Для чего нужны клапана в двигателе: Клапаны двигателя

Содержание

Зачем нужны клапаны? — Рамблер/авто

Какой самый популярный вид транспорта в мире? Машина? Велосипед? Реактивный самолет? Если бы мне пришлось рисковать предположением, я бы не выбрал ни одну из этих вещей. Вместо этого я бы выбрал скромный трубопровод, для которого потребуется качественная запорная арматура — santexk.com.ua/g37462416-zapornaya-armatura.

Вы можете не заметить трубы, но они тихо и эффективно транспортируют огромное количество жидкости (воды и газа) по всему миру изо дня в день. Для эффективной работы трубам необходим способ регулирования количества жидкости, которое может пройти через них; им также нужен способ полного отключения потока. Это работа, которую выполняют клапаны: они похожи на механические переключатели, которые могут «включать» и «выключать» трубы или увеличивать или уменьшать количество жидкости, протекающей через них. Давайте внимательнее посмотрим, как они работают!

Клапаны обычно изготавливаются из металла или пластика и имеют несколько разных частей.Для чего нужны клапана в двигателе: Клапаны двигателя Наружная часть называется седлом и часто имеет цельнометаллический внешний корпус и мягкое внутреннее резиновое или пластиковое уплотнение, поэтому клапан делает затвор абсолютно герметичным. Внутренняя часть клапана, которая открывается и закрывается, называется корпусом и устанавливается в седло, когда клапан закрыт. Там также есть некоторая форма механизма открытия и закрытия клапана-либо ручного рычага или колеса (как в кране) или автоматизированного механизма (как в двигателе автомобиля или парового двигателя).

Это часто критически важно для клапанов, которые отключены, чтобы не допустить утечки жидкости или газа через трубу. За счет этого можно избежать несчастных случаев, взрывов, загрязнения или потери ценных химикатов (даже капающий кран может быть «дорогим», если допускать утечку воды) , Вот почему уплотнение на клапане должно быть совершенно надежным, а клапан, который отключен, должен быть плотно закрыт. «Отключить» поток жидкости или газа под высоким давлением, закрыв его клапаном, — физически тяжелая работа: иными словами, для этого нужно приложить много усилий.Для чего нужны клапана в двигателе: Клапаны двигателя Вот почему некоторые клапаны управляются длинными рычагами или большими колесами. Если для действительно больших клапанов требуется слишком большое усилие для человека, они приводятся в действие гидравлическими поршнями.

Клапан двигателя внутреннего сгорания — что такое клапаны двс

Чтобы четырехтактный двс любого автомобиля смог работать, в его устройство входит множество разных деталей и механизмов, которые синхронизированы между собой. Среди таких механизмов – грм. Его функция заключается в том, чтобы обеспечить своевременное срабатывание фаз газораспределения. О том, что это такое, подробно рассказывается здесь.

Если коротко, то газораспределительный механизм в нужное время открывает впускной/выпускной клапан, чтобы обеспечить своевременность процесса при выполнении конкретного такта в цилиндре. В каком-то случае требуется, чтобы оба отверстия были закрыты, в другом – открыто одно или даже оба.

Рассмотрим ближе одну деталь, которая позволяет стабилизировать данный процесс.Для чего нужны клапана в двигателе: Клапаны двигателя Это клапан. В чем особенность его конструкции, а также как он работает?

Что такое клапан двигателя

Под клапаном подразумевается металлическая деталь, устанавливаемая в головке блока цилиндров. Она является частью механизма газораспределения, и приводится в движение распредвалом.

В зависимости от модификации авто двигатель будет иметь нижнее или верхнее расположение ГРМ. Первый вариант еще встречается в некоторых старых модификациях силовых агрегатов. Большинство производителей уже давно перешли на второй вид газораспределительных механизмов.

Причина тому – такой мотор легче настраивать и ремонтировать. Для регулировки клапанов достаточно снять клапанную крышку, и не нужно демонтировать весь агрегат.

Назначение и особенности устройства

Клапан – подпружиненный элемент. В спокойном состоянии он плотно закрывает отверстие. Когда распределительный вал проворачивается, кулачок, расположенный на нем, надавливает на клапан, опуская его. Благодаря этому отверстие открывается.Для чего нужны клапана в двигателе: Клапаны двигателя Подробно устройство распредвала описывается в другом обзоре.

Каждая деталь играет свою функцию, которую конструктивно невозможно выполнить аналогичному элементу, находящемуся рядом. На один цилиндр предусмотрено минимум два клапана. В более дорогих моделях агрегатов их по четыре. Этих элементов в большинстве случаев парное число, и они открывают разные группы отверстий: одни – впускные, а другие – выпускные.

Впускные клапаны отвечают за поступление в цилиндр свежей порции воздушно-топливной смеси, а в моторах с непосредственным впрыском (разновидность инжекторной топливной системы, она описывается здесь) – объема свежего воздуха. Этот процесс происходит в тот момент, когда поршень выполняет такт впуска (с верхней мертвой точки после удаления выхлопа движется вниз).

Выпускные клапана имеют тот же принцип открытия, только выполняют они уже другую функцию. Они открывают отверстие для удаления продуктов горения в выпускной коллектор.

Конструкция клапанов двигателя

Рассматриваемые детали входят в клапанную группу газораспределительного механизма.Для чего нужны клапана в двигателе: Клапаны двигателя В совокупности с другими деталями они обеспечивают своевременную смену фаз газораспределения.

Рассмотрим особенности конструкции клапанов и смежных с ними деталей, от которых зависит их эффективная работа.

Клапаны

Клапаны имеют форму стержня, с одной стороны которого имеется головка или тарельчатый элемент, а с другой – пятка или торец. Плоская часть предназначена для герметичного закрытия отверстий в ГБЦ. Между тарелкой и стержнем сделан плавный переход, а не ступенька. Это обеспечивает обтекаемость клапану, благодаря чему он не создает сопротивление движению рабочей среды.

В одном моторе впускной и выпускной клапана будут немного отличаться. Так, у первых типов деталей тарелка будет шире, чем у вторых. Причина тому – высокая температура и большое давление при удалении через газоотвод продуктов сгорания.

Чтобы детали стоили дешевле, клапаны состоят из двух частей. Отличаются они составом. Эти две части стыкуются при помощи сварки. Рабочая фаска тарелки выпускного клапана тоже является отдельным элементом.Для чего нужны клапана в двигателе: Клапаны двигателя Она наплавляется из другого типа металла, который обладает жаростойкими свойствами, а также устойчивостью к механическим нагрузкам. Помимо этих свойств торец выпускных клапанов не так сильно подвержен образованию ржавчины. Правда, эта часть во многих клапанах изготавливается из материала, идентичного металлу, из которого выполнена тарелка.

Головки впускных элементов обычно имеют плоскую форму. Такая конструкция имеет нужную жесткость и простоту исполнения. Форсированные двигатели могут оснащаться клапанами с вогнутыми тарелками. Такая конструкция немного легче стандартного аналога, благодаря чему снижается сила инерции.

Что касается выпускных аналогов, то форма их головки будет либо плоской, либо выпуклой. Второй вариант более эффективный, так как он обеспечивает лучшее удаление газов из камеры сгорания благодаря своей обтекаемости. Плюс выпуклая тарелка более прочная по сравнению с плоским аналогом. С другой стороны такой элемент тяжелее, из-за чего страдает его инерционность.Для чего нужны клапана в двигателе: Клапаны двигателя Для таких типов деталей будут требоваться более жесткие пружины.

Также конструкция стержня этого типа клапанов немного отличается от впускных деталей. Чтобы обеспечить лучший теплоотвод от элемента, толщина стержня делается большей. Это повышает устойчивость к сильному нагреву детали. Однако у такого решения есть недостаток – оно создает большее сопротивление удаляемым газам. Несмотря на него, производители все же используют такую конструкцию, потому что выброс отработанного газа выполняется под сильным напором.

На сегодняшний день существует инновационная разработка клапанов с принудительным охлаждением. Такая модификация имеет пустотелый стержень. В его полость закачан жидкий натрий. Это вещество при сильном нагреве (находится возле головки) испаряется. В результате этого процесса газ поглощает тепло от металлических стенок. Пока он поднимается вверх, газ остывает, и конденсируется. Жидкое вещество стекает к основанию, где процесс повторяется.

Чтобы клапаны обеспечивали герметичность сопряжения, в седле и на тарелке выбирается фаска.Для чего нужны клапана в двигателе: Клапаны двигателя Она тоже делается со скосом, чтобы устранить ступеньку. При установке клапанов на мотор их притирают к головке.

На герметичность соединения седла и головки влияет образовавшаяся на пояске коррозия, а выпускные детали часто страдают от образования нагара. Чтобы продлить срок службы клапана, некоторые двигатели оснащаются дополнительным механизмом, который при закрытии выпускного отверстия немного проворачивает клапан. Благодаря этому удаляется образовавшийся нагар.

Иногда бывает так, что хвостовик клапана ломается. Из-за этого деталь упадет в цилиндр, что повредит мотор. Для выхода из строя достаточно, чтобы коленвал совершил пару инерционных оборотов. Чтобы предотвратить подобную ситуацию, производители автоклапанов могут оснащать деталь стопорным кольцом.

Немного об особенностях пятки клапана. Эта часть подвергается силе трения, так как на нее оказывает воздействие кулачок распредвала. Чтобы клапан открылся, кулачок должен нажать на него с такой силой, чтобы сжалась пружина.Для чего нужны клапана в двигателе: Клапаны двигателя Этот узел должен получать достаточно смазки, а чтобы он быстро не изнашивался, его закаляют. Некоторые разработчики моторов для предотвращения износа стержня используют специальные колпачки, которые выполнены из материалов, устойчивым к подобным нагрузкам.

Чтобы во время нагрева клапан не заклинило во втулке, часть стержня возле тарелки немного тоньше, чем часть, находящаяся возле пятки. Для фиксации клапанной пружины на торце клапанов делаются две проточки (в некоторых случаях одна), в которые вставляются сухари опоры (неподвижной тарелки, куда упирается пружина).

Клапанные пружины

На эффективность работы клапана влияет пружина. Она нужна для того, чтобы головка и седло обеспечивали герметичное соединение, и рабочая среда не проникала через образовавшийся свищ. Если эта деталь будет сильно жесткой, кулачок распредвала или пятка стержня клапана быстро износятся. С другой стороны слабая пружина не сможет обеспечить плотное прилегание двух элементов.

Так как этот элемент работает в условиях резко меняющихся нагрузок, он может сломаться.Для чего нужны клапана в двигателе: Клапаны двигателя Для предотвращения быстрых поломок производители силовых агрегатов используют разные типы пружин. В некоторых ГРМ устанавливаются двойные типы. Такая модификация снижает нагрузку на отдельный элемент, тем самым увеличивая его рабочий ресурс.

В таком исполнении пружины будут иметь разное направление витков. Это предотвращает попадание частиц лопнувшей детали между витками другой. Для изготовления этих элементов используется пружинная сталь. После формирования изделия его закаляют.

По краям каждая пружина отшлифовывается, благодаря чему обеспечивается контакт всей опорной части к головке клапана и верхней тарелке, закрепленной на головке блока цилиндров. Чтобы деталь не подвергалась окислению, ее покрывают слоем кадмия и оцинковывают.

Помимо классических клапанов, работающих от ГРМ, в спортивных моделях транспорта может использоваться пневмоклапан. По сути это такой же элемент, только приводится в движение он особенным пневматическим механизмом. Благодаря этому достигается такая точность срабатывания, что мотор способен развивать невероятные обороты – вплоть до 20 тысяч.Для чего нужны клапана в двигателе: Клапаны двигателя

Такая разработка появилась еще в 1980-х годах. Она способствует более четкому открытию/закрытию отверстий, чего не может обеспечить ни одна пружина. Этот привод работает от сжатого газа, находящегося в резервуаре над клапаном. Когда кулачок бьет по клапану, сила удара составляет приблизительно 10 Бар. Клапан открывается, а когда распредвал ослабляет воздействие на его пятку, сжатый газ быстро возвращает деталь на свое место. Чтобы давление не падало из-за возможных утечек, система оснащена дополнительным компрессором, резервуар которого находится под давлением около 200 Бар.

James Ellison, PBM Aprilia, CRT Test Jerez Feb 2012

Такая система используется в мотоциклах класса MotoGP. Этот транспорт при одном литре объема мотора способен развить 20-21 тысячу оборотов коленвала. Одна из моделей с подобным механизмом – одна из моделей мотоцикла Aprilia. Его мощность составила невероятные 240 л.с. Правда, для двухколесного транспорта это слишком много.

Направляющие втулки клапанов

Роль этой детали в работе клапана заключается в том, чтобы обеспечить его прямолинейное перемещение.Для чего нужны клапана в двигателе: Клапаны двигателя Также втулка способствует охлаждению стержня. Эта часть нуждается в постоянной смазке. В противном случае стержень будет подвергаться постоянной термической нагрузке, а втулка быстро сотрется.

Материал, который могут использовать для изготовления таких втулок, должен обладать теплоустойчивостью, выдерживать постоянное трение, хорошо отводить тепло от смежной детали, а также выдерживать большие температуры. Такие требования может удовлетворить перлитный серый чугун, алюминиевая бронза, керамика с хромом или хромникелем. Все эти материалы имеют пористую структуру, благодаря чему способствуют удержанию масла на своей поверхности.

Втулка для выпускного клапана будет иметь немного больший зазор между стержнем, чем у впускного аналога. Причина тому – большее тепловое расширение клапана, работающего на удаление отработанного газа.

Седла клапанов

Это контактная часть отверстия ГБЦ возле каждого цилиндра и тарелки клапана. Так как эта часть головки сталкивается с механическими и термическими нагрузками, она должна обладать хорошей устойчивостью к сильному нагреву и частым ударам (когда автомобиль едет быстро, обороты распределительного вала настолько высокие, что клапана буквально падают в седло).Для чего нужны клапана в двигателе: Клапаны двигателя

Если блок цилиндров и его головка изготавливается из алюминиевого сплава, седла клапанов обязательно будут выполнены из стали. Чугун и так неплохо справляется с подобными нагрузками, поэтому седло в такой модификации выполняется в самой головке.

Существуют также вставные седла. Они изготавливаются из легированного чугуна или жаростойкой стали. Чтобы фаска элемента не так сильно изнашивалась, ее выполняют путем наслоения жаростойкого металла.

Вставное седло фиксируется в отверстии головки разными способами. В некоторых случаях оно запрессовывается, а в верхней части элемента выполняется проточка, которая в процессе монтажа заполняется металлом тела головки. Благодаря этому создается целостность узла из разных металлов.

Стальное седло крепится путем развальцовки верхней части в теле головки. Существуют седла цилиндрической и конической форм. В первом случае они монтируются до упора, а вторые имеют небольшой торцевой зазор.

Количество клапанов в двигателе

Стандартный 4-тактный двигатель внутреннего сгорания оснащается одним распределительным валом и двумя клапанами на один цилиндр.Для чего нужны клапана в двигателе: Клапаны двигателя В таком исполнении одна деталь отвечает за впрыск смеси воздуха или просто воздуха (если топливная система имеет непосредственный впрыск), а другая – за отвод отработанных газов в выпускной коллектор.

Более эффективная работа у модификации двигателя, в которой на один цилиндр имеется четыре клапана – по два на каждую фазу. Благодаря такой конструкции обеспечивается лучшее наполнение камеры новой порцией ВТС или воздуха, а также ускоренное удаление выхлопных газов и проветривание полости цилиндра. Такими моторами начали комплектовать автомобили, начиная с 70-х гг прошлого столетия, хотя разработка таких агрегатов началась еще в первой половине 1910-х годов.

На сегодняшний день для улучшения работы силовых агрегатов существует разработка двигателя, в котором имеется пять клапанов. Два на выпуск, и три на впуск. Примером таких агрегатов являются модели концерна Volkswagen-Audi. Хотя принцип работы грм в таком моторе идентичен классическим вариантам, но конструкция этого механизма усложнена, из-за чего инновационная разработка стоит дорого.Для чего нужны клапана в двигателе: Клапаны двигателя

Похожий нестандартный подход применяет также автопроизводитель Mercedes-Benz. Некоторые двигатели этого автопроизводителя оснащаются тремя клапанами на цилиндр (2 – впускные, 1 – выпускной). Дополнительно в каждой камере котелка устанавливается по две свечи зажигания.

Число клапанов производитель определяет по размеру камеры, в которую поступает топливо и воздух. Чтобы улучшить ее наполнение, нужно обеспечить лучший приток свежей порции ВТС. Для этого можно увеличить диаметр отверстия, а вместе с ним и размер тарелки. Однако такая модернизация имеет свои рамки. А вот установить дополнительный впускной клапан вполне реально, поэтому автопроизводители разрабатывают именно такие модификации ГБЦ. Так как скорость впуска важнее выпуска (удаление выхлопа производится под давлением поршня), то при нечетном количестве клапанов больше всегда будет впускных элементов.

Из чего изготавливают клапана

Так как клапаны работают в условиях максимальных температурных и механических нагрузок, они изготавливаются из металла, устойчивого к таким факторам.Для чего нужны клапана в двигателе: Клапаны двигателя Больше всего нагревается, а также сталкивается с механическим воздействием место контакта седла и тарелки клапана. При высоких оборотах мотора клапаны быстро опускаются в седла, что создает удар на краях детали. Так же в процессе сгорания смеси воздуха и топлива тонкие края тарелки подвергаются резкому нагреву.

Помимо тарелки клапана нагрузке подвергаются еще и клапанные втулки. Негативными факторами, которые приводят к износу эти элементы, является недостаточная смазка и постоянное трение при быстром передвижении клапанов.

По этим причинам к клапанам предъявляются такие требования:

  1. Они должны герметично закрывать впускное/выпускное отверстия;
  2. При сильном нагреве края тарелки не должны деформироваться от ударов о седло;
  3. Должны быть хорошо обтекаемыми, чтобы поступающей или удаляемой среде не создавалось сопротивление;
  4. Деталь не должна быть тяжелой;
  5. Металл должен быть жестким и прочным;
  6. Не должен подвергаться сильному окислению (когда машина ездит редко, края головок не должны ржаветь).Для чего нужны клапана в двигателе: Клапаны двигателя

Деталь, открывшая отверстие, в дизелях нагревается до 700 градусов, а в бензиновых аналогах – до 900 выше нуля. Ситуация усложняется тем, что при таком сильном нагреве открытый клапан не охлаждается. Выпускной клапан может быть изготовлен из любой высоколегированной стали, выдерживающей большой нагрев. Как уже было сказано, один клапан изготавливается из двух разных типов металла. Головка сделана из жаропрочных сплавов, а стержень – из углеродистой стали.

Что касается впускных элементов, то они охлаждаются за счет контакта с седлом. Тем не менее, их температура тоже высокая – порядка 300 градусов, поэтому не допускается, чтобы при нагреве деталь деформировалась.

