для российского топливного рынка. Ведь до сих пор топливо на многих российских автозаправках не отличается высоким качеством. Но MPI-моторы способны хорошо и долго работать даже на бензине с запредельным содержанием серы.
- Простая и надежная, с дополнительной защитой от механических нагрузок, конструкция MPI-двигателя актуальна и для российских дорог, большинство из которых (так же, как и топливо) не отличается высоким качеством.
- Двигатели MPI соответствуют российским экологическим стандартам по выхлопу в отличие от Европы, где экологические требования к двигателям намного выше.
Вполне возможно, что указанные выше факторы стали причиной открытия производственной линии по выпуску MPI-двигателей на заводе в Калуге. Однако списывать двигатели MPI с европейского рынка еще рано. И подтверждением этому может служить замена немецкими производителями TSI-двигателей 1.2 литра на неприхотливые MPI-двигатели 1.6 литра.
Видео о разборке мотора MPI:
Похожие
Система управления двигателем с распределенным впрыском: НТП Центр
Лабораторный стенд НТЦ-15.40 «Система управления двигателем с многоточечным впрыском (МРВ)» предназначен для использования в качестве учебного оборудования при проведении лабораторных и практических занятий по следующим дисциплинам: автомобилестроение, техническая эксплуатация автомобиля.
Стенд обеспечивает возможность прямых электрических измерений в цепях исследуемых систем, в том числе неисправностей и их дальнейшую диагностику, настройку параметров с использованием любого известного диагностического оборудования для исследуемых систем двигателей автомобилей.
Стенд обеспечивает наглядность при исследовании работы системы управления инжекторным двигателем. Также может использоваться для диагностики и определения рабочих характеристик элементов системы управления инжекторным двигателем.
Блок ввода неисправностей позволяет пользователю вводить следующие неисправности:
- обрыв датчика положения коленчатого вала (ДКП);
- датчик положения дроссельной заслонки (ДПДЗ) обрыв;
- датчик концентрации кислорода (лямбда-зонд) обрыв и короткое замыкание на корпус;
- обрыв вентилятора радиатора;
- обрыв обмотки регулятора холостого хода (ИР);
- датчик температуры охлаждающей жидкости (CTS) обрыв;
- датчик массового расхода воздуха (AMFRS) обрыв;
- Обрыв реле бензонасоса.
Конструктивно тренажер состоит из металлического каркаса, на котором установлено следующее оборудование: двигатель внутреннего сгорания, топливный бак с топливным насосом и фильтром, алюминиевый каркас с рабочей панелью.
В верхних частях передней панели расположены датчики (частоты вращения, положения коленчатого вала, положения дроссельной заслонки, массового расхода воздуха, концентрации кислорода, температуры охлаждающей жидкости), исполнительные устройства (адсорбер, регулятор холостого хода, вентилятор радиатора, топливный насос, главное реле, модуль зажигания, топливные форсунки) замок зажигания, задний датчик частоты вращения коленчатого вала и диагностическая электронная система управления двигателем, блок ввода неисправностей. Рядом с изображениями датчиков расположены контрольные точки для снятия сигналов с датчиков и регуляторы, позволяющие изменять эти сигналы. Рядом с изображениями исполнительных механизмов также есть контрольные точки для этих устройств.
Датчики и регулирующие ора, позволяют изменять эти сигналы. Контрольные точки и состояние этих устройств.
В нижней части передней панели расположена топливная рампа с форсунками и регулятором давления топлива, расходомер впрыскиваемого топлива с возможностью измерения расхода топлива индивидуально для каждой форсунки, счетчик циклов, позволяющий отключать подача топлива за заданное число циклов двигателя.
В качестве рабочей жидкости системы впрыска вместо бензина используется охлаждающая жидкость для автомобильных систем охлаждения, которая подается из бака электробензонасосом через фильтр тонкой очистки в топливную рампу BOSCH с соленоидными форсунками и датчиком давления топлива регулятор.
Возможна диагностика рабочих параметров и неисправностей с помощью диагностического сканера СКАНМАТИК и его аналогов.
В комплект поставки учебного комплекса входят:
- комплект методической и технической документации для ППС; ПО
- .
Технические характеристики:
Электропитание 220В, 50Гц
Потребляемая мощность, Вт менее 350
Габаритные размеры стенда:
- Ширина, мм 840
- Высота, мм 1555
- Глубина, мм 640
Масса, кг не более 85
Наличие напряжения
220-240В
Срок изготовления
60 дней
Доступны материалы для учителя
Да
Доступны материалы для учащихся
Да
Модули электронного обучения
№
MPI Система управления двигателем Учебное оборудование: NTP Centr
Отзывы
Еще не проверено
Производитель
NTP Centr
Языки контента
Английский , Русский
Знаки сертификации
Гарантия
24
Код производителя
НТЦ-15. 40.2
Бензиновый двигатель
Добавить в список котировок
Написать обзор
Запрос котировок
- Описание
- Технические характеристики
- Загружаемые документы
- Атрибуты
Стенд лабораторный НТЦ-15.40.2 «Система управления двигателем с многоточечным впрыском (МРВ) М1» предназначен для использования в качестве учебного оборудования при проведении лабораторно-практических занятий по дисциплинам: автомобилестроение, техническая эксплуатация автомобилей.
Стенд обеспечивает возможность прямых электрических измерений в цепях исследуемых систем, в том числе неисправностей и их дальнейшую диагностику, настройку параметров с использованием любого известного диагностического оборудования для исследуемых систем двигателей автомобилей. Ввод неисправностей осуществляется не с пульта стенда, как это сделано в НТЦ-15.40, а с помощью ПК со специальным программным обеспечением.
Стенд обеспечивает наглядность при исследовании работы системы управления инжекторным двигателем. Также может использоваться для диагностики и определения рабочих характеристик элементов системы управления инжекторным двигателем.
Модуль неисправностей позволяет выявлять следующие неисправности:
- отказ датчика текущего состояния коленчатого вала (CCSS);
- неисправность датчика текущего состояния дроссельной заслонки (TVCSS);
- датчик кислорода (лямбда-зонд) неисправность;
- отравление датчика кислорода;
- неисправность обмотки контроллера холостого хода (IC);
- неисправность датчика температуры охлаждающей жидкости (LCTS);
- датчик массового расхода воздуха (AMFRS) отказ питания;
- неисправность реле бензонасоса;
- неисправность вентилятора радиатора.
Предусмотрены эксперименты
- Режим запуска двигателя.
- Режим открытого цикла.
- Режим замкнутого цикла.
- Режим ускорения.
- Режим торможения.
- Режим торможения двигателем.
- Режим остановки подачи топлива.
- Чтение характеристики с датчика температуры охлаждающей жидкости. Исследование влияния температуры охлаждающей жидкости на работу системы впрыска топлива.
- Исследование выходного сигнала кислородного датчика. Исследование влияния концентрации кислорода на работу системы впрыска топлива.
- Чтение характеристики с датчика массового расхода воздуха. Исследование влияния массового расхода воздуха на работу системы впрыска топлива.
- Чтение характеристики с датчика текущего состояния дроссельной заслонки. Исследование влияния текущего состояния дроссельной заслонки на работу системы впрыска топлива.
- Исследование выходного сигнала датчика скорости автомобиля.