Часто в состав сырья для создания клапанов входит хром, что повышает его термическую устойчивость. В процессе сгорании бензина, газа или дизтоплива выделяются некоторые вещества, которые могут агрессивно воздействовать на металлические детали (например, это окись свинца). Для предотвращения негативной реакции в материал головки клапана могут входить никель, марганец и азотные соединения.Для чего нужны клапана в двигателе: Клапаны двигателя

И напоследок. Ни для кого не является секретом, что в любом двигателе со временем клапана прогорают. Вот небольшое видео о том, по каким причинам это происходит:

Вопросы и ответы:

Что делают клапана в двигателе? Во время их открывания впускные клапаны обеспечивают приток свежего воздуха (или воздушно-топливной смеси) в цилиндр. Открытые выпускные клапаны отводят отработавшие газы в выпускной коллектор.

Как понять, что прогорели клапана? Ключевым признаком прогоревших клапанов является троение мотора независимо от оборотов. При этом мощность мотора прилично снижается, а расход топлива увеличивается.

Какие части открывают и закрывают клапаны? Шток клапана связан с кулачками распределительного вала. Во многих современных двигателях между этими деталями устанавливаются еще гидрокомпенсаторы.

ПОХОЖИЕ СТАТЬИ

Авторская статья «Зачем обрабатывать седла клапанов?» на сайте инженерной-технологической компании Механика

Одна из самых распространенных операций в практике современной мастерской по ремонту двигателей внутреннего сгорания – восстановление седел клапанов.Для чего нужны клапана в двигателе: Клапаны двигателя На первый взгляд, это сделать довольно просто, особенно в сравнении с прочими операциями по ремонту головки блока цилиндров.

На самом деле очень сложно выполнять подобную работу и постоянно выдерживать параметры, которые имеют решающее значение для надлежащего уплотнения клапана. В этой статье мы расскажем, как и для чего обрабатывать седло клапана. Мы покажем все важные особенности, чтобы вы лучше поняли, почему этот процесс часто заканчивается неудачей.

Знаете ли вы, что рабочая температура тарелки выпускного клапана в бензиновом двигателе меняется от 500 до 800°С, в зависимости от нагрузки и рабочего такта? Знаете ли вы, что примерно 75% тепла снимает с тарелки клапана именно седло, а оставшаяся четверть тепла рассеивается в окружающую отливку головки блока, направляющие втулки, клапанные пружины и т. д.? Знаете ли вы, что когда двигатель работает на 6000 об/мин, клапан открывается и закрывается 50 раз в секунду? 

Поэтому остаются ничтожные доли секунды для надежного уплотнения камеры сгорания и передачи тепла от клапана, не так ли? Если клапан не имеет возможности рассеивать это тепло через седло, то его избыток достанется другим деталям, расположенным рядом, и вызовет различные дефекты и неисправности, такие как износ направляющих втулок, поломка самого клапана и др.Для чего нужны клапана в двигателе: Клапаны двигателя

Итак, биение рабочих фасок седла является основной причиной, влияющей на его износ. Несомненно, есть и другие факторы, играющие не столь важную роль. Но мы упомянем и про них.

Почему седло клапана выходит из строя?
  • На первом месте – эксцентриситет седла клапана, то есть седло не сцентрировано (не концентрично) по оси отверстия в направляющей втулке клапана.

  • Другая причина неисправности седла – седло не перпендикулярно оси отверстия в направляющей втулке клапана.

В обоих этих случаях повреждения седла клапана могут быть схожими.

Какие еще проблемы могут привести к утечке газов в зазор между клапаном и седлом?
  • Некачественная обработка рабочей фаски седла клапана.Для чего нужны клапана в двигателе: Клапаны двигателя Одной из причин может стать биение, возникающее из-за неправильной подачи или скорости резания. По этой причине резец станка начинает вибрировать, количество материала, срезаемого с поверхности седла, становится неравномерным, и фаска получается «кривой».

  • Нечто подобное может произойти и при шлифовании седел, – по причине разрушения рабочей поверхности шлифовального круга или смещения круга от оси седла из-за «засаливания» круга продуктами обработки.

Какое влияние оказывает твердость материала седла?
  • Седла клапанов в некоторых двигателях имеют очень высокую твердость. Подобные седла, сильно изношенные или «выбитые», требуют для восстановления большего съема материала. Для этого нужен мощный станок, специальные резцы и тщательно подобранный режим резания.Для чего нужны клапана в двигателе: Клапаны двигателя Несоблюдение этих условий неизбежно приведет к биению фасок седла, поломке инструмента, а в самом тяжелом случае – к срыву обрабатываемой головки блока со станка.
Как правильно определить причину образования биения седла после обработки?
  • Если станок работает нормально, то биение седла, скорее всего, вызвано неправильно подобранным режимом резания.

  • Если при измерении биения седла максимальное и минимальное отклонения всегда находятся в одном и том же месте, проблема, скорее всего, связана со станком.

  • Если биение седла является случайным, проблема может заключаться в неправильной заточке инструмента, ошибках рабочего – при центрировании инструмента, подходе при резке или оценке материала седла.

Как мы говорили ранее, существуют и другие факторы, которые влияют на нормальную посадку клапана в седло.Для чего нужны клапана в двигателе: Клапаны двигателя В частности, это усилие клапанной пружины и зазор между стержнем клапана и направляющей втулкой.

Усилие пружины:

если пружина слишком слабая, клапан при соприкосновении с седлом отскакивает. При этом уменьшается теплопередача от клапана к седлу. По мере увеличения оборотов двигателя возможность «отскока» увеличивается.

Имейте в виду, что не только пружина «управляет» инерцией клапана. В зависимости от конструкции конкретного двигателя инерция клапана сильно зависит от перемещения рокеров, работы систем регулировки фаз, массы толкающих штанг и прочих деталей привода клапанов.

Зазор между стержнем и направляющей: если зазор слишком велик, то клапан будет разбивать седло, так как угол, при котором клапан садится на место, сильно меняется – в зависимости от режима работы двигателя. Чем больше зазор, тем больше биение седла.

Итак, каков оптимальный способ механической обработки седла клапана?

Сейчас существует много вариантов: от притирки и шлифования до точной обработки профиля седла на станке с ЧПУ, с использованием «многоугольных» фрез или однорезцовых.Для чего нужны клапана в двигателе: Клапаны двигателя

Есть превосходные полуавтоматические станки, чрезвычайно эффективные при обработке седел, делающие все операции намного проще.

Если вы владелец мастерской, то вы должны рассмотреть все варианты и определить, что лучше всего соответствует вашим потребностям. Режущий инструмент (фрезы или резцы) обеспечивают постоянную ширину седел, но они могут быть дороже, чем шлифовальные круги, и когда понадобится обработать седло с новым профилем, вам придется заказывать дополнительные резцы.

То же самое можно сказать и про использование станка с горизонтальным или вертикальным шпинделем. Поэтому все эти вопросы надо рассмотреть для себя сразу. В противном случае вам потребуется множество разнообразного и специального инструмента, а также различные навыки при обработке. В итоге всё это приведет к удорожанию ремонта двигателя.Для чего нужны клапана в двигателе: Клапаны двигателя

Обработка седла клапана одним резцом является альтернативой обработке многолезвийной фрезой, поскольку вы можете создавать разные профили седла, различной ширины и под разными углами единственной резец-головкой. Причем она проще в настройке и работе. Как правило, чем более совершенным является оборудование, тем лучше должна быть квалификация рабочего, тем выше стоимость самого станка и инструмента. Но и производительность в этом случае становится выше.

Так или иначе, ваш выбор должно предопределить то, что конкретно требуется вашим клиентам. Главное, что надо обеспечить – качество, умеренную цену и сроки выполнения работ. Это именно то, от чего надо отталкиваться. Посмотрите «живое» оборудование, походите по магазинам или отраслевым выставкам. Это поможет вам составить список необходимого именно вам оборудования.

Но основой всему должен стать мерительный инструмент. Ведь только точное измерение биения фасок седла покажет, насколько эффективно соблюдается технология и используется оборудование.Для чего нужны клапана в двигателе: Клапаны двигателя Допуски на биение седла клапана зависят от диаметров стержня и тарелки клапана, углов фасок седла и т.д. Обычно подобные допуски указаны в спецификации на двигатель, но отклонение более 0,05 мм является уже неприемлемым. А для большей части современных моторов и этого очень много.

Независимо от того, как обработаны седла, вы выбираете нужный инструмент и технологические операции для достижения желаемой цели – минимального биения. 

Здесь мы приводим короткий список причин, которые могут вызвать проблемы с биением:
  • Изношенный режущий или шлифовальный инструмент.

  • Заточка, которая на самом деле отнюдь не улучшает режущий инструмент.

  • Станок ненадежно выставлен на своем фундаменте. Этот момент обычно не воспринимается всерьез как причина проблем с биением, но вибрация станка во время работы не позволит получить хорошего качества обработки.Для чего нужны клапана в двигателе: Клапаны двигателя

  • Резец-головка должна быть закреплена так, чтобы она не могла смещаться или вибрировать при обработке седла.

  • Если станок подключен к пневмосистеме, то стоит обратить внимание на качество, объем и давление поступающего воздуха.

В заключение хотелось бы напомнить, что нужно проводить регулярные обслуживание и ремонт своего оборудования – это залог успеха вашего бизнеса: ведь исправное оборудование многое говорит о вас как о бизнесмене.

ХОТИТЕ СТАТЬ АВТОРОМ?

Пришлите свою статью


Принцип работы клапанов двигателя


Клапан двигателя

Клапан – деталь газораспределительного механизма. Клапанный механизм (механизм привода клапанов) является составной частью газораспределительного механизма (ГРМ).

ГРМ бывает нижнеклапаннымм и верхнеклапаннымм.Для чего нужны клапана в двигателе: Клапаны двигателя Современные силовые агрегаты повсеместно имеют верхнее расположение клапанов.

Клапан реализует прямую подачу в цилиндры определенной порции топливно-воздушной смеси или только воздуха, а также осуществляет выпуск отработавших газов. Четырехтактный двигатель внутреннего сгорания для нормальной работы требуется не менее двух клапанов на один цилиндр.

Клапаны бывают двух видов, что зависит от их прямой функции:

  • впускной клапан;
  • выпускной клапан;

Сегодня на современные моторы устанавливаются клапаны тарельчатого типа, которые имеют стержень. Устройство клапана включает в себя так называемую тарелку клапана. Наиболее распространенная конструкция ДВС получила клапаны, которые находятся в головке блока цилиндров (ГБЦ). То место, где клапан контактирует с ГБЦ, получило название седло клапана. Седло клапана ДВС стальное или чугунное, запрессовано в головку блока цилиндров.

Максимально качественное наполнение цилиндра двигателя топливно-воздушной смесью или воздухом  требует того, чтобы диаметр тарелки впускного клапана был больше, чем у выпускного клапана.Для чего нужны клапана в двигателе: Клапаны двигателя Впускные и выпускные клапаны имеют определенные отличия по этой причине. Впускной клапан зачастую получает больший диаметр своей тарелки. Это сделано для того, чтобы улучшить  наполнение цилиндров топливно-воздушной смесью или только воздухом.

Что касается выпускного клапана, в увеличении диаметра его тарелки необходимость также присутствует. Это необходимо для лучшей очистки цилиндров от продуктов сгорания. Отметим, что размер тарелки впускного и выпускного клапанов ограничен размерами самой камеры сгорания, которая изготовлена в ГБЦ. Качественное наполнение цилиндров и очистка реализуются не путем увеличения диаметра тарелки одного клапана, а путем установки большего количества клапанов на один цилиндр.

Клапаны ДВС в процессе работы мотора испытывают серьезные механические и тепловые нагрузки. По этой причине их изготавливают из особых жаростойких и износостойких металлических сплавов. Кромка тарелки клапана может быть усиленной, иногда сама тарелка усиливается при помощи керамического напыления.Для чего нужны клапана в двигателе: Клапаны двигателя Что касается стержня, то для впускного клапана предусмотрен цельнометаллический стержень. Выпускной клапан имеет полый стержень, дополнительно получает натриевое наполнение для улучшения охлаждения тарелки клапана.

Повышенное внимание уделяется вопросу охлаждения именно выпускных клапанов, особенно для производительных силовых агрегатов. Выпускные клапана подвержены тепловой нагрузке намного больше впускных. Как уже было сказано, клапаны в таких моторах имеют полый стержень, который внутри наполнен натрием. Такое решение является эффективным способом охлаждения. Указанный натрий при выходе мотора на рабочую температуру плавится внутри полого стержня клапана, а затем в расплавленном виде течет. Так осуществляется перенос избытков тепла от разогретой тарелки клапана к его стержню.

Место прилегания тарелки клапана к блоку называется фаской. Для того чтобы фаска не страдала от скопления нагара, а также было реализовано равномерное распределение тепла, в конструкции клапанного механизма используются решения для вращения (проворачивания) клапана в процессе работы ДВС.Для чего нужны клапана в двигателе: Клапаны двигателя

Современное устройство наиболее распространенного двигателя предполагает схему с четырьмя клапанами, что означает наличие двух впускных и двух выпускных клапанов на каждый отдельный цилиндр. В момент открытия (клапан опускается) впускного клапана образуется кольцевой проход. Через этот проход между тарелкой клапана и седлом клапана в цилиндр попадает топливно-воздушная смесь или только воздух. От площади проходного сечения будет зависеть эффективность наполнения цилиндра, что далее влияет на показатели производительности при рабочем ходе поршня.

Могут также встречаться двухклапанные, трехклапанные и пятиклапанные схемы устройства ГРМ. В первом случае используется только один впускной и один выпускной клапан на цилиндр. Для трехклапанных схем характерно наличие двух впускных и одного выпускного клапана.Для чего нужны клапана в двигателе: Клапаны двигателя Схема на пять клапанов означает, что стоят три впускных и два выпускных клапана. Количество клапанов на цилиндр зависит от общего размера камеры сгорания конкретного двигателя, реализации привода клапанов, степени форсировки мотора, а также ряда других факторов.

Открытие клапана реализовано при помощи нажатия на  клапанный стержень. За открытие отвечает привод клапана. Указанный привод обеспечивает передачу усилия от распределительного вала (распредвала). В современных двигателях используются две базовые схемы привода клапанов: привод посредством гидравлических толкателей клапана и реализация привода при помощи роликовых рычагов.

Закрытие клапана в процессе работы ДВС осуществляется при помощи специальной пружины определенной жесткости. Жесткость такой пружины должна быть ограниченной, чтобы не создавать больших ударных нагрузок на седла клапанов. Сила воздействия пружины заставляет тарелку клапана герметично перекрывать впускной или выпускной канал. Пружина клапана крепится на стержне посредством тарелки клапанной пружины и сухарей.Для чего нужны клапана в двигателе: Клапаны двигателя Во время работы мотора, особенно под нагрузкой, могут возникать резонансные колебания на клапанах. Для устранения этого нюанса могут быть установлены сразу две клапанные пружины с разнонаправленными витками.

Жесткость таких пружин меньше по сравнению с решениями, которые получили только по одной пружиной. Использование двух пружин подразумевает то, что они навиты в разные стороны. Это сделано для предотвращения заклинивания клапана в результате поломки одной пружины. Так инженеры исключили риск попадания витков одной пружины клапана между витками другой. Для уменьшения трения клапанный механизм конструктивно имеет вышеупомянутые ролики (роликовый рычаг), которые находятся на толкателях и рычагах привода клапанов.

Читайте также

Как работает двигатель?

Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель — это «сердце» почти любого автомобиля — 95% всех машин работают на двигателе внутреннего сгорания.Для чего нужны клапана в двигателе: Клапаны двигателя

В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.

Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина — это попросту сжечь его внутри двигателя. Таким образом, автомобильный «движок» является двигателем внутреннего сгорания — т.е. сгорание бензина происходит внутри него.

Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные — совсем другой. Каждый из них имеет свои преимущества и недостатки.Для чего нужны клапана в двигателе: Клапаны двигателя

Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.

А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.

Как работает двигатель?

Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа.Для чего нужны клапана в двигателе: Клапаны двигателя  Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой — открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро ​​для двигателя автомобиля!

Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто — в честь Николая Отто, который изобрел его в 1867 году.Для чего нужны клапана в двигателе: Клапаны двигателя Итак, вот они, эти 4 такта работы двигателя:

  1. Такт впуска топлива
  2. Такт сжатия топлива
  3. Такт сгорания топлива
  4. Такт выпуска отработавших газов

Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее «картофельной пушке». Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов — их, на самом деле не так много в принципе работы двигателя!

На рисунке буквами обозначены следующие элементы двигателя:

A — Распределительный вал
B — Крышка клапанов
C — Выпускной клапан
D — Выхлопное отверстие
E — Головка цилиндра
F — Полость для охлаждающей жидкости
G — Блок двигателя
H — Маслосборник
I — Поддон двигателя
J — Свеча зажигания
K — Впускной клапан
L — Впускное отверстие
M — Поршень
N — Шатун
O — Подшипник шатуна
P — Коленчатый вал

Вот что происходит, когда двигатель проходит свой ​​полный четырёхтактный цикл:

  1. Начальное положение поршня — в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха.Для чего нужны клапана в двигателе: Клапаны двигателя  Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
  2. Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в «западне»), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
  3. Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
  4. После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.

Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам.Для чего нужны клапана в двигателе: Клапаны двигателя Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.

Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:

Как работает двигатель — анимация

Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое «картофельной пушкой», является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.

Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!

Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок.Для чего нужны клапана в двигателе: Клапаны двигателя Посмотрите — ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:

Типы двигателей

Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:

  • Рядный
  • V-образный
  • Оппозитный

Вот они — все три типа расположения цилиндров в двигателе:

Рядное расположение 4-х цилиндров

Оппозитное расположение 4-х цилиндров

V-образное расположение 6 цилиндров

Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.Для чего нужны клапана в двигателе: Клапаны двигателя

Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:

Давайте рассмотрим некоторые ключевые детали двигателя более подробно:

  • Свеча зажигания обеспечивает искру, которая зажигает воздушно-топливную смесь, так, чтобы происходило сгорание. Искра должна произойти в нужное время, чтобы двигатель работал должным образом.
  • Клапаны — впускные и выпускные — также должны открываться в строго нужное время, чтобы впустить воздух и топливо и выпустить отработавшие газы. Обратите внимание, что оба клапана закрыты во время сжатия и сгорания так, что воздушно-топливная смесь плотно «замурована» в цилиндре.
  • Поршень представляет собой цилиндрический кусок металла, который движется вверх и вниз внутри цилиндра.
  • Поршневые кольца. Мы их пока ещё не видели на рисунках, но это довольно часто употребляемая вещь, так как от их износа зависит многое в работе двигателя.Для чего нужны клапана в двигателе: Клапаны двигателя  Поршневые кольца огибают поршень и упираются во внутреннюю поверхность цилиндра, двигаются вверх/вниз вместе с поршнем и обеспечивают уплотнение между наружным краем поршня и внутренней кромкой цилиндра. Кольца служат двум целям: предотвращают утечку топлива в масляный отстойник во время сжатия и горения и удерживают масло в картере от утечки в область горения, где оно может сгореть из-за невероятно высокой температуры. Большинство автомобилей с такими симптомами как повышенный расход топлива и масла, чёрный дым из глушителя, и с пробегом более 100 тысяч километров, попросту имеют изношенные кольца, которые больше не «запечатывают» поршень должным образом.
  • Шатун соединяет поршень с коленчатым валом. Он может поворачиваться на обоих концах так, что его угол может меняться в то время как поршень движется и когда коленчатый вал поворачивается.
  • Коленчатый вал крутится за счёт движения поршня.
  • Картер окружает коленчатый вал.Для чего нужны клапана в двигателе: Клапаны двигателя  Он содержит некоторое количество машинного масла, которое собирает на дне отстойника.

А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:

Полный цикл работы двигателя

Далее мы узнаем, что может помешать работе двигателя.

Почему двигатель не работает?

Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится. Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:

  • Плохая топливная смесь
  • Отсутствие сжатия
  • Отсутствие искры

Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная «большая тройка» является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.Для чего нужны клапана в двигателе: Клапаны двигателя

Плохая топливная смесь может быть следствием одной из причин:

  • У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
  • Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
  • Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
  • В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.

Отсутствие сжатия — если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:

  • Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
  • Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
  • Появилось отверстие в цилиндре.Для чего нужны клапана в двигателе: Клапаны двигателя

Отсутствие искры может быть по ряду причин:

  • Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
  • Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
  • Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.

И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:

  • Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
  • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
  • Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы — выйти, поэтому двигатель опять-таки не сможет работать.Для чего нужны клапана в двигателе: Клапаны двигателя
  • Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
  • Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.

В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.

Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме.Для чего нужны клапана в двигателе: Клапаны двигателя  Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.

Как работают клапаны?

Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом. Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

Большинство современных двигателей имеют то, что называют накладными кулачками. Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями.Для чего нужны клапана в двигателе: Клапаны двигателя Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

Как работает система зажигания?

Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.Для чего нужны клапана в двигателе: Клапаны двигателя

Как работает охлаждение?

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его! Пусковая система состоит из стартера с электродвигателем.Для чего нужны клапана в двигателе: Клапаны двигателя Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:

  • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
  • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
  • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
  • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Как работает впрыск и смазочная система?

Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.

Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).

Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле — это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора. Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле, фарам, стеклоочистителям, электрическим стеклоподъемникам, приводу сидений, бортовому компьютеру и ещё множеству устройств) посредством проводки автомобиля.

Теперь можно сказать, что Вы знаете всё об основах главных подсистем двигателей!

впускной и выпускной клапан, давление

3203 Просмотров

Для работы автомобиля используется два клапана. Первый, впускающий топливную смесь в цилиндр, – это впускной клапан; другой, который выпускает переработанный воздух из мотора, – это выпускной клапан. Важно, чтобы эти два устройства были открыты и закрыты в нужное время, неважно на каком уровне движения авто, тогда можно говорить об эффективности мотора.

ДВС состоит из распредвала и коленвала, а также поршневой системы. Распределительный вал вращается благодаря цепям, ремням или нескольким шестеренкам (в зависимости от типа ГРМ). Именно эти соединения служат для синхронной работы всего механизма клапанов.

Верхнее положение вала

В зависимости от конструкции силового агрегата, вал может быть расположен, либо вверху над блоком, либо внутри него. Рассмотрим сначала первый случай.

Благодаря верхнему положению вала другие детали взаимосвязаны с цилиндрами или толкателями.

Принцип работы следующий: то, что толкает, касается детали, которая в это время передает энергию детали, а ей удается опереться о ножку клапана, он держится при помощи пружинки, отличающейся силой, приподнятым, то есть он закрыт.

В описанной системе, распредвал, находящийся в двигателе наверху, работает благодаря приводу, имеющему зубчатые зацепы. Также видно, что кулачки и устройство толкателей, находящихся прямо над двумя затворами, связаны между собой.

Давление толкателя, оказываемое на кулачок, побуждает деталь, на которой держится клапан, ослабить пружинку. Далее, когда вал вращается, пружина делает ход и становится на свое место, тогда происходит закрытие клапана.

Именно эта конструкция позволяет работать двигателю, который оснащен верхним расположением клапанного механизма.

Двигатель, имеющий один вал распределителя

Существуют двигатели внутреннего сгорания, не имеющих толкатели, поэтому для открытия и закрытия затворов используется распределительный вал в виде одинарного типа. Называется эта конструкция – однораспредвальный двигатель. Там детали клапана помещаются в головке. Конструкция имеет мало подвижных частей, именно это способствует ее надежности, позволяя действовать даже тогда, когда скорость автомобиля на пределе. При этом материал, из которого изготавливаются запчасти – металл (специальный сплав).

Для более эффективной работы мотора между элементами должно быть свободное пространство – зазор. Если зазоры между затворной ножкой, кулачком или коромыслом отсутствуют, тогда система будет работать на износ, вызвав серьезные повреждения.

Также стоит отметить, что излишние зазоры приведут к тому, что клапан совершит открытие раньше времени, а закрытие позже. Таким образом, сила ДВС будет снижена, а под высоким давлением затворов ход будет осуществляться шумнее.

Если же зазор будет мал, то и давление станет меньше, это приведет к тому, что ход затвора станет весьма затруднительным, тем самым автомобиль будет терять мощность.

Есть такие двигатели внутреннего сгорания, которые работают автоматически, сами подстраивая затворы под нужное действие. Для этого нужно обильное количество смазочной жидкости, ведь именно под ее давлением будет работать система клапанов.

Вал вместе с толкателями внутри блока

При таком положении конструкции клапанов, то есть когда она располагается внутри системы цилиндров, толкающее устройство может оказывать воздействие на деталь, непосредственно касающуюся клапана, которая его открывает. Это считается более выгодным положением, чем предыдущее, которое было рассмотрено выше. Ведь, используя много подвижных частиц, ход автомобиля уменьшается на порядок. В результате чего, впускной клапан и выпускной клапан имеют меньшее давление, что снижает на порядок мощность двигателя внутреннего сгорания.

Сравнивая дальше, можно увидеть, что ДВС, который содержит вал вверху, а также штанги распределительного вала, которые располагаются в головке цилиндра, имеет больший ход. Когда вал вращается, то затвор может открыться или закрыться под давлением хода вала. Служит для открывания и закрывания клапанов толкающее устройство, а также коромысло вместе со штангой. Благодаря пружине клапан держится в закрытом положении.

То, сколько зубчиков на звезде, которая расположена в цепи ведущего вала, определяет мощность давления кулачка на деталь, касающуюся клапана, которое способствует открыванию затворов. При этом зубчиков на шестеренке распредвала меньше раза в два, это приводит к тому, что вал вращается с несколько меньшей скоростью, чем сам двигатель внутреннего сгорания.

ДВС с одним валом

Есть такие модели ДВС, способствующие прямому воздействию кулачков на рычаги, они обычно выполняются небольшими, и их еще называют пальцами. В таком двигателе внутреннего сгорания материал затворов тщательно продуман. В нем не так много составляющих, играющих роль в открывании и закрывании заслонок. Так в частности, ход автомобиля полностью зависит от кулачков, воздействующих сразу на короткие детали, открывающие или закрывающие клапаны.

Как видим, в такой системе мало сложностей с точки зрения техники, к тому же в такой конструкции малый вес. В ней совершенно нет штанг, которые выступают как толкатель и коромысло, которое на это провоцирует толкающее устройство, оказывая на него давление.

Материал цепи, которая способствует правильному расположению вала на звезде, влияет на то, что она часто виснет.

Стержнем решения такой проблемы будет необходимость добавить несколько небольших звезд, а также натяжения короткой цепи. Еще применяют ремешки, которые являются нерастягиваемыми, их материал – это резина. Внутри каждого такого маслоупорного ремня есть звездочки, которые способствуют вращению распределительного и коленчатого вала.

Устройство клапанного механизма

Как мы уже поняли, двигатель внутреннего сгорания способствует тому, что клапаны в цилиндры ДВС впускают горючую смесь, если это бензиновое топливо, или воздух, если это дизельное топливо, а также выпускают их наружу. Поэтому есть два клапана, каждый из которых может открыться или закрыться в свое время под давлением кулачков.

Давление, оказываемое на стержни во время касания его кулачком в двигателе, имеющем сгорание горючей смеси или воздуха, смешанного с дизелем, способствует тому, что стержень, удерживающий клапан, выполненный из качественного материала, имеет хороший ход.

То, что ход идет ровно у конструкции с клапанами, говорит о правильном материале, из которого выполнена конструкция.

Наличие необходимых зазоров в металлическом материале детали стержня, на котором держится вся конструкция, способствует быстрому открыванию и закрыванию затворов. Выходит, что благодаря качественному материалу осуществляется лучшая работа мотора.

Современные детали мотора имеют правильный материал, который способствует простоте в конструкции, стоят они мало, ремонт требуется редко, а надежность конструкции на высшем уровне. Если же случается поломка, детали следует ремонтировать, либо полностью менять. Речь идет о распределительном вале, втулках направляющих, толкателе и пружине.

Еще поговорим напоследок о том, как размещаются затворы:

  1. Распределительный вал может находиться внизу относительно штанги клапана.
  2. Наличие у стержня рычажного толкателя.
  3. Распределительный вал находится вверху, а клапаны приводятся в движение благодаря коромыслу, воздействующему на толкатель.
  4. Затвор находится в верхней части двигателя, и вал оказывает на него воздействия сразу через толкатель, то есть без коромысла.

Заключение

Теперь можно подвести итоги того, как работает механизм с клапанами. Кулачок способствует передаче усилия толкателю, который в свою очередь благодаря небольшому зазору оказывает влияние на клапан, который либо открывается, либо закрывается. После того, как масло было вобрано в полость затвора, который потом впрыскивает его в цилиндр, затвор закрывается. В итоге масло при очередном такте уходит, поэтому следует снова его вобрать в себя, это уже происходит на следующем такте.

Мат.часть Механизмы привода клапанов — DRIVE2

Система привода клапанов газораспределительного механизма

В зависимости от расположения клапанов относительно цилиндров двигатели делятся на верхнеклапанные (с их расположением в головке цилиндров) и нижнеклапанные. Для отечественных автомобилей нижнеклапанные двигатели применялись в моделях 1940-60 гг.

Их основные недостатки: меньший коэффициент наполнения, ограниченная степень сжатия.

У верхнеклапанных автомобильных двигателей с номинальной частотой вращения до 5000-5500 об/мин распределительный вал устанавливался в блоке цилиндров (нижнее расположение) или в картере в развале между цилиндрами. Привод клапанов производился толкателями, штангами и коромыслами.

Недостаток такого привода: повышенная масса поступательно движущихся частей, возникновение колебаний в системе привода. Все это ограничивало максимально допустимую частоту вращения. Поэтому распределительные валы современных высокооборотных двигателей легковых автомобилей располагаются в головках цилиндров. Привод распределительного вала (или двух, а иногда и четырех валов и пяти) осуществляется шестернями, цепью, зубчатым ремнем.

Привод шестернями применяется преимущественно в старых моделях двигателей при расположении распределительного вала в блоке цилиндров или в двигателях с V-образным расположением цилиндров.

Основные недостатки: усложнение конструкции, увеличение момента инерции, высокий уровень шума, особенно после большого пробега. Для снижения уровня шума шестерню распределительного вала выполняют из пластмассы. Зацепление делается с косым зубом и по возможности с малым модулем.

На большинстве автомобильных двигателей используется привод одной или несколькими однорядными или двухрядными втулочно-роликовыми цепями или зубчатыми ремнями. Привод цепью более надежный, хотя и несколько более шумный, чем привод зубатым ремнем. Конструкция двигателя с приводом зубчатым ремнем упрощается, т.к. не требуется смазки и появляется возможность использования его для привода внешних агрегатов (насоса охлаждающей жидкости, генератора компрессора кондиционера и др.). Несмотря на использование в зубчатых ремнях синтетических материалов со стекловолоконным или проволочным кордом, недостатком привода зубчатым ремнем, является необходимость менять ремни через заданный пробег (обычно 50-100 тыс. км). При износе сальника распределительного вала масло попадает на зубчатый ремень, что приводит к его выходу из строя. Кроме того, бывают случаи обрыва ремня из-за попадания в привод посторонних предметов.

Системы привода распределительного вала (валов) зубчатым ремнем или цепью оснащаются натяжителем с механическим или гидравлическим приводом для компенсации производственных отклонений и износа в процессе эксплуатации. Натяжители цепей выполняются в виде пластмассового башмака или с натяжными звездочками или роликами. С цепью предотвращения колебаний на участках ведущих участков цепи устанавливаются успокоители, как правило, из пластмассы.

В зависимости от количества клапанов и их расположения выбирается конструкция системы привода. При однорядном параллельном расположении клапанов их привод осуществляется непосредственно через толкатель, либо рычаг (рокер). При двухрядном расположении клапанов и одном распределительном вале привод клапанов выполняется обычно при помощи коромысел. Для повышения наполнения в широком диапазоне частот вращения коленчатого вала двигатели оснащаются системами с изменяемыми фазами газораспределения (в основном с изменением фаз впускного клапана).

Существуют следующие способы изменения фаз газораспределения:

Система управления газораспределением с изменением длины набегающей ветви ремня: 1,4 — зубчатые шестерни; 2 — зубчатые звездочки; 3 — зубчатый ремень с натяжной звездочкой, изменяющей длину ведущего участка цепи

— при помощи муфты с винтовыми шлицами или зубьями, связанной с ведомой звездочкой распределительного вала;
— при помощи муфты с роторным механизмом, поворачивающим распределительный вал относительно ведомой звездочки;
— трехрокерным механизмом (Honda), позволяющим изменять продолжительность открытия клапана, с отключаемым рокером.

Существуют механизмы для изменения высоты подъема клапана. Оригинальный механизм привода создан фирмой БМВ у 4-х и 8-ми цилиндровых двигателей для регулирования фаз газораспределения, высоты подъема впускных клапанов, а также длины впускных каналов.

Схема управления фазами газораспределения, высотой подъема впускных клапанов и длиной впускных каналов на двигателе BMW Walvetronic

При повороте электромотором эксцентрикового вала изменяется угол наклона нижней рабочей поверхности промежуточного рычага. При набегании кулачка на средний ролик этого рычага изменяется ход рокера и соответственно, ход клапана. Снижение наполнения цилиндров и соответственно, мощности двигателя, достигается уменьшением высоты подъема впускных клапанов от 9,7 мм до необходимой величины (0,5-2,0 мм на малых нагрузках и холостом ходу). При малой высоте подъема клапана, кроме снижения потерь на газообмен, повышаются скорости прохождения смеси через клапанную щель до критических. Это улучшает смесеобразование, снижаются механические потери на привод клапанного механизма, шум двигателя, износ деталей. В случае регулирования мощности высотой подъема клапана нет затрат времени на заполнение ресивера и впускных патрубков, а соответственно, ошибок в показаниях датчика расхода воздуха в начальный период разгона автомобиля. Время срабатывания механизма — 300 мс. Получаемый эффект по экономии расхода топлива достигает 14%, кроме того, удается обеспечить выполнение перспективных норм токсичности Евро-4. Существенно улучшаются и динамические качества автомобиля.

Профиль кулачка и величина теплового зазора для предотвращения стука выбираются таким образом, чтобы момент касания кулачка толкателя или рычага привода при любом тепловом режиме соответствовал зоне минимальных ускорении. На тихоходных двигателях профиль кулачка выполнялся по двум или трем дугам окружности. Для современных быстроходных двигателей существуют методики выбора безударного профиля кулачка с учетом обеспечения надежной работы газораспределительного механизма при максимальных частотах вращения. В некоторых двигателях кулачки распредвалов делаются с несимметричным профилем.

Клапанные пружины выбираются расчетом так, чтобы в зоне отрицательных ускорений обеспечивали необходимый запас суммарных усилий пружин для безопасной работы клапанного механизма. Стремление повысить мощностные показатели двигателей ограничивалось возможностями привода клапанного механизма. Для расширения этих возможностей требовалось увеличение усилия клапанных пружин, что приводило к повышенному износу пар трения и увеличению механических потерь. Кроме того, в результате резонансных явлений в клапанных пружинах нарушалась работа всего механизма.

После посадки в седло клапан один или два раза подпрыгивает, что резко снижает наполнение цилиндров. Для смещения зоны резонансных колебаний пружины в сторону повышенных частот вращения они выполняются с переменным шагом или внутри основной пружины устанавливается пружина из плоской ленты, выполняющая функцию демпфера. Чтобы обеспечить работу системы газораспределения без клапанных пружин, разработаны различные варианты систем принудительного открытия и закрытия клапанов, так называемые десмодромные механизмы. Открытие и закрытие клапана производится со значительно большими ускорениями, что позволяет значительно увеличить «время-сечение» открытого состояния клапана и, следовательно, повысить наполнение на высоких частотах вращения. При работе десмодромного механизма двигателя Mercedes-Benz на режиме 10 ООО об./мин максимальные положительные ускорения клапана достигают значений 17 ООО м/с2, а отрицательные — 8000 м/с2, что в пять-девять раз больше

Десмодромный механизм газораспределения двигателя Mercedes-Benz тина GP:

соответствующих ускорений у обычных газораспределительных механизмов. Существуют и другие варианты десмодромных механизмов. Основной проблемой при создании этих механизмов является обеспечение компенсации зазоров, образующихся при износе, что ограничивает применение их для автомобилей массового производства.

Регулирование теплового зазора.

В системе привода клапана должен сохраняться так называемый тепловой зазор. При максимальной мощности температура выпускного клапана доходит до 750-850 «С, в то время как температура остальных деталей головки цилиндра двигателей с жидкостным охлаждением не превышает 100-120 °С. Стержень клапана удлиняется на большую величину, чем остальные детали головки, при этом тепловой зазор уменьшается. Если при перегреве клапана (например, из за позднего зажигания), износе седла и фаски клапана или неправильной регулировке зазора нарушится герметичность и прижатие клапана к седлу, то произойдет прогар клапана. Профиль кулачка и величина теплового зазора для предотвращения стука выбираются таким образом, что бы момент касания кулачка толкателя или рычага привода при любом тепловом режиме соответствовал зоне минимальных ускорений.

На практике тепловой зазор двигателей с жидкостным охлаждением определяется при помощи плоского щупа. При этом приходится учитывать конструктивные особенности двигателя, износ контактирующих поверхностей и др. Наименьшую массу поступательно движущихся частей удается добиться в приводе клапана от кулачка непосредственно через толкатель. В этом случае регулирование теплового зазора осуществляется путем замены цилиндрических вставок для всех клапанов. При износе контактных поверхностей фактический тепловой зазор получается больше замеренного плоским щупом. Поэтому наиболее точным способом является замер зазора специальным приспособлением с использованием индикатора.
Для исключения необходимости проверки и реагирования теплового зазора, а также предотвращения прогара клапана при износе седел и фасок клапанов большинство современных двигателей оборудуются системой автоматического регулировании теплового зазора. В случае привода клапана при помощи рычага в его опоре делается гидравлический регулируемый элемент. В двигателях с приводом через толкатель его выполняют с гидравлическим компенсатором теплового зазора (гидротолкатель). Гидротолкатели применяются на двигателях с нижним расположением распредвала со штанговым приводом и на двигателях с непосредственным приводом от распределительного вала. Масло из системы смазки подается сначала во внутреннюю полость толкателя, а затем через шариковый или пластинчатый клапан во внутреннюю полость между наружным и внутренним плунжером. Под давлением масла толкатель прижимается к кулачку. При набегании кулачка на толкатель внутри плунжерной пары создастся высокое давление, обеспечивая открытие клапана. После длительной остановки двигателя масло из гидротолкателя открытого клапана вытекает, что после пуска приводит к стуку клапанов в течение нескольких секунд. При сильном износе плунжерных пар в гидравлических толкателях или упорах рычага привода время работы со стуком клапанов увеличивается. В случае попадания в масло воздуха (при вспенивании масла) находящийся внутри толкателя воздух выдавливается и не нарушает работу толкателя.

В двигателях с приводом клапана при помощи рычага автоматическое реагирование теплового зазора осуществляется гидравлическим упором. Принцип его работы аналогичен гидротолкателю. Масто из системы смазки заполняет внутреннюю полость гидравлического упора, прижимая рычаг к кулачку. При применении гидротолкателей или гидравлических упоров тепловой зазор достигается за счет незначительной утечки масла через зазор плунжерной пары. В системах газораспределения с гидротолкателями или гидравлическими упорами требуется применение масел с высокой степенью очистки и с пологими температурными кривыми вязкости.
Система привода клапанов газораспределительного механизма

Впускные клапаны. Массовое наполнение двигателя зависит от величин проходного сечения, открываемого клапаном и продолжительности открытия. Площадь впускного отверстия равна площади конической поверхности, расположенной между тарелкой клапана и его седлом. Эта площадь пропорциональна диаметру опорной поверхности клапана, высоте подъема клапана и зависит от угла фаски клапана. Большинс

Многоклапанные двигатели — Энциклопедия журнала «За рулем»

Когда нижнеклапанные двигатели ушли в прошлое, клапаны перекочевали наверх в головку блока, и с тех пор их расположение не менялось. Чтобы избежать длинных толкателей, которые ограничивали возможность форсирования двигателя по оборотам (такая конструкция — инерционная и нежесткая), распределительный вал перенесли в головку блока, чем и закончилась трансформация. Потом росли только степень сжатия и обороты. Но если «оборотистый» двигатель и годится для гонок (правда, не для всех), то для повседневной эксплуатации он не подходит: высоки требования к материалам, из которых сделаны детали, топливу и маслам, велики токсичность выхлопа и эксплуатационные расходы. Пришлось искать другие пути.

Площадь четырех вписанных кругов больше, чем двух; соответственно больше проходное сечение каналов, которые прикрыты клапанами.

Идею двигателя с четырьмя клапанами на цилиндр не назовешь особо оригинальной или новаторской, но нельзя отрицать и то, что это достаточно простой способ улучшить наполнение цилиндра горючей смесью и удаление отработавших газов из него. Нарисуйте окружность и впишите в нее две другие максимально возможного диаметра, а затем попробуйте изобразить то же, но уже с четырьмя. Большая окружность обозначает цилиндр, а малые — каналы, закрытые клапанами. Невооруженным глазом видно, в каком случае площадь, занимаемая вписанными кругами, больше и, следовательно, больше проходное сечение впускного и выпускного каналов в головке двигателя.
Четыре клапана «спустились» с высот формулы 1 сначала на другие гоночные, затем на более простые спортивные автомобили, а сейчас они бодро «шествуют» от дорогих машин в средний класс и дальше, к малым и дешевым (этот этап начался в начале 1990-х).

Типичная схема механизма газораспределения двигателя (Mazda 121): зеленым цветом выделен распредвал, коричневым — клапаны с пружинами и фиксирующими деталями. Интересно, что рычаги распредвала выполнены из легкого сплава (показаны желтым цветом) и снабжены стальными роликами (красные). Видны винты для регулировки зазора с контргайками и свеча зажигания (эти детали — белые).

Двигателю с четырьмя клапанами на цилиндр вовсе не обязательно иметь два распределительных вала в головке, как думают иногда автолюбители. Есть моторы, в которых клапаны приводит один вал, например у «Мазды-121».

Двигатель автомобиля Mitsubishi Galant: два распределительных вала, гидравлические компенсаторы клапанного зазора — типичные для четырехклапанных моторов.

Двигатель более дорогого «Мицубиси-Галант» — уже с двумя распределительными валами, гидрокомпенсаторами клапанных зазоров. Заметим, что схема с двумя распредвалами применяется в четырехклапанных двигателях чаще.
Есть двигатели и с тремя клапанами на цилиндр: несколько таких моделей использует, например, Toyota на автомобилях Starlet и Corolla. В этом случае два клапана впускные, а один — выпускной. Это обусловлено тем, что для впуска требуется большее сечение: рабочая смесь хуже проходит по узким каналам, чем выхлопные газы.
Когда фирма Opel добавила к модификациям своей Vectra модную полноприводную, то едва не оступилась. Инертная трансмиссия, возросший вес машины почти свели на нет ее достоинства по сравнению с переднеприводной. Спасти положение помогла новая головка с четырьмя клапанами на цилиндр. Прибавилась мощность, динамика и скорость выросли под стать полноприводным амбициям. Это пример настоящей конструкторской удачи.
Если сечение каналов больше, это не значит, что топлива в цилиндры поступает больше и расход должен быть выше. Многоклапанные головки двигателя позволяют изменить распределение рабочей смеси по камере сгорания, снизить потери впуска и уменьшить количество оставшихся в цилиндрах отработавших газов. Все это увеличивает КПД двигателя, следовательно, появляется возможность уменьшить расход, хотя бы на некоторых режимах.
Двигатель потребляет не столько топлива, сколько войдет в цилиндры, система впрыска «определяют дозу» согласно желанию конструкторов. Но и разработчики иной раз вынуждены идти на уступки, например, применять высокооктановый бензин.
Конечно, улучшить характеристики автомобиля можно не только изменив конструкцию двигателя (увеличив число клапанов). Нередко вместе с этим изменяют передаточные числа в коробке передач, модифицируют систему впрыска топлива и т. д. Но все же ведущие фирмы широко применяют четырехклапанные двигатели.
В условиях современного производства затраты на выпуск технологически более сложной головки блока невелики, а повышенная цена автомобиля, как правило, оправдывается хорошими характеристиками и не отпугивает покупателя.
Некоторые ездят на четырехклапанных машинах, даже не подозревая об этом. Автомобильные фирмы иной раз упоминают о конструкции только в технических характеристиках: ведь потребителя волнуют эксплуатационные показатели, а не устройство двигателя. Другие, наоборот, стремятся подчеркнуть технический уровень или спортивные качества модели, тогда в названии появляются обозначения «16V», «24V». Первое говорит о том, что двигатель имеет четыре цилиндра и четыре клапана на цилиндр, всего шестнадцать, а второе — шесть цилиндров, по четыре клапана на каждый (6X4=24). Индексы трехклапанных двигателей «12V», «18V». Те же надписи могут быть и на клапанной крышке, а кроме них «DOHC» и «Twincam», что означает «два распределительных вала в головке». Если же рядом с «DOHC» не стоит «12V» или «24V», то двигатель вовсе не обязательно четырехклапанный: два распредвала могут быть и у обычного, двухклапанного.

Клапан ДВС

Большое разнообразие материалов из которых изготавливают клапаны двс может поставить перед сложным выбором. В этой статье пойдет речь о технологиях производства клапана в каких случаях использовать те или иные клапаны, их достоинства и недостатки, облегчение и проточка «тюльпана», а также поговорим о защищающих покрытиях и методах их нанесения. Эта информация предоставлена, чтобы помочь Вам сделать обоснованное решение при модернизации клапанного механизма.

 

1.Технологии производства клапанов.

 

При изготовлении выпускных клапанов особое внимание уделяется методам изготовления и материалам способным длительно выдерживать высокую температуру и при этом сохранять прочность. К впускным требования не столь жесткие так как они имеют дополнительное охлаждение свежей топливовоздушной смесью. Необходимым свойствам соответствуют многие сплавы при соблюдении определенных технологиях, но всегда приходится чем-то жертвовать к тому же вес детали получается большим. Проводится много исследований и выявление новых материалов не стоит на месте. Множество запатентованных технологий еще не нашли своего применения на практике.

Все то множество технологий и их недостатки я описывать подробно не буду, поверхностно пройдемся по основным. Как делается тарелка клапана:

 

Торцевая раскатка- раскалённый стержень клапана выступает из матрицы и вращающийся под углом к оси матрицы пауссон раскатывает по кругу стержень, который постепенно подается в матрицу до придания необходимой формы. Создается направленная микроструктура метала, параллельная профилю тарелки клапана, что увеличивает прочность.

1-торец заготовки. 2-матрица. 3-паусон. 4-готовая тарелка клапана. 5-стержень.

В следующем методе заготовку подают в матрицу и похожим образом раскатывают тарелку клапана, при этом еще выдавливается ножка в отверстие что тоже дает направленную микроструктуру, подобную волокнам древесины. Существует еще несколько методов имеющих сходство с описанным.

Клапан изготавливают из стали марок: 40Х9С2, 40XH, 40Х10С2М, 20ХН4ФА, 55Х20Г9АН4, 45Х14Н-14В2М, титановых сплавов ПТ-3В, ВТ3, ВТ-14, ВТ6, с намного низкой температурной стойкостью (только впускные клапаны) ВТ18У и ВТ25У и других сплавов. Клапаны из сплавов на основе интерметаллида TiAl имеют сравнимо низкую плотность металла, соответственно и меньший вес с большей твердостью и жаропрочностью даже в сравнении с привычными сплавами на основе титана. Но возникают трудности при изготовлении по привычным технологиям, позволяющим добавить прочность, из-за низкой пластичности. В таком случае изготавливают методом литья, но в этом случае, в структуре металла образуется пористость, которая удаляется только высокотемпературным газоизостатированием, очень дорогая процедура, составляющая себестоимость клапана.

Широко применяется комбинированная система, когда стержень выполняется из низколегированных сплавов с большей твердостью, а тарелка из жаропрочных. Готовые детали в последствии свариваются различными методами или напрессовываются, конструкция считается не очень надежной.

Другой вариант изготовления, стержень и торец клапана изготавливаются из одного сплава, в последствии деформационной и термо обработки создаются разные микроструктуры метала, в головке обеспечиваются высокая твердость и сопротивление ползучести в тарелке высокая термостойкость. Опять же технологии изготовления очень дорогостоящие. Не стану описывать остальные методы, имеющие по 3-4 переходных зоны по микроструктуре и технологию отжига, все они принципиально схожи с выше описанным.

 

Горячая штамповка в торец- раскалённый стержень просто вдавливается в матрицу в которой метал распределяется как попало с нарушением микроструктуры, самый простой и бюджетный способ, не имеющий необходимой прочности.

2. Виды клапанов

 

Широко распространены всего два вида тарельчатых клапанов «Тюльпан» и «Т-образный».

Стоит разобраться в недостатках и преимуществах чтобы сделать свой выбор. И так самый распространенный это тюльпан, имеет большой запас прочности обтекаемую форму, часто большой вес.

Т- образный предназначен в большей степени для тюнингованного мотора работящего преимущественно на высоких оборотах. Имеет минимальный радиус перехода от ножки к тарелке, небольшой вес в следствии чего уменьшается нагрузка на газораспределительный механизм продлевая срок службы, сдвигает порог зависания клапана что позволяет использовать стандартные клапанные пружины, не прибегая к усиленным, отбирающих свою долю мощности, меньший износ направляющих втулок, лучшая продувка. О надежности поговорим чуть ниже.

3. Облегчение клапана типа «Тюльпан»

Из экономических соображений многие стремятся самостоятельно облегчить клапаны, покупка новых Т- образных выливается в кругленькую сумму, обычно это клапаны на основе титана, имеющие небольшой вес минимальную металлоёмкость и лучшие характеристики прочности и жаростойкости, однако в виду трудоемкого производства таких деталей себестоимость очень высока.


Выше я уже говорил, что Тюльпан изначально имеет большой запас прочности и есть возможность его облегчить ценой надежности, неоправданного риска попасть на очередную капиталку. Мало кого этот факт останавливает и начинаются поиски тех кто уже опробовал и сделать именно также, соблюдая размеры оппонента. В сети по этой теме можно найти много положительного опыта, реже попадаются печальный исход доработки.


А теперь давайте разберемся почему это происходит. В начале я описывал технологии производства клапанов и материалов. Если вы читали внимательно, то уже поняли, что большое значение имеет технология производства и созданная микроструктура в металле пусть хоть в результате термообработки или метода штамповки. Во время облегчения клапана механически удалятся часть металла в поверхностных слоях которого была заключена основная прочность всей детали. Термонагруженность тарелки возрастает вследствие чего материал клапана не способен выдерживать нагрузку и поддается деформации. Некоторые производители наносят специальные покрытия расширяющие свойства, в конце темы опишу подробнее. Из этого можно сделать вывод, вероятность обрыва тарелки 50/50, ведь вам не известна технология и материалы и действовать вы будете по опыту других или на глазок. Добавим вероятность заводского брака и возможную детонацию, и получите такой результат.


Однако не всегда так случается и судя по опыту немногих, облегченные клапаны ходят по 100тыс и продолжают исправно работать. Если вы все же решились на облегчение, задумайтесь об охлаждении тарелки, в этом поможет замена седел клапанов на бронзовые. Именно через седла отводится большая часть температуры. Об этом я уже писал в теме Седло клапана. Не допускайте острых краев и тонких кромок на тарелке, эти места будут чрезвычайно перегреты повысится вероятность детонации и приведет к прогару и разрушению клапана. Совершенно нет необходимости в фасках, сделайте плавный переход и скруглите кромку тарелки. Не забудьте притереть клапан к седлу, желательно не алмазными пастами. Рассмотрите варианты облегчения остальных подвижных частей- пружинные тарелки, коромысла или толкатели.

Предпочтение стоит отдавать конечно заводским Т- образным клапанам, не оставляя без внимания бренд, их надежность не заставит вас сомневаться. Не думайте опробовать производство из Китая даже если это титан.

4. Защищающие покрытия, методы нанесения.

 

Распространение получили три метода нанесения покрытия на металлы плазменно-порошковая наплавка, лазерное легирование, наплавка токами высокой частоты. Нанесенное покрытие совершенно другого металла на выпускной клапан расширяет защитные свойства детали, возможность противостоять агрессивной среде. Это позволяет выполнять клапан из более подходящих материалов по термостойкости и прочности, не прибегая к поиску золотой середины. Таким получаем прочный и легкий клапан, не способный противостоять окислению и износу, но применение тонкого слоя специального покрытия решит эту проблему.

Выхлопные газы высокой температуры наносят большой вред клапану, возникает газовая коррозия парами воды, окисление кислородом, оксидом углерода, оксидом серы, которые образуются в результате горения. Механическое воздействие расклепывает рабочую фаску увеличивается ее размер, нарушается герметичность, что приводит к прорыву раскалённых газов в щель и большему прогару.

Далее расскажу о методах нанесения покрытия, ознакомимся с каждым из них подробнее.

Плазменно-порошковая наплавка-

наиболее универсальный метод, подается гранулированный металлический порошок вместе с газом в плазмотрон. Такой метод позволяет наносить качественное покрытие толщеной 0.5-5.0мм, растворимость металла детали в наплавленном слое всего 5%, возможное отклонение от номинала толщены- 0.5мм, минимальная окисляемость наплавляемого слоя за счет подаваемого в плазмотрон газа, минимальная зона термического влияния.

Лазерное легирование-

на деталь воздействует луч лазера разогревая поверхность чуть больше температуры плавления основы. Температура регулируется мощностью лазера и диаметром луча. В результате происходит активное перемешивание легирующего металла размещенного на поверхности основы с металлом детали на глубину примерно 1-2 мм. Такой метод позволяет наносить покрытия стеллита, вольфрамохромокобальтового сплава. Растворимость основного металла в покрытии 5-10%.

Наплавка токами высокой частоты-

На тарелку клапана устанавливается кольцо из наплавляемого металла, между клапаном и кольцом находится порошковый флюс или газовая среда (аргон, азот) под действие тока высокой частоты разогревается кольцо и подогревается тарелка клапана до температуры диффузии металлов, место нанесения покрытия охлаждается водой с другой стороны клапана, таким образом происходит намораживание наплавляемого слоя, при этом клапан вращается для обеспечения равномерности нагрева. Таким образом наносят самофлюсующиеся сплавы ЭП616, ЭП616А, ЭП616Б, ЭП616В значительно дешевле кобальтовых стеллитов и имеют достаточную твердость и стойкость к коррозии. Растворимость основного металла в слое покрытия 20-30%.

Тарелка титанового клапана с покрытием нитрид хрома (CrN)

           
     
 
 


Пример с покрытием из нитрида титана, обеспечивает высокую твердость.

Противостоит отложению нагара и окислению.

 

 

 

Клапанный механизм

 

 

 

Клапанный механизм включает в себя следующие детали: клапаны, на­правляющие втулки, седла клапанов, возвратные пружины, опорные тарел­ки, сухари, механизм вращения клапана (двигатель ЗИЛ-508.10).

Клапаны предназначены для герметизации цилиндра при тактах сжатия и рабочего хода и соединения их с трубопроводами впускной или выпускной системы при тактах впуска или выпуска в процессе газообмена.

Условия работы клапанов:

• большие динамические нагрузки;

• высокие скорости перемещения;

• неравномерный нагрев отдельных участков;

• повышенная коррозионно-активная среда.

Материал изготовления клапанов

Клапаны изготовляются из легированных сталей с высоким содержани­ем хрома и никеля.

 

 

Устройство клапана

 Притирка клапанов

Притирка клапанов обеспечивают

лучшую герметичность.

Как проводится притирка клапанов

и какие приспособления используются

для притирки клапанов

Клапан состоит из головки (или тарелки) и стержня. Различают клапа­ны с плоской, выпуклой и тюльпанообразной головками. Головки обычно имеют небольшой (около 2 мм) цилиндрический поясок и уплотнительную фаску, снятую под углом 45 и 30 градусов. Уплотнительные фаски клапанов шли­фуют и притирают к седлам (притирка клапанов), а стержни подвергают термообработке, шли­фовке, полировке и покрывают хромом. Торцы стержней (3—5 мм) закали­вают. На концах стержней имеются цилиндрические, конусные или фасон­ные проточки для крепления клапанных пружин.

Чтобы уменьшить напряженность выпускных клапанов, возникающую вследствие высоких температур, в ряде двигателей применяют натриевое ох­лаждение. С этой целью клапан выполняют полым с утолщенным стержнем и примерно на 1/3 полости заполняют металлическим натрием, температура плавления которого составляет около 97 К. В рабочем состоянии расплав­ленный натрий, перемещаясь внутри полости при возвратно-поступатель­ном движении клапана, увеличивает интенсивность отвода теплоты от горя­чей головки к более холодному стержню и далее к направляющей втулке.

Направляяющие втулки

Направляющие втулки обеспечивают строго перпендикулярное относи­тельно седла перемещение клапанов. Материалом для изготовления направ­ляющих втулок служат в основном перлитный чугун и металлокерамика, представляющая собой смесь из порошков железа, меди и графита, которые подвергаются прессованию, спеканию в печи и пропитыванию маслом. Отвозможного просачивания в цилиндры масла, стекающего по стержням впускных клапанов, последние снабжаются само подвижными манжетами.

Клапанные пружины

Клапанные пружины обеспечивают плотное прилегание клапанов к сед­лам и своевременное их закрытие после завершения действия кулачков рас­пределительного вала. Характеристику (жесткость) клапанных пружин под­бирают из условий сохранения кинематической связи между деталями меха­низма газораспределения. Клапанные пружины изготовляются из стальной проволоки диаметром 4-6 мм, легированной марганцем и хромом.

Нижним концом пружина опирается на головку блока цилиндров через специальную опорную тарелку, а верхним концом соединяется двумя сухарями с клапаном через верхнюю тарелку. Для этой цели сухари на внут­ренней поверхности имеют выступы, которые входят в проточку клапана, а гладкая наружная поверхность сухарей выполнена в виде усеченного конуса.

Два сухаря установленные на клапан, образуют опорную коническую поверхность, которая сопрягается с опорной поверхностью проточки в верхней тарелке, и это соединение удерживается в замкнутом состоянии за счет предварительного сжатия пружины. Чтобы устранить возможность возникновения опасного для прочности пружин резонанса, на клапаны ставят по две пружины с навивкой витков в противоположные стороны или делают пружины с переменным шагом навивки.

Седла клапанов

Седла клапанов. Наиболее важным сопряжением, определяющим долго­вечность механизма газораспределения, является сопряжение седло — кла­пан, так как оно подвержено ударным нагрузкам при посадке клапана и значительным термическим перегрузкам. Седло клапана, с которым сопри­касается уплотнительная фаска клапана, обрабатывают инструментом с уг­лами заточки 15, 45 и 75 градусов таким образом, чтобы уплотнительный поясок седла имел угол 45 градусов и ширину около 2 мм. По своим размерам поясок дол­жен подходить ближе к меньшему основанию конусной фаски клапана. Фаска клапана имеет меньший угол и соприкасается с седлом только узким пояском у своего большого основания, что обеспечивает хорошее уплотне­ние клапанного отверстия. Вставные седла изготовляются в виде отдельных колец из специального чугуна, легированной стали или металлокерамики.

Механизм вращения клапана

Для поддержания в рабочем состоянии контактных поверхностей уплотнительных фасок выпускных клапанов иногда применяют специальные устройства, позволяющие принудительно поворачивать клапаны в процессе работы.

Механизм вращения клапана состоит из неподвижного корпуса, в наклонных канавках которого расположены пять шариков с возвратными пружинами, дисковой пружины и опорной шайбы с замочным кольцом. Механизм вращения клапана устанавливается в расточке, сделанной в головке блока цилиндров иол опорной шайбой клапанной пружины. При закрытом клапане давление на дисковую пружину невелико, и она вогнута наружным краем вверх, а внутренним краем опира­ется в заплечик корпуса. Шарики отжаты пружинами в исходное положе­ние. В момент открытия клапана усилие со стороны клапанной пружины возрастает, под действием чего дисковая пружина, выпрямляясь, перелает усилие на шарики и вызывает их перемещение в углубление. Когда клапан закрывается, сила, действующая на дисковую пружину, уменьшается, и она, выгибаясь, освобождает шарики. Шарики под действием возвратных пру­жин перемешаются в исходное положение, что приводит к повороту клапа­на на некоторый угол (клапаны совершают 20—40 оборотов в минуту).

В некоторых двигателях применяют менее эффективное, но более про­стое устройство, основанное на использовании способа крепления клапан­ной пружины на стержне клапана. Крепление пружины на клапане состоит из опорной тарелки, втулки и двух сухарей.

Неисправности ГРМ, подробнее

Semplice › Блог › Механизм газораспределения в двигателях формулы 1. Пневматический привод клапанов.

В газораспределительном механизме V-образных 8-ми цилиндровых атмосферных двигателей формулы 1 вместо привычных нам пружин, возвращающих клапан в исходное положение, применяется иная система. Клапан жестко соединен с со специальным поршнем, а поршень в свою очередь, сверху имеет шток, на который и воздействует кулачок распределительного вала. Поршень закрывает специальную полость-цилиндр, в которой под высоким давлением находится газ — азот. Специальные прокладки и уплотнительные кольца не дают газу выйти наружу. При нажатии кулачка распределительного вала на шток, клапан движется вниз и занимает привычное нам открытое состояние. После того, как кулачок прекращает давление на шток клапанного поршня, азот, находящийся под давлением, мгновенно возвращает клапан в закрытое положение. Данная технология позволяет избежать зависания клапанов, так как при работе газа отсутствует инерция. Пружины в традиционных двигателях просто не успели бы закрыть клапаны так быстро, что избежать его контакта с поршнем на невероятных 18000 об/мин. Если бы вместо азота использовался воздух, который более нестабилен при высокоскоростных условиях, это бы значительно снизило эффективность. К тому же воздух может легко воспламенится.

Естественно, использование такого, так называемого пневматического привода клапанов, имеет и другие преимущества. Например малый вес всего механизма, высокая надежность, однородность температурных условий работы головки блока и возможность достигать 18000 оборотов в минуту, столь необходимых для получения максимальной мощности. По этому показателю отстают даже десмодронные системы — их предел 15000 об/мин. А инженеры в свою очередь заявили, что ГРМ с использованием азота может уверенно работать вплоть до 24000-25000 об/мин. Также стоит отметить, что пневматический привод не подвержен усталостному разрушению со временем, как это происходит в пружинном механизме. Но есть одна характеристика, доминирующая над всеми остальными: это собственная частота газа, в 8 раз превышающая собственную частоту механизма, в котором есть пружины. Это является неоспоримым козырем для работающих на высоких оборотах моторов. В систему такого механизма также входят односторонние клапаны для подкачки/откачки азота и поддержания его оптимального давления, система масляной очистки, резервная емкость со сжатым газом.

Механизм вращения клапана, устройство и назначение механизма вращения клапана

На некоторых двигателях применяется механизм вращения клапана, задача которого проворачивать клапан, чем и препятствует образованию нагара на посадочной поверхности тарелки клапана. Применение вращательного механизма обеспечивает  длительную работу клапанов и их равномерное изнашивание. 

Устройство механизма вращения клапана

Механизм вращения клапана состоит из: неподвижного корпуса 2 в наклонных канавках которого расположены пять шариков 3 с возвратными пружинами 10, дисковой пружины 9 и опорной шайбы 4 с замочным кольцом 5. Механизм устанавливается в рас­точке, сделанной в головке цилиндров под опорной шайбой 4 кла­панной пружины 6, закрепляемой на стержне 1 с помощью сухари­ков 8 и тарелки 7. При закрытом клапане давление на дисковую пружину 9 сравнительно невелико, и она выгнута наружным краем вверх, а внутренним краем опирается в заплечик корпуса 2. Шари­ки 3 отжаты пружинами 10 в исходное положение.

 

В момент открытия клапана давление клапанной пружины на опор­ную шайбу 4 возрастает; под действием этого давления дисковая пружина 9, выпрямляясь, передает давление на шарики 3 и вызы­вает их перемещение в конечное положение. Вместе с шариками перемещаются дисковая пружина с опорной шайбой, клапанная пружина и клапан. Когда клапан закрывается, давление на дисковую пружину 9 уменьшается, и она, выгибаясь, вновь касается своим внутренним краем заплечиков корпуса 2, освобож­дая тем самым шарики 3. Шарики под действием возвратных пру­жин перемещаются в исходное положение. Таким образом, при каждом открытии клапана происходит его поворот на некоторый угол. (При номинальном скоростном режиме клапаны совершают 20—40 об/мин.)

 

 

С целью проворачивания клапанов (в том числе и впускных) в ряде двигателей применяют менее эффективное, чем рассмотренное выше, но более простое устройство, основанное на использовании свойств специального способа крепления клапан­ной пружины на стержне клапана. Так, на примере клапанного механизма двигателя ЗМЗ-21, крепление пружины на клапане состоит из опорной тарелки, втулки  и двух сухарей . Контакт между опорной тарелкой и втулкой имеет место только на неболь­шой торцовой поверхности втулки, благодаря чему сила трения между этими деталями сравнительно невелика. Поэтому во время работы двигателя под действием вибраций узла клапан — пружина скручивание пружины при подъеме клапана обеспечивает его про­ворачивание.

Нет ГРМ — нет проблем или электронный актуатор вместо кулачка и распредвала

А современные дизели невозможно представить без одной из следующих систем: Common Rail или насос-форсунка (индивидуальная насосная секция). Управляются все они соленоидами, получающими команду от блока управления, ежесекундно суммирующего множество данных от различных датчиков. Соленоиды способны обеспечить открытие/ закрытие клапанов управления данных деталей на всех режимах работы двигателя включая наиболее скоростные 6000 об/мин и более. Сказанное выше означает то, что современные автомобильные компьютеры способны обрабатывать достаточный объем информации, а пара электромагнит – механический клапан способны надежно работать при больших скоростях: 50 срабатываний в секунду и более.
И тут на горизонте всплывает вопрос, почему же мы все еще используем механический привод там, где уже возможно применение электромагнитного соленоида. Читатель спросит: «да где же?» и возможно сильно удивится, услышав ответ: «в ГРМ». Вы не удивлены?
Должно сказать следующее, что отдаленное подобие таких систем уже давно и довольно надежно работает в топливных системах двигателей “Perkins” и “CАТ”. Это электронно управляемые насос- форсунки с гидравлическим приводом (HEUI). Ну, нет там привода от кулачкового вала, как в других двигателях с индивидуальными насосными секциями или насос-форсунками. Нет и все. И ведь работает…
Перечислим основные минусы стандартного газораспределительного механизма:
Первое: жесткая привязка конструкции: например, если ГРМ двигателя рассчитан на четырехтактный цикл, он не может работать по двухтактному циклу.
Второе: для разных режимов работы двигателя (прежде всего скорости вращения коленвала) существует свой оптимальный состав топливовоздушной смеси, свои правильные моменты открытия и закрытия клапанов. В настоящее время эта проблема решается с помощью механизма изменения фаз газораспределения (VTEC): весь распредвал слегка поворачивается относительно шестерни привода ГРМ и все моменты открытия и закрытия клапанов смещаются от нулевого угла вперед или назад. Проблема данного механизма в ограниченности возможных режимов его применения.
Третье: клапана (впускной или выпускной) из-за профиля приводного кулачка находятся в полностью открытом состоянии лишь очень малый отрезок времени, остальное время — не беря в расчет фазу закрытия — они или плавно подымаются или также плавно опускаются. Схема их перемещения близка к синусоиде. Для улучшения характеристик производители вынуждены устанавливать по 3-4-5 клапанов на один цилиндр.
Четвертое: на определенных режимах впускной и выпускной клапаны вместе находятся в приоткрытом состоянии, при этом часть топливной смеси попадает в выпускную систему, уменьшая тем самым экономичность двигателя и увеличивая выбросы в атмосферу.
Пятое: (и, наверное, не последнее): каждый водитель боится обрыва ремня ГРМ и его последствий в виде вывода двигателя из строя и последующих затрат на дорогостоящий ремонт.
К чему мы все это рассказываем? А дело в том, что в Скандинавии ездит один довольно старый SAAB 9−5. И все бы ничего, но у его двигателя нет ни толкателей клапанов, ни кулачков, ни распредвала, ни его привода, короче, механизм ГРМ в его классическом понимании в двигателе у этого автомобиля отсутствует как класс. Хозяин автомобиля и разработчик новой системы — Кристиан фон Кенигсегг, личность в определенных кругах очень известная.
Система получила название Freevalve (т.е. свободный, независимый клапан). В головке блока цилиндров двигателя указанного автомобиля, как и на его конвейерных собратьях, установлены 16 клапанов, но каждый из них управляется индивидуальным актуатором, получая команду на открытие или закрытие клапана от блока управления двигателем. Конструкция актуатора, наверное, самое главное в управлении клапана Freevalve. Будет неверным сказать, что поставить на каждый клапан индивидуальный привод и управлять ими независимо друг от друга не пробовали раньше. Даже в Советском Союзе, говорят, такие работы проводились. Но наиболее очевидное решение в виде соленоидов (или по другому линейных электродвигателей) не приводило к желаемому результату: небольшим по мощности соленоидам не хватало мощности, чтобы придать клапанам необходимые скорости (до 8-10 тысяч возвратно поступательных перемещений в минуту), возникали проблемы с надежностью, управлением бортовой ЭВМ.

У конструкции Кенигсегга открывает клапана пневматика, а закрывает уже гидравлика. Обе системы (пневматическая и гидравлическая) постоянно находятся под давлением и готовы передать клапану максимум энергии. Задача электрического привода — лишь вовремя по указанию блока управления подавать к клапану воздух или масло. Проблемы смазки и охлаждения элементов системы решается сама собой: нагруженные детали приводов обслуживаются соответствующими системами самого двигателя.

В чем же преимущества актуатора Freevalve?

Первое: впускной или выпускной клапана могут открываться тогда, когда это необходимо, поведение каждого клапана может программироваться индивидуально. Сам двигатель в таком случае может работать и по 2- тактному циклу, и по 4- тактному; переходить из одного в другой, при необходимости полностью отключать работу цилиндра, тем самым плавно переходя от наибольшей долговечности к наивысшей отдачи мощности, от наибольшей экономичности при 4- тактном режиме, к наибольшей удельной мощности при 2- тактном.

Второе: необходимые объемы газов проходят через полностью открытые клапана за меньшие промежутки времени и, потому открытие впускного и выпускного клапанов между собой не пересекается, что значительно сокращает долю выбросов вредных веществ в атмосферу и увеличивает экологичность двигателя.

Третье: продолжительность нахождения клапана в максимальной точке подъема может быть сколь угодно долгим. График работы такого клапана в максимальной точке подъема напоминает прямую после некого успокоения, а в целом приближен к прямоугольному профилю в отличие от синусоиды у клапана с приводом обычного ГРМ.

Четвертое: универсальность. По слухам актуатор Freevalve подходит и для гоночных моделей двухтактных двигателей (до 15000 об/мин), и для тяжелых автомобильных дизелей (работающих в диапазоне 2500 об/мин и менее).

Таким образом, клапана Freevalve вкупе с инжектором или современными топливными системами дизельных двигателей позволяют в любой необходимый момент включить любую программу для любого цилиндра без каких-либо механических ухищрений. Вполне возможно, что двигатели с индивидуальными приводами клапанов могут стать по-настоящему массовым явлением.

На данный момент главный его недостаток – это высокая стоимость производства. Которая, впрочем, может снизиться в случае массового применения новой технологии. Ожидается, что в скором времени двигатели с данными приводами клапанов будут запущен в серию. И, вполне возможно, двигатель внутреннего сгорания получит шанс на новую жизнь перед тем, как мир будет завоеван другими движителями.

Система изменения фаз газораспределения CVVT: устройство и принцип работы

Современное законодательство в области экологии заставляет автопроизводителей конструировать более совершенные двигатели, повышать их эффективность и снижать выбросы вредных веществ в отработанных газах. Конструкторы учатся управлять процессами, которые ранее принимались с компромиссными усредненными параметрами. Одной из таких разработок является система изменения фаз газораспределения (CVVT). В этой статье мы не будет подробно описывать про фазы газораспределения, с этой информацией можно ознакомиться здесь.

Устройство системы CVVT

CVVT (Continuous Variable Valve Timing) – это система непрерывного регулирования фаз газораспределения двигателя, обеспечивающая более эффективное наполнение цилиндров свежим зарядом. Это достигается за счёт смещения момента открытия и закрытия впускного клапана.

Система CVVT автомобиля

Система включает в себя гидравлический контур, состоящий из:

  • Управляющего клапана-соленоида.
  • Фильтра системы VVT.
  • Исполнительного механизма (гидравлической муфты CVVT).

Все компоненты системы устанавливаются в головке блока цилиндров двигателя. Фильтр системы VVT подлежит периодической чистке или замене.

Гидравлические муфты CVVT могут быть установлены как на впускном, так и на обоих валах ДВС.

В случае установки фазовращателей на впускном и выпускном распределительных валах эта система газораспределения будет называться DVVT (Dual Variable Valve Timing).

Основные компоненты системы изменения фаз газораспределения

К дополнительным элементам системы также относятся датчики:

  • Положения и частоты оборотов коленчатого вала.
  • Положения распределительного вала.

Данные элементы подают сигнал на ЭБУ двигателя (блок управления). Последний обрабатывает информацию и формирует сигнал на электромагнитный клапан, регулирующий подачу масла в муфту CVVT.

Муфта CVVT

Гидравлическая муфта (фазовращатель) имеет звёздочку на корпусе. Она приводится в движение ремнем или цепью привода ГРМ. Распределительный вал жестко соединен с ротором фазовращателя. Между ротором и корпусом муфты расположены масляные камеры. За счёт давления масла, создаваемого масляным насосом возможно смещение ротора и корпуса между собой.

Муфта состоит из:

  • ротора;
  • статора;
  • стопорного штифта.

Стопорный штифт необходим для работы фазовращателей в аварийном режиме. Например, при понижении давления масла. Он выталкивается вперед, что позволяет замкнуть корпус и ротор гидравлической муфты в среднем положении.

Муфта и клапан VVT
Как работает управляющий клапан-соленоид VVT

Данный механизм служит для регулирования подачи масла на задержку и опережение открытия клапанов. Устройство состоит из следующих элементов:

  • Плунжер.
  • Разъём.
  • Пружина.
  • Корпус.
  • Золотник.
  • Отверстия для подвода масла, подачи и слива.
  • Обмотка.

ЭБУ двигателя формирует сигнал, после чего электромагнит перемещает золотник через плунжер. Это позволяет перепускать масло в разном направлении.

Принцип работы

Принцип работы системы заключается в изменении положения распределительных валов относительно шкива коленчатого вала.

Система имеет два направления работы:

  • Опережение открытия клапанов.
  • Запаздывание открытия клапанов.
Опережение

Масляный насос при работе ДВС создает давление, которое подается на электромагнитный клапан CVVT. ЭБУ за счёт широтно-импульсной модуляции (ШИМ) управляет положением клапана VVT. Когда необходимо отрегулировать исполнительный механизм на максимальный угол опережения, клапан перемещается и открывает масляный канал к камере опережения гидромуфты CVVT. Из камеры запаздывания жидкость в это же время начинает сливаться. Это позволяет переместить ротор с распределительным валом относительно корпуса в противоположное относительно вращения коленвала направление.

Например, угол положения муфты CVVT на холостых оборотах составляет 8 градусов. И так как угол механического открытия клапана ДВС составляет 5 градусов, фактически он открывается на 13.

Запаздывание

Принцип аналогичен предыдущему, одн

Что такое фазовращатель в двигателе?

Эффективность ДВС во многом зависит от того, насколько хорошо отводятся отработанные газы и подается свежая воздушная смесь. Этим занимается ГРМ, и при хорошей настройке механизм показывает хорошие результаты. Однако повышение мощности и эффективности движка требует применения усовершенствованных узлов, и именно таким является фазовращатель.

Зачем нужен фазовращатель и что это такое

Не секрет, что инженеры берут усредненные показатели при проектировании любого двигателя. Это значит, при любых оборотах обычного двигателя время открытия впускного и выпускного клапанов останется одинаковым. Это значительно сокращает затраты на производство, но высокой эффективность подобный движок похвастаться не сможет.

Фазовращатель устанавливается для того, чтобы регулировать время открытия и закрытия клапанов, а также добиться отсутствия перекрытия – одновременного открывания обоих видов клапанов. Это муфта, которая устанавливается на конец распредвала и немного сдвигает его, позволяя открывать клапана в определенный момент. Может устанавливаться на оба распредвала либо же только на один. Управлением занимается бортовой компьютер.

Основные конструкции фазовращателя

Предназначение у любого фазовращателя одинаковое, а вот конструкция может быть разная:

  • гидравлические. Имеет муфту со смещающимися корпусом и ротором. Подключается к системе смазывания мотора, в зависимости от накачки масла поворачивает распредвал;
  • с разными кулачками. У этой системы разные профиля кулачков на распредвалу для каждого газоотводного клапана, а также разные коромысла. При повышении оборотов разница уменьшается, а ширина фазы уменьшается;
  • система MultiAir. У такой конструкции впускного распредвала нет вообще, а наличный на выпуске вал управляет обоими процессами: выпуском механически, а впуском – посредством электро- гидравлической системы.

Система распределения газов без валов

Есть фазовращатель, у которого нет не только распределительных валов, но и дросселя, и привода ГРМ в виде цепи или ремня. Положение клапанов регулируется датчиком движения и пневматической пружиной с электромагнитным приводом. Каждый клапан регулируется бортовым компьютером отдельно, скорость реакции очень большая, а смещение положения может быть любым. В результате работе клапанов впуска и выпуска газов регулируется очень точно. Пока такая система очень дорогая и встречается только в суперкарах.

В магазине «Питстор» в продаже найдутся качественные расходные жидкости в виде моторного и трансмиссионного масла, омывателей и прочей автохимии, которая поможет поддерживать любой автомобиль в исправном рабочем состоянии. У нас можно купить по отличной цене и другие мелкие предметы, нужные для ухода за машиной, скрытия внешних повреждений и украшения экстерьера. Загляните в каталог – и вы точно не останетесь разочарованными ни качеством наших товаров, но их привлекательной стоимостью!

Какой клапан больше впускной или выпускной


Какой клапан больше впускной или выпускной ⋆ Прорабофф.рф

Если вы планируете увеличить мощность двигателя за счет замены впускных и выпускных клапанов, то в первую очередь нужно узнать какой из них должен быть больше.

В этой статье мы расскажем, какой клапан больше впускной или выпускной, чтобы вы в дальнейшем могли знать нужные ли детали стоят в двигателе.

Зачем нужны клапаны

Перед тем как узнать рекомендуемое соотношение клапанов мы расскажем, зачем они вообще нужны. Итак, впускной и выпускной клапан играют важную роль в работе системы сгорания. Впускной клапан подает топливо в камеру сгорания, а выпускной позволяет выходить газам, которые образовались после сгорания топлива.

Какой клапан должен быть больше

Каждый из клапанов важен и на первый взгляд различия в размерах совсем не играют роли, но это ошибка, ведь даже от нескольких миллиметров зависит мощность двигателя. По словам профессиональных исследователей, впускной клапан должен быть больше выпускного, и в соотношении составлять 1:0,75. Такое соотношение объясняется тем, что выпускному клапану куда легче выпустить легкие газы, и поэтому и больший размер необязателен. Соотношение 1:0,9 подходит лишь тем автомобилям, которые используют закись азота или турбо надув, а таких, как правило, можно посчитать по пальцам.

Вывод

Теперь вы знаете, какой клапан больше впускной или выпускной. Также от рекомендуемого соотношения впускного и выпускного клапана зависит экономия топлива. Даже от небольшого увеличения выпускного клапана зависит снижение мощности и увеличения расхода топлива, поэтому отнестись нужно к этому серьезно. Удачи!

Впускные и выпускные клапаны автомобиля, конструкция и материалы

Впускные и выпускные клапаны автомобильных двигателей имеют тарельчатую форму. Клапан открывается под действием клапанного механизма, управляемого эксцентриковым кулачком. Работа кулачка синхронизирована с положением поршня и периодом вращения коленчатого вала.

В связи с этим они изготавливаются из более стойких материалов, чем впускные клапаны, и соответственно стоят дороже.

Направляющая втулка клапана расположена соосно с седлом клапана, так чтобы между рабочей фаской клапана и седлом обеспечивался герметичный газонепроницаемый контакт. Рабочая фаска клапана и седло скошены под углом 30° или 45°. Это номинальные значения угла фаски. Фактические значения могут на один-два градуса отличаться от номинальных. Клапаны и седла клапанов, используемые в большинстве двигателей, имеют номинальный угол фаски, равный 45°. Клапан прижимается к седлу под действием пружины. Пружина удерживается на стержне клапана (некоторые автомеханики называют его штоком клапана) опорной тарелкой пружины, которая, в свою очередь, контрится на стержне клапана замком (сухариками). Для демонтажа клапана необходимо сжать пружину и снять сухарики. После этого можно снять пружину, манжету, и вынуть клапан из головки.

Всесторонние испытания показали, что между различными геометрическими параметрами клапанов существуют оптимальные соотношения. В двигателях с цилиндрами внутренним диаметром от 3 до 8 дюймов (от 80 до 200 мм) для впускного клапана оптимальным будет диаметр головки, составляющий приблизительно 45% внутреннего диаметра цилиндра. Оптимальный диаметр головки выпускного клапана составляет примерно 38% внутреннего диаметра цилиндра. Впускной клапан должен быть больше по размеру, чем выпускной, чтобы пропускать ту же массу газа. Больший по размеру впускной клапан управляет низкоскоростным потоком разреженного газа. В то же время выпускной клапан управляет высокоскоростным потоком сжатого газа. С таким потоком в состоянии справиться клапан меньшего размера. Вследствие этого диаметр головки выпускного клапана составляет примерно 85% диаметра головки впускного клапана. Для нормального функционирования диаметр головки клапана должен составлять приблизительно 115% диаметра клапанного окна. Клапан должен быть достаточно большим, чтобы перекрывать окно. Высота подъема клапана над седлом составляет примерно 25% диаметра головки.

Конструкции клапанов автомобиля

Головки клапанов авто (автомеханики часто называют их тарелками) могут иметь различную конструкцию, они могут быть как жесткими так и эластичными.  Жесткая головка обладает высокой прочностью, сохраняет форму и обладает высокой теплопроводностью. Она также отличается более высокой износоустойчивостью. Эластичная головка, в свою очередь, способна приспосабливаться к форме седла. Поэтому эластичный клапан надежно запечатывает окно, но перегревается, а изгибы при посадке в седло, когда клапан адаптируется к его форме, могут привести к его разрушению. В конструкции клапанов широко используется головка, над лицевой поверхностью которой выступает небольшая шляпка. Такой клапан обладает достаточно небольшим весом, высокой прочностью и теплопередачей и чуть более высокой ценой. Эластичные головки чаще встречаются у впускных клапанов, а жесткие — у выпускных.

Попадание холодного воздуха на горячие выпускные клапаны сразу после остановки двигателя может привести к серьезным повреждениям клапанов. В двигателях оснащенных выпускными коллекторными головками и/или прямоточными глушителями, холодному воздуху открыт прямой доступ к выпускным клапанам. Резкое охлаждение может вызвать коробление и/или образование трещин в клапане. В холодную ветреную погоду, когда ветер вдувает холодный наружный воздух прямо в систему выпуска отработавших газов, такие условия — не редкость. Противоточные глушители с длинными выхлопными трубами и каталитическим нейтрализатором отработавших газов снижают опасность возникновения такой ситуации.

 Материалы из которых изготавливаются клапаны

Сплавы, материалы из которых изготавливаются выпускные клапаны автомобиля, состоят главным образом из хрома, обеспечивающего высокую жаростойкость, с небольшими добавками никеля, марганца и азотных соединений. Если требуется придать клапану особые характеристики, то он подвергается термообработке. Если конструкция клапана из однородного материала не может обеспечить необходимую прочность и жаростойкость, то его изготавливают сварным — из двух различных материалов. После обработки место соединения частей клапана невозможно различить. Головки клапанов изготавливаются из специальных сплавов, обладающих жаростойкостью, прочностью, коррозионной стойкостью, стойкостью к воздействию окиси свинца и высокой твердостью. Головки привариваются к стержням, изготовленным из материалов, обладающих высокой износостойкостью. В клапанах, предназначенных для работы в особо тяжелых условиях, на рабочую фаску головки и верхушку стержня впускного клапана автомобиля направляются твердосплавные материалы типа стеллита. Стеллит представляет собой сплав никеля, хрома и вольфрама и является немагнитным материалом. В тех случаях, когда необходимо повысить коррозионную стойкость, клапан алитируется. Алитирование рабочей фаски снижает ее износ при использовании неэтилированного бензина. На поверхности клапана формируется пленка окиси алюминия, предотвращающая приваривание стальной фаски клапана к чугунному седлу.

 Клапаны с полым стержнем и деформацией седла

В некоторых типах особо мощных двигателей используются выпускные клапаны с полым стержнем, заполненным металлическим натрием. Натрий при нагреве клапана до рабочей температуры расплавляется, превращаясь в жидкость. Этот расплав плещется в канале стержня и отводит тепло от головки клапана в стержень. Далее тепло передается через направляющую втулку клапана и поглощается системой охлаждения. Монолитная конструкция впускного и выпускного клапана при правильном выборе материалов обеспечивает, как правило, хорошие эксплуатационные характеристики автомобильных двигателей.

Клапан прижимается к седлу рабочей фаской, герметично закрывая камеру сгорания. Седло обычно формируется как элемент конструкции в отливке чугунной головки блока цилиндров — такое седло называется встроенным седлом. Седла обычно подвергаются индукционной закалке, чтобы можно было использовать неэтилированный бензин. Это обеспечивает замедление износа седел в процессе эксплуатации двигателя. В процессе износа седла клапан все глубже садится в него — утапливается. В тех случаях, когда коррозионная стойкость и износостойкость должны быть особенно высокими, всегда используются вставные седла. В алюминиевых головках седла и направляющие втулки клапанов — только вставные. Необходимо отметить, что в алюминиевых головках рабочая температура седел выпускных клапанов на 180°Ф (100°С) ниже, чем в чугунных. Вставные седла используются в качестве спасительной меры при восстановлении сильно поврежденных встроенных седел клапанов.

Деформация седла является основной причиной преждевременного выхода из строя клапанов. Деформация седла клапана может быть обратимой — как результат воздействия высокой температуры и давления, или необратимой — как результат действия внутренних механических напряжений. Механическое напряжение — это сила, действующая на тело, которая стремится изменить его форму.

Впускные и выпускные клапаны: размер имеет значение — DRIVE2

Если вы разрабатываете головку блока цилиндров для получения максимальной мощности, то не будет никаким сюрпризом, что основной целью является максимальный поток. Это, кроме всего прочего, требует использования клапанов большего размера, которые могут быть физически установлены в камеры сгорания. Это требует решения, как лучше всего разделить имеющееся пространство между впускными и выпускными клапанами. Другими словами, что лучше: большой впускной и маленький выпускной клапан, оба клапана одинакового размера или большой выпускной и маленький впускной клапан? Прежде всего, можно подумать, что большой выпускной клапан — это тот путь, которым нужно идти; ведь отработанные газы, без сомнения, занимают больший объем, чем газы, втянутые в цилиндр через впускную систему. Однако, когда мы касаемся мощности, действует другое «железное» правило: легче опустошить цилиндр, чем наполнить его.Годы экспериментов показали, что оптимальный размер выпускного клапана должен составлять примерно около 75% от впускного или, если точнее, поток через него должен составлять примерно 75% потока через впускной клапан. Это правило применяется только тогда, когда диаметры комбинируемых клапанов равны общему имеющемуся пространству в камере, т.е. клапаны почти касаются друг друга, как часто бывает в гоночных двигателях. Если используются клапаны с размерами, меньшими, чем максимальные, а мощность не является основной целью, то баланс между потоками впускного и выпускного каналов не так критичен.

Самое простое правило, которому нужно следовать: если основным требованием является мощность, то следуйте нормальному соотношению 0,75:1. Это правило можно изменить в тех случаях, когда двигатель оснащен системой турбонаддува или впрыска закиси азота. Для этих систем требуется обеспечение большего потока выхлопных газов и может успешно использоваться соотношение диаметров выпускного и впускного клапанов, составляющее 0,9:1 (поток выхлопных газов составляет 90% от потока впускаемой смеси) или даже больше.

К сожалению, установка увеличенных выпускных клапанов имеет «ловушку», которая обычно не связана с увеличением размеров впускных клапанов. Водяная рубашка внутри головки блока цилиндров расположена рядом с седлами выпускных клапанов. Это помогает поддерживать клапаны и седла холодными, но часто препятствует установке клапанов максимального размера. Вдобавок, тонкие отливки и большое количество тепла (побочный продукт высокой мощности) могут привести к образованию трещин в седлах, и это обычно укорачивает срок службы головки блока.

Замечание. Когда главной целью конструктора является экономия, а не мощность, размер выпускного клапана может быть увеличен до соотношения 0,75:1 даже при увеличении диаметра впускного клапана. Когда поток выпускного канала увеличивается, то пробег и срок службы двигателя будут улучшены. Однако здесь есть предел, как и во всем. Выпускные клапаны, размер которых превышает 90 — 95% от размера впускного клапана, дают очень маленькую дополнительную топливную экономию, и так как они используют пространство, обычно отдаваемое впускным клапанам, то потенциал по мощности будет уменьшен.

Теги: #Статьи #Корч #Почетные_Корчстроители

Выпускной клапан

Выпускной клапан – элемент ГРМ, при открытии которого происходит удаление (выпуск) отработавших газов из камеры сгорания двигателя. 

Выпуск газов происходит тогда, когда поршень в цилиндре двигателя направляется от нижней мертвой точки (НМТ) к верхней мертвой точке (ВМТ). В процессе работы двигателя выпускные клапаны подвергаются значительным термическим нагрузкам, так как постоянно контактируют с раскаленными отработавшими газами. Головка клапана при работе ДВС может разогреваться в пределах 600-800 градусов.

После окончания такта впуска и сжатия главным требованием в момент возгорания топлива в камере сгорания является максимальная герметичность. Впускной и выпускной клапаны закрыты. Когда поршень принял на себя энергию расширяющихся газов после возгорания топливно-воздушной смеси, из камеры сгорания необходимо удалить эти отработавшие газы. Герметизация камеры на данном этапе уже не нужна. За удаление выхлопных газов в конструкции газораспределительного механизма отвечает выпускной тарельчатый клапан, который размещен в головке блока цилиндров (ГБЦ).

На такте впуска создается разряжение, а на такте выпуска в рабочей камере сгорания двигателя образуется повышенное давление. После сгорания смеси топлива и воздуха отработавшие газы покидают камеру сгорания через открывающийся в нужный момент выпускной клапан. Сила давления позволяет газам с легкостью выйти из рабочей камеры. Этим объясняется меньший размер тарелки выпускного клапана сравнительно с тарелкой впускного клапана. На такте впуска разрежение по своей силе меньше давления на выпуске. Выхлопные газы практически выталкиваются наружу через открытый выпускной клапан.

Эффективная герметизация камеры сгорания стала возможна благодаря использованию тарельчатых клапанов в конструкции ГРМ современных ДВС. Устройство клапана простое, элемент имеет тарелку и стержень. Фаска плавно переходит в стержень, что делает клапан достаточно прочным. Коническая форма перехода заметно снижает сопротивление выхлопных газов при выходе из камеры, а также дополнительно улучшает герметизацию.

Открытие выпускного клапана происходит благодаря полученному усилию от кулачка распределительного вала.  Стержень (шток) клапана находится в направляющей втулке клапана, которая запрессована в ГБЦ. Кулачок распредвала нажимает прямо на шток клапана или на рокер, от которого усилие передается на стержень. В ГБЦ также размещено седло клапана. Седло клапана представляет собой углубление,  которое по своей форме соответствует верхней части тарелки клапана. Тарелка клапана и седло клапана с филигранной точностью прижимаются друг к другу. Данное решение позволяет обеспечить максимальную герметичность в тот момент, когда закрыты впускной и выпускной клапаны. Главной задачей становится исключить прорыв газов из камеры сгорания.

На верхней части стержня клапана выполнена специальная выточка. Указанная выточка является местом установки «сухаря».   Данный «сухарь» представляет собой коническое кольцо, которое разрезано на две равных части. Решение необходимо для крепления тарелки пружины клапана. Если открытие клапана осуществляется за счет «толчка» от кулачка распредвала, то закрытие клапана реализовано посредством усилия пружины клапана. Указанная пружина закрывает клапан, плотно прижимая тарелку к седлу. Дополнительно имеется механизм, который осуществляет проворачивание клапана. Это необходимо для равномерного износа клапана и очистки клапана от нагара.

Выпускной клапан работает в крайне сложных условиях. Отработавшие газы вызывают сильную коррозию выпускных клапанов. Если топливо сгорает в камере не полностью, тогда это может привести к прогару клапана. Регулировка клапанного механизма является важной процедурой в процессе эксплуатации ДВС. Раннее закрытие  выпускного клапана может привести к быстрому его прогару.

В процессе эксплуатации любого ДВС тарелка клапана и седло покрываются нагаром. Избежать нагара на клапанах практически не представляется возможным. Наличие нагара вызывает постоянный перегрев выпускного клапана. Рано или поздно опорная поверхность клапана начинает выгорать, что приводит к потере герметичности в камере сгорания. Результатом становится прогрессирующая потеря мощности ДВС, затрудненный пуск и т.д.

Появившиеся от перегрева микротрещины на тарелке клапана постепенно увеличиваются, так как раскаленные газы под давлением начинают прорываться наружу из камеры сгорания. Головка клапана в таких условиях деформируется и далее разрушается. Выход клапана из строя фактически означает полную потерю цилиндром двигателя своей функциональности. После замены обязательно требуется притирка клапана к седлу для максимально точного прилегания. Игнорирование процедуры или некачественное выполнение притирки клапанов приведет к быстрому выходу нового клапана из строя.

Вполне очевидно, что перегрев является серьезной проблемой  выпускных клапанов. Для изготовления выпускного клапана используется особая хромоникельмолибденовая сталь. Основой является никель, который повышает устойчивость выпускного клапана к механическому разрушению. Сталь для изготовления клапанов отличается высокой жаропрочностью.

Следующим шагом по снижению термонагруженности выпускного клапана становится его конструкция, которая отличается от устройства впускных клапанов. 

Стержень выпускного клапана полый, полость заполнена металлическим натрием. Натрий расплавляется и перетекает внутри стержня клапана, что позволяет улучшить теплообмен и равномерно распределить нагрев.

Выпускной клапан также может иметь дополнительную защиту, которая способна значительно продлить срок службы элемента. Единственным недостатком можно считать конечное удорожание производства детали.

Среди наиболее распространенных способов защиты отмечены:

  • лазерное легирование;
  • метод плазменно-порошковой наплавки;
  • наплавка токами высокой частоты;

Плазменно-порошковая наплавка считается одним из наиболее экономически и практически оправданных решений. Для такой наплавки используют различные металлические порошки, в основе которых лежит кобальт или никель. Технологии нанесения покрытия разные, но главной задачей каждого из указанных способов становится наплавление тонкого слоя защиты на поверхность клапана для повышения износостойкости, устойчивости к появлению коррозионных процессов и механическому разрушению.

Что такое клапан двигателя? — Определение, работа и типы

Что такое клапан двигателя?

Клапаны двигателя представляют собой механические компоненты, используемые в двигателях внутреннего сгорания для обеспечения или ограничения потока жидкости или газа в камеры сгорания или цилиндры и из них во время работы двигателя.

Функционально они аналогичны многим другим типам клапанов в том смысле, что они блокируют или пропускают поток, однако они представляют собой чисто механическое устройство, взаимодействующее с другими компонентами двигателя, такими как коромысла, для открытия и закрытия в правильной последовательности и с правильным таймингом.

Термин «клапан двигателя» может также относиться к типу обратного клапана, который используется для впрыска воздуха в составе систем контроля выбросов и рециркуляции отработавших газов в транспортных средствах. Этот тип клапана двигателя не будет рассматриваться в этой статье.

Клапаны двигателей являются общими для многих типов двигателей внутреннего сгорания, работающих на бензине, дизельном топливе, керосине, природном газе (СПГ) или пропане (LP). Типы двигателей различаются по количеству цилиндров, которые являются камерами сгорания, которые генерируют энергию от воспламенения топлива.

Они также различаются по типу работы (2-тактный или 4-тактный) и конструктивному расположению клапанов в двигателе [верхний клапан (OHV), верхний кулачок (OHC) или клапан в блоке (VIB )].

Что такое верхний клапан?

Двигатель с верхним расположением клапанов (OHV) представляет собой поршневой двигатель, клапаны которого расположены в головке блока цилиндров над камерой сгорания. Это контрастирует с более ранними двигателями с плоской головкой, где клапаны располагались ниже камеры сгорания в блоке цилиндров.

Распределительный вал в традиционном двигателе с верхним расположением клапанов расположен в блоке цилиндров. Движение распределительного вала передается с помощью толкателей и коромысла для управления клапанами в верхней части двигателя.

Двигатель с верхним распределительным валом (OHC) также имеет верхние клапаны; однако, чтобы избежать путаницы, двигатели с верхним расположением клапанов, в которых используются толкатели, часто называют «двигателями с толкателями». В некоторых ранних двигателях с системой «впуск над выпуском» использовалась гибридная конструкция, сочетающая элементы как боковых, так и верхних клапанов.

Как работает клапан двигателя?

Клапан, пропускающий смесь в цилиндр, является впускным клапаном; тот, через который выходят отработавшие газы, является выпускным клапаном. Они предназначены для открытия и закрытия в точные моменты, чтобы двигатель работал эффективно на всех скоростях.

Работой управляют грушевидные кулачки, называемые кулачками, на вращающемся валу, распределительном валу, приводимом в движение цепью, ремнем или набором шестерен от коленчатого вала.

Там, где распределительный вал установлен в блоке цилиндров, небольшие металлические толкатели цилиндров находятся в каналах над каждым кулачком, а от толкателей в головку цилиндров выходит металлический толкатель.Верх каждого толкателя встречается с коромыслом, которое упирается в шток клапана, который удерживается в приподнятом (закрытом) положении сильной спиральной пружиной — пружиной клапана.

Когда толкатель поднимается по кулачку, он поворачивает коромысло, которое толкает клапан вниз (открывает) против давления его пружины. По мере дальнейшего вращения кулачка пружина клапана закрывает клапан. Это называется системой с верхним расположением клапанов (OHV).

Некоторые двигатели не имеют толкателей; клапаны приводятся в действие одним или двумя распределительными валами в самой головке блока цилиндров в системе верхнего распредвала.

Поскольку между распределительным валом и клапаном меньше движущихся частей, метод с верхним распредвалом (OHC) более эффективен и обеспечивает большую мощность при данной мощности двигателя, чем двигатель с толкателями, поскольку он может работать на более высоких скоростях. В любой системе в рабочем механизме должен быть некоторый свободный ход, чтобы клапан мог полностью закрыться, когда детали расширились из-за нагрева.

Предварительно установленный зазор между штоком клапана и коромыслом или кулачком необходим для обеспечения расширения.Зазоры толкателей сильно различаются на разных автомобилях, и неправильная регулировка может иметь серьезные последствия.

Если зазор слишком большой, клапаны поздно открываются и рано закрываются, что снижает мощность и увеличивает шум двигателя.

Слишком маленький зазор препятствует правильному закрытию клапанов с последующей потерей компрессии. Некоторые двигатели имеют саморегулирующиеся толкатели, которые гидравлически приводятся в действие давлением моторного масла.

Номенклатура клапанов двигателей

Большинство клапанов двигателей спроектированы как тарельчатые клапаны из-за их хлопкового движения вверх и вниз и имеют головку клапана с коническим профилем, которая прилегает к обработанному седлу клапана для герметизации прохода жидкостей или газов. .Их также называют грибовидными клапанами из-за характерной формы головки клапана.

Двумя основными элементами являются шток клапана и головка клапана. Головка содержит скругление, которое ведет к поверхности седла, обработанной под определенным углом, чтобы соответствовать обработке седла клапана, с которым оно будет совпадать. Прилегание поверхности клапана к седлу клапана обеспечивает герметичность клапана против давления сгорания.

Шток клапана соединяет клапан с механическими элементами двигателя, которые приводят в действие клапан, создавая усилие для перемещения штока против давления посадки, создаваемого пружиной клапана.Удерживающая канавка используется для удерживания пружины на месте, а кончик штока клапана неоднократно контактирует с коромыслом, толкателем или подъемником, который приводит клапан в действие.

Типы двигателей клапанов

Существует 3 различных типа двигательных клапанов следующим образом:

  • клапан втулки
  • клапан
  • роторный клапан

1. Popw Valve

Это также известно как грибовидный клапан из-за его формы. Он используется для контроля времени и количества газа, поступающего в двигатель.Это наиболее широко используемый клапан в автомобильном двигателе. Тарельчатый клапан получил свое название из-за его движения вверх и вниз.

Состоит из головки и стержня. Торец клапана обычно с углом от 30° до 45° идеально отшлифован, так как он должен совпадать с седлом клапана для идеального уплотнения. Шток имеет стопорную канавку для пружинного фиксатора, а его конец контактирует с кулачком для движения клапана вверх и вниз. В выхлопе перепад давления помогает герметизировать клапан.Во впускных клапанах перепад давления помогает их открыть.

2. Втулочный клапан

Втулочный клапан, как следует из названия, представляет собой трубку или втулку, которая устанавливается между поршнем и стенкой цилиндра в цилиндре двигателя внутреннего сгорания, где он вращается/скользит.

Отверстия на боковой стороне гильз совмещаются с впускными и выпускными отверстиями цилиндра на соответствующих этапах цикла двигателя.

Внутренняя поверхность втулки образует внутреннюю гильзу цилиндра, в которой скользит поршень.Гильза, находящаяся в непрерывном движении, пропускает и вытесняет газы за счет периодического совпадения отверстий, прорезанных в гильзе, с отверстиями, образованными через отливку главного цилиндра.

Преимущества: Эти клапаны просты по конструкции и бесшумны в работе. Шум возникает из-за отсутствия шумообразующих деталей, таких как кулачки клапанов, коромысла, толкатели клапанов и т. д. Втулочный клапан имеет меньшую склонность к детонации. Охлаждение очень эффективно, так как клапан находится в контакте с водяными рубашками.

3. Поворотный клапан

Существует множество типов поворотных клапанов. На рисунке показан поворотный клапан дискового типа. Он состоит из вращающегося диска с портом. При вращении он сообщается попеременно с впускным и выпускным коллекторами.

Преимущества: Поворотные затворы просты по конструкции и дешевле. Они подходят для высокоскоростных двигателей. Эти клапаны имеют меньше напряжений и вибраций. Вращающиеся икры выполняют плавные, равномерные и бесшумные операции.

Сопутствующие

Как это работает: клапаны

На этом двигателе BMW G450X впускные клапаны больше, чем выпускные, чтобы облегчить поток воздуха/топлива

 

Эти мелочи – полное название: тарельчатые клапаны – управляют входом и выходом в камеру сгорания. Они открываются, чтобы впустить смесь воздуха и топлива, закрываются, чтобы герметизировать камеру, когда смесь взрывается, поэтому поршень толкается вниз, затем открывается другой набор, чтобы выпустить выхлопные газы.У большинства современных мотоциклов по четыре клапана на цилиндр (два на впуск, два на выпуск), хотя у различных Yamaha их пять (три на входе), что, если вам когда-либо приходилось покупать для них прокладки, может сделать его довольно дорогим.

 

Это от нового KTM 790 Duke. Обратите внимание на гладкую форму от штока до торца — это важно для быстрого входа и выхода газов

 

Что такое клапаны?

Все тарельчатые клапаны мотоциклов имеют форму 4-дюймового гвоздя с большой плоской головкой.В современных велосипедах головка клапана (называемая лицевой стороной) находится в камере сгорания, а вал (называемый штоком) торчит из цилиндра, где он прикреплен к пружине.

 

Как они работают?

Сверху клапана находится открывающий механизм по вашему выбору – в некоторых двигателях для соединения с распределительным валом используется коромысло (конический Ducatis), в других – палец (например, BMW R1200GS), в третьих – ковш (почти каждый японский четырехцилиндровый ), с распределительным валом прямо над ним.

Существуют и другие способы активации клапанов — в некоторых старых двигателях коромысла соединены с толкателем, который приводится в действие кулачками, расположенными ниже коленчатого вала, а современные Ducati используют десмодромную систему (мы займемся этим в другой раз).

Но давайте остановимся на наиболее распространенной конфигурации — двойном верхнем распредвале (DOHC), где один из двух распределительных валов управляет двумя впускными клапанами на цилиндр, а другой — двумя выпускными клапанами на цилиндр.

 

Как это работает

Теоретически работа клапана очень проста: кулачок толкает клапаны вниз в цилиндр против пружины, открывая клапан, чтобы газы могли течь, а затем позволяет клапану закрыться под действием пружины.Давление в камере сгорания довольно аккуратно помогает закрыть клапан.

Проблемы возникают из-за того, что это должно произойти несколько раз. Например, с двигателем велосипеда, вращающимся со скоростью 10 000 об/мин, каждый клапан должен открываться и закрываться 83 раза в секунду, поэтому он должен двигаться быстро. Эта скорость является проблемой, потому что это означает, что клапан имеет много энергии и постоянно ударяется о седло клапана.

С этим ничего не поделаешь — если сделать пружину слабее, чтобы клапан не хлопал так сильно, клапан в конечном итоге потеряет контакт с кулачком и не откроется в нужное время.Если вы уменьшите расстояние, которое должен пройти клапан, так что у клапана будет меньший разбег для его головки в седле клапана, меньше газа может попасть в камеру сгорания или выйти из нее, что снижает мощность.

Единственным решением является металлургия — сделать более прочные и легкие клапаны, способные выдержать все удары и жар камеры сгорания. Отсюда использование титановых клапанов в некоторых двигателях спортивных мотоциклов (например, GSX-R1000 2017 года).

 

 

Вы действительно не хотите заменять все прокладки на BMW K1600!

 

Все дело во времени

Критическое значение фаз газораспределения.Изменяя ориентацию кулачков и их профили, конструкторы двигателей могут точно установить, когда открываются впускные и выпускные клапаны, как долго они остаются открытыми и когда закрываются. Это оказывает огромное влияние на то, где пиковый крутящий момент и мощность возникают в диапазоне оборотов.

Например, для мотоцикла Harley V-twin вам нужен крутящий момент в нижнем диапазоне оборотов, поэтому вы устанавливаете фазы газораспределения так, чтобы они были максимально эффективными на низких оборотах. На этих оборотах все движется не слишком быстро, поэтому, например, вы можете открывать впускные клапаны позже и закрывать их раньше, чтобы извлечь как можно больше энергии при взрыве газа.То же самое с выпускными клапанами, поэтому время, когда оба впускных и выпускных клапана открыты (перекрытие), мало.

Проблема в том, что по мере увеличения оборотов не хватает времени, чтобы влить всю необходимую смесь и выпустить весь выхлоп. Итак, с точки зрения гонщика, у двигателя заканчивается затяжка. На высокооборотном четырехцилиндровом двигателе, рассчитанном на максимальную мощность, все наоборот — вы устанавливаете фазы газораспределения для высоких оборотов, когда все движется очень быстро, поэтому впускные и выпускные клапаны должны быть открыты на больший процент цикла хода. чтобы убедиться, что вы получаете много смеси, а затем выпускаете весь выхлоп.Это хорошо, но на низких оборотах это может быть ужасно неэффективно.

Ответ, конечно же, регулировка фаз газораспределения… подробнее об этом можно прочитать здесь.

 

 

Основы клапанов двигателя

для повышения производительности — Совет недели — Разговор о смазочных материалах

В последние недели мы говорили о нескольких ключевых компонентах промышленных двигателей, а именно о коленчатом и распределительном валах. Как вы помните, коленчатый вал и распределительный вал соединены зубчатым ремнем, и задачей обоих компонентов является преобразование вращательного движения в поступательное и наоборот, а также помощь другим компонентам в развитии двигателя. власть.

Совет этой недели посвящен одному из этих «других» компонентов — клапанам.

Основы клапана

При обсуждении клапанов мы сосредоточимся в первую очередь на четырехтактных бензиновых и дизельных двигателях, которые используются в большинстве дорожных и внедорожных транспортных средств. Так что мы не говорим о двухтактных двигателях. Клапан — это устройство, которое пропускает топливно-воздушную смесь в цилиндр и выпускает отработанные выхлопные газы. В четырехтактном двигателе внутреннего сгорания есть два типа клапанов: впускные (воздушно-топливная смесь) и выпускные (выхлопные газы).

Дизайн

Анатомия клапана довольно проста. Как показано ниже, он в основном состоит из стебля и головки. Головка имеет куполообразную форму, чтобы помочь отклонить давление.

 

Клапаны

обычно устанавливаются под углом от 30 до 45 градусов по отношению к коленчатому валу. Это облегчает дыхание двигателя и сгорание. Они также имеют головки разного диаметра, при этом впускной клапан обычно больше выпускного. Клапаны, как правило, представляют собой цельную конструкцию, изготовленную из аустенитной стали и закаленную с полосой наплавки, нанесенной на поверхность седла, чтобы улучшить посадку и уменьшить износ.Также важен посадочный зазор клапанов, поскольку он обеспечивает максимальное развитие мощности и позволяет клапану расширяться в седле, чтобы свести к минимуму износ.

Операция

Во время работы двигателя клапан нормально закрыт, удерживаемый пружиной. При вращении кулачка клапан открывается. Для впускных клапанов это позволяет воздушно-топливной смеси поступать в цилиндр. Как только смесь попадает в цилиндр, кулачок продолжает вращаться, впускной клапан закрывается и происходит сгорание.После сгорания и во время такта выпуска кулачок открывает выпускной клапан, позволяя отработавшим газам выйти. Как только все отработавшие газы вышли, кулачок цилиндра поворачивается дальше, и выпускной клапан закрывается.

Время, в течение которого клапан открыт или закрыт, зависит от формы рабочего выступа на распределительном валу. Чем больше лепесток, тем дольше клапан открыт и тем больше воздуха/топлива или выхлопных газов может быть обработано, что увеличивает мощность.

Клапаны могут приводиться в действие толкателями, толкателями или коромыслами, что обычно определяется расположением распределительного вала.Двигатель с верхним расположением кулачка может приводить в действие коромысло либо напрямую, либо через толкатель. Кулачок, встроенный в блок или головку, может использовать гидравлические приводы и толкатели для перемещения клапанов.

Смазка

Надлежащей смазкой для клапанов двигателя является масло, используемое для смазки двигателя, обычно многокомпонентное моторное масло. В соответствии с конструкцией двигателя масло перемещается под давлением из картера масляным насосом через порты и камбузы в верхней части головки, непосредственно внутри клапанной крышки.Затем смазка течет вдоль головки к штоку (штокам) клапана и, оказавшись там, стекает вниз по штоку, смазывая шток и направляющую.

 

Если шток клапана и направляющий зазор установлены правильно, будет достигнут надлежащий баланс смазки, что означает, что расход масла будет небольшим или отсутствовать. Если зазор направляющей и/или штока чрезмерный, масло будет поступать в поток выхлопных газов, загрязняя седло и влияя на работу двигателя. Эту тенденцию можно измерить по расходу масла. Подумайте о «голубом» дыме.

Я надеюсь, что этот совет был полезен, и дайте нам знать, если у вас есть какие-либо вопросы, оставив комментарий ниже!

Пять двигателей с пятью (или более) клапанами на цилиндр

Посмотрим правде в глаза, сейчас 2021 год, и мы, как все общество в целом, вполне уверены в своем техническом превосходстве. Двигатели, выпускаемые сегодня с заводов, являются самыми совершенными и надежными силовыми установками, когда-либо созданными людьми. В нынешнем виде, с завода, четырехклапанные двигатели являются самыми мощными и эффективными конструкциями на рынке (хотя есть несколько двухклапанных конструкций, которым нравится бросать гаечный ключ в это утверждение).Но как насчет пятиклапанных двигателей? Или шесть клапанов, или семь клапанов?

Если четыре клапана на цилиндр — это хорошо, то больше должно быть лучше, верно? Ответ на этот вопрос: «до некоторой степени». Существует закон убывающей отдачи, основанный на современных конструкциях и технологиях, который, по-видимому, заставил отрасль остановиться на четырехклапанной схеме, являющейся пиком универсальной эффективности. Но есть несколько очень коммерчески успешных конструкций двигателей с более чем четырьмя клапанами на цилиндр, а также несколько неудачных, которые были столь же ценны, поскольку показали нам, где были пределы, практические или нет.

Здесь мы кратко обсудим пять двигателей с пятью или более клапанами на цилиндр, как удачные, так и не очень.

Ауди Audi

уже давно является сторонником пятиклапанного двигателя. Они выпустили свой первый пятиклапанный двигатель в 1988 году с экспериментальным 2,2-литровым рядным пятицилиндровым двигателем, который развивал мощность 641 л.с. и установил несколько мировых рекордов скорости. Только в 1995 году Audi выпустила пятиклапанный 1,8-литровый турбированный четырехцилиндровый двигатель для массового потребления.Можно утверждать, что 1,8-литровый пятиклапанный двигатель Audi был наиболее коммерчески успешным, поскольку он приводил в действие не менее 16 различных автомобилей.

Базовая математика и геометрия подсказывают, что все пятиклапанные двигатели будут иметь одинаковое расположение клапанов. Головка блока цилиндров, изображенная слева, относится к более позднему двигателю Toyota 4A-GE, в центре — к последнему Ferarri Dino V8, а справа — от Audi 1,8 л 20V, но вам будет трудно идентифицировать их по внешнему виду. только камеры сгорания.

Феррари

Теперь, чтобы представить пятиклапанные серийные двигатели, совершенно отличные от того, что используется в Volkswagen New Beetle, давайте поговорим о пятиклапанных серийных головках блока цилиндров Ferrari.Производимые в течение десятилетия (или 11 модельных лет, если вы хотите быть педантичными), 3,5-литровый и 3,6-литровый варианты Dino V8 от Ferrari стали концом эпохи. Создавая 375 лошадиных сил и 395 лошадиных сил для дорожных вариантов двигателей F129 и F131 соответственно, F131 видел 419 лошадиных сил в варианте 360 Challenge Stradale.

Тойота

Не только европейцы вскочили на подножку с пятью клапанами на цилиндр. Знаменитый 1,6-литровый рядный четырехцилиндровый двигатель Toyota 4A-GE получил пятиклапанную головку блока цилиндров, разработанную Yamaha, в четвертом поколении, начиная с 1991 года.Как и в случае с пятиклапанным двигателем Ferrari, варианты двигателя «Silver Top» и «Black Top» выпускались десять лет и ограничивали производство этого двигателя. Пиковые производственные мощности для пятиклапанных версий составляли 160 лошадиных сил при 7800 об/мин и 119 фунт-футов при 5600 об/мин, а версия, используемая в Formula Atlantic, имела мощность 240 лошадиных сил при 10 000 об/мин.

Утилизированный шестиклапанный шестицилиндровый двигатель

Maserati в 1985 году должен был быть наддувен парой турбонагнетателей и развивать мощность в 261 лошадиную силу.

Мазерати 6-клапанный

Продолжая тему 1980-х годов «чем больше, тем лучше», компания Maserati решила разработать шестиклапанный двигатель с двумя верхними распределительными валами и двумя турбонагнетателями, который должен был развивать мощность в 261 лошадиную силу (помните, это было в 1980-х). Если центральные клапаны расположены под другим углом, чем внешние клапаны, теоретически это создаст больше завихрений и повысит эффективность. Хотя теоретически это был значительный прогресс, в конечном итоге от него отказались в пользу четырехклапанной конструкции, оставив 4AC как самый близкий из всех, что мы когда-либо приходили к серийному двигателю с более чем пятью клапанами на цилиндр.

Yamaha Genesis 7-клапанный

Хотя 7-клапанный вариант двигателя Genesis действительно никогда не был близок к производству, он важен, потому что он действительно показал, что есть такая вещь, как слишком много. Являясь в то время лидером в области многоклапанных технологий, Yamaha экспериментировала со своей программой двигателей Genesis, чтобы выяснить, сколько клапанов, засунутых в камеру сгорания, является слишком большим. Имея четыре впускных клапана, три выпускных клапана и две свечи зажигания на цилиндр, команда разработчиков наконец нашла преграду.Фактически, они также опробовали экспериментальную конструкцию с шестью клапанами и обнаружили, что она работает хуже, чем конструкция с пятью клапанами, установив стандарт на ранней стадии для конструкций с пятью клапанами на цилиндр.

Экспериментальная 7-клапанная головка блока цилиндров Genesis от Yamaha, возможно, не была удачной конструкцией, но данные, полученные во время разработки, действительно помогли сформировать многоклапанный ландшафт в 1980-х и 1990-х годах.

10 самых необычных двигателей всех времен

Большинство автомобильных двигателей сегодня очень похожи.Даже те, которые мы бы назвали другими, такие как оппозитные шестерки Porsche или новые двухцилиндровые двигатели Fiat, следуют проверенным инженерным принципам, которые доминировали в отрасли последние 50 лет. Но не каждый производитель автомобилей придерживается правил при проектировании двигателей. Некоторые из нонконформистских движков достаточно странны, чтобы поднять бровь, но небольшое количество совершенно нестандартны, безумны, пожирают рубашки и обнимают незнакомцев. Иногда это был метод безумия, например, попытка повысить эффективность.В других случаях было ясно, что сокамерникам достался инженерный отдел. И мы просто отлично с этим.

Чтобы составить наш список из 10 сумасшедших автомобильных двигателей, мы следовали некоторым правилам: производить только силовые установки для легковых автомобилей; никаких гоночных мельниц или разовых экспериментов, потому что это по определению странно. Мы также отказались от двигателей, которые отличаются исключительно тем, что являются первыми или самыми большими в чем-либо. Это потому, что цель здесь состоит в том, чтобы подчеркнуть сумасшедший дизайн двигателя, который заставляет ваш мозг болеть.

Итак, давайте зажжем их.

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Статистические данные стали легендой: 8,0-литровый W-16 мощностью более 1000 л.с. для Жука — самый мощный и сложный серийный двигатель в истории. У него 64 клапана, четыре турбонагнетателя и достаточно мощная мощность — 922 фунта-фута при 2200 об/мин — чтобы помять божье белье.Его W-образная 16-цилиндровая компоновка, по сути, оргия узкоугольных Volkswagen VR4, никогда раньше не использовалась и, вероятно, никогда не будет использоваться снова. О, и это идет с гарантией.

Это инженерный единорог, который появляется раз в жизни, что-то вроде того, что произошло бы, если бы космическая программа «Аполлон» и Фердинанд Порше каким-то образом совместно оплодотворили «Титаник» . Если это не интересно, то мы не знаем, что есть.

МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЭЛЬ ВОН, УГО.КОМ, AVTOINDEX.COM , ПРОИЗВОДИТЕЛЬ

В начале прошлого века на автомобильного пограничника Чарльза Йеля Найта пришло прозрение. Он считал, что традиционные тарельчатые клапаны слишком сложны, а сопутствующие пружины и толкатели слишком неэффективны. Его решение было названо золотниковым клапаном — скользящая втулка вокруг поршня, приводимая в движение валом с редуктором, открывающим впускные и выпускные отверстия в стенке цилиндра.

Удивительно, но это сработало. Двигатели с золотниковым клапаном обладали высоким объемным КПД, низким уровнем шума и отсутствием риска зазора клапана; недостатков было немного, но среди них был высокий расход масла.Найт запатентовал свою идею в 1908 году, и позже она появилась во всем, от Mercedes-Benz до Panhard и Peugeot. Эта технология потеряла популярность, когда тарельчатые клапаны стали лучше справляться с нагревом и высокими оборотами.

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Представьте, что вы — автопроизводитель 1950-х годов, который представляет экспериментальный двигатель. Этот немецкий чувак по имени Феликс заходит в ваш офис и пытается убедить вас в том, что трехконечный поршень вращается внутри овальной коробки, сжигая топливо на ходу.Это похоже на огненный шар в клетке для бинго или, может быть, на футбольный мяч, стучащий в стиральной машине. И он не только работает, но и невероятно сбалансирован.

Сам ротор имеет треугольную форму с выпуклыми гранями, а три его угла называются вершинами. Когда ротор вращается внутри корпуса, он создает три камеры, которые отвечают за четыре фазы цикла мощности: впуск, сжатие, мощность и выпуск. Каждая сторона ротора всегда работает на одной стадии цикла.Если это звучит эффективно, это потому, что так оно и есть. Выходная мощность высока по сравнению с рабочим объемом двигателя, но они поглощают топливо, потому что камера сгорания удлинена.

Странные вещи, не так ли? Знаете, что страннее? Он все еще находится в производстве . Купите Mazda RX-8 и получите двигатель Ванкеля на 9000 об/мин! Чего же ты ждешь? Встань с дивана!

МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЭЛЬ ВОН, УГО.КОМ, AVTOINDEX.COM , ПРОИЗВОДИТЕЛЬ

Коннектикутская компания Eisenhuth Horseless Vehicle Company была основана Джоном Эйзенхутом, жителем Нью-Йорка, который утверждал, что изобрел бензиновый двигатель, и имел неприятную привычку подавать в суд на своих деловых партнеров. Его модели Compound 1904–07 годов имели рядный трехцилиндровый двигатель, в котором два внешних цилиндра приводили в действие невоспламеняющийся «мертвый» средний цилиндр своими выхлопными газами; средний цилиндр обеспечивал мощность двигателя. Внешние цилиндры были огромными, с 7.5-дюймовые отверстия, но внутреннее, диаметром 12 дюймов, было еще больше. Эйзенхут заявил о 47-процентном увеличении экономии топлива по сравнению со стандартным двигателем аналогичного размера. Он также обанкротился в 1907 году.

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Предоставьте французам разработку интересного двигателя, который на первый взгляд кажется обычным.Знаменитый галльский производитель Panhard, широко известный своей одноименной подвеской, оснащал свои послевоенные автомобили серией оппозитных двигателей с воздушным охлаждением и алюминиевыми блоками. Они отличались конструкцией агрегата — блок и головка блока цилиндров представляли собой одну отливку — торсионные пружины клапанов, кривошип на роликовых подшипниках, полые алюминиевые толкатели и выхлопные трубы, которые на одном варианте выполняли функции опор двигателя. Рабочий объем варьировался от 610 до 850 куб.см; мощность составляла от 42 до 60 л.с., в зависимости от модели. Лучшая часть? Двойник Panhard остается самым странным двигателем, когда-либо одерживавшим победы в классе на гонках «24 часа Ле-Мана».

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Странное название, конечно, но двигатель еще страннее. 3,3-литровый Commer TS3 был с наддувом, с оппозитным расположением поршней (каждый цилиндр имеет два поршня с головками друг к другу, головки цилиндров отсутствуют), с одним коленчатым валом (у большинства двигателей с оппозитным расположением поршней их два), с тремя цилиндрами. , двухтактный дизельный двигатель.Rootes Group придумала этого зверя для своих грузовиков марки Commer. TS3 предлагал оригинальную компоновку, шатунные коромысла размером с небольшую кошку и крутящий момент в 270 фунт-футов, более мощный, чем многие более крупные дизели того времени.

Запутались? Смотрите анимацию здесь.

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Думаете, коммерс был умен? Этот помещает его в трейлер.Английская Lanchester Motor Company была основана в 1899 году. Lanchester Ten фирмы, представленный годом позже, отличался 4,0-литровым оппозитным двухцилиндровым двигателем с воздушным охлаждением и двойным коленчатым валом, приводящим в движение задние колеса. Один кривошип располагался над другим, а каждый поршень имел по три шатуна — два легких снаружи и один потяжелее в центре. Легкие стержни шли к одному кривошипу, тяжелые стержни к другому, и два вала вращались в противоположных направлениях. В результате получилось 10,5 л.с. при 1250 об/мин и замечательное отсутствие вибрации. Если вы когда-нибудь задумывались, как выглядит инженерная элегантность, то вот оно.

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Как и Veyron, , суперкар Cizeta (урожденный Cizeta-Moroder) V16T ограниченного производства отличается своим двигателем. 560-сильный 6,0-литровый V-16 в животе Ciz — это не настоящий V-16. Если судить по порядку зажигания и конструкции, то это всего лишь два плоских двигателя V-8, объединенных одним блоком и соединенных центральным картером ГРМ.Это делает его не менее безумным. Поскольку двигатель установлен поперечно, центральный вал передает мощность на заднюю коробку передач. Сизеты встречаются реже, чем честные политики, построено лишь небольшое число. Настоящий заводской номер, конечно, является секретом, но один из них время от времени всплывал в Лос-Анджелесе, где его владелец безжалостно раскручивал его до того, как таможенники конфисковали его в 2009 году.

МАРК БРЭМЛИ, АРХИВИО ПЕРИНИ, АНДРЕ РИТЦИНГЕР, ДЖОН РОУ, ДЭНИЭЛЬ ВОН, УГО.КОМ, AVTOINDEX.COM , ПРОИЗВОДИТЕЛЬ

Двигатель Commer Knocker на самом деле был вдохновлен (если это правильное слово) французским семейством двигателей с оппозитными поршнями, которые выпускались в двух-, четырех- и шестицилиндровом исполнении до начала 1920-х годов. Вот как это работает в двухцилиндровом исполнении: два поршня обычно приводят в движение коленчатый вал. Напротив двух поршней находится другой набор из двух вертикально противоположных поршней, соединенных крейцкопфом. В свою очередь, эта траверса приводит в движение два длинных шатуна, соединенных с кривошипом под углом 180 градусов относительно нижних поршней.Противоположные поршни эффективно образуют головки цилиндров. Таким образом, шестицилиндровый двигатель имеет 12 поршней и кривошип с жесткостью на кручение, как у спагетти.

Серийные двигатели варьировались от 2,3-литровых двойок до 11,4-литровых шестерок. Был также монстр-гонщик с 13,5-литровым четырехцилиндровым двигателем, который стал первым автомобилем, разогнавшимся до 100 миль в час. Его пилотировал Луи Риголли в Остенде, Бельгия, в 1904 году. впрыск топлива в их самых первых двигателях.

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Если идея о том, что ваш двигатель вращается позади вас, кажется хорошей, то Adams-Farwell, родом из Дубьюка, штат Айова, — это ваша машина. Ну, вращался не весь двигатель: только цилиндры и поршни, потому что коленчатые валы на этих трех- и пятицилиндровых двигателях были неподвижными. Расположенные радиально, цилиндры имели воздушное охлаждение и действовали как маховик, когда двигатель был запущен и работал.Привод был снят с блока цилиндров через короткую одинарную цепь, и агрегаты были легкими для того времени — 190 фунтов для 4,3-литрового трехцилиндрового двигателя и 265 фунтов для 8,0-литрового пятицилиндрового двигателя.

Сами автомобили были с задним расположением двигателя, а пассажирский салон располагался далеко вперед, что идеально подходило для полного уничтожения в аварии. Принимая во внимание отсутствие механической надежности на заре автомобилестроения, мы задаемся вопросом, насколько комфортно вы будете чувствовать себя с 265 фунтами, вращаясь со скоростью 1000 об / мин за икрами.

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Тридцать цилиндров, пять рядов, пять карбюраторов, пять распределителей, 1255 куб. дюймов. Вот что происходит, когда Детройт идет на войну. Chrysler построил A57, чтобы в спешке выполнить контракт на поставку танковых двигателей времен Второй мировой войны, используя как можно больше готовых компонентов. Он состоял из пяти легковых рядных шестерок объемом 251 куб.см, расположенных радиально вокруг центрального выходного вала.Получившаяся 425-сильная куча волосатой свободы приводила в движение танки M3A4 Lee и M4A4 Sherman.

MARC BRAMLEY, ARCHIVIO PERINI, ANDRÉ RITZINGER, JOHN ROE, DANIEL VAUGHN, UGO.COM, AVTOINDEX.COM, ПРОИЗВОДИТЕЛИ

Хотя простое упоминание о гоночном двигателе — это ящик Пандоры для автомобилей, BRM H-16 слишком неприятный, чтобы его не упомянуть. 3,0-литровый 32-клапанный H-16 BRM, по сути, две плоские восьмерки, делающие горизонтальный боп, был работой дизайнера Тони Радда.Он выдавал более 400 л.с., но уступал ему по весу и надежности. Джим Кларк дал двигателю единственную победу в Формуле-1 на Гран-при США 1966 года, а Джеки Стюарт однажды сравнил его с лодочным якорем. Это звучало как четыре Субару в почтовом ящике.

Это был не единственный 16-цилиндровый двигатель, с которым баловались ребята из BRM. Они также разработали 1,5-литровый V-16 с наддувом. Он вращался до 12 000 об / мин и производил примерно 485 л.с. Это был бы адский обмен на Corolla AE86.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

Композитные клапаны двигателя? | CompositesWorld

В автогонках меньшая масса означает большую скорость. Инженеры постоянно искали способы уменьшить массу компонентов гоночных автомобилей для повышения производительности, и композиты стали подходящим материалом в этих усилиях, особенно в компонентах кузова и рамы гоночных автомобилей. В Центре инженерных исследований автоспорта Университета штата Колорадо (CSU, Ft.Коллинз, штат Колорадо), однако исследования по уменьшению массы были сосредоточены на композитном решении в очень маловероятной области: исследователи Дональд Рэдфорд, Ричард Бакли и группа студентов-инженеров CSU отливают композитные, цельные клапаны двигателя, которые являются частью веса металлических версий.

Нацеливание на клапаны двигателя не только снижает вес, но, что более важно для гоночных целей, также открывает возможность увеличить практическую скорость двигателя. «Ограничение числа оборотов [оборотов в минуту] большинства современных двигателей определяется скоростью, при которой клапанный механизм становится нестабильным», — объясняет Рэдфорд.«Поскольку «прыжок» и «отскок» клапана зависят от массы и жесткости компонентов клапанного механизма, уменьшение массы клапана должно увеличить рабочую скорость двигателя». Команда провела несколько лет, демонстрируя потенциальные характеристики армированных волокном высокотемпературных матричных клапанов, формованных методом трансферта из смолы (RTM), для замены материалов, используемых в настоящее время.

Материалы по сравнению с суровыми условиями

Сталь по-прежнему является преобладающим материалом для серийных клапанов двигателей, и нержавеющая сталь не является чем-то необычным, поскольку обеспечивает лучшую износостойкость и теплопередачу, чем сталь, почти при той же массе.В гонках часто используются титановые клапаны, потому что их масса составляет 60 процентов от массы стальных клапанов, но в основном для впускных клапанов. «Обычно клапаны имеют температуру 400°C/752°F на поверхности впускного клапана и 900°C/1652°F на поверхности выпускного клапана», — говорит Рэдфорд. Титан не может воспринимать тепло как выпускной клапан. Кроме того, титан не обладает такими характеристиками усталости при многоцикловой нагрузке, как сталь, и, следовательно, требует закалки, что увеличивает сложность и стоимость процесса. Керамические клапаны и клапаны с керамической головкой были продемонстрированы для использования в качестве выпускных клапанов, их масса составляет всего 40 процентов от массы стальных клапанов, но режим хрупкого разрушения керамических версий может иметь разрушительные последствия для двигателя.Гоночные команды Формулы-1 использовали интерметаллические клапаны из алюминида титана, которые весят вдвое меньше, чем их стальные аналоги. Они производятся с использованием очень сложного производственного процесса, для которого требуется несколько материалов, но сегодня команды Формулы-1 обычно используют клапаны из титанового сплава. Цель команды CSU — смягчить все негативные моменты: говорит Рэдфорд: «Мы хотим уменьшить массу, повысить жесткость, преодолеть хрупкое разрушение и упростить производство с помощью композита, армированного волокном».

Концепция композитных клапанов существует уже некоторое время.В начале 1980-х годов компания Polimotor Research Inc. (Фэрлон, штат Нью-Джерси) предприняла попытку разработать полную концепцию двигателя из полимера, армированного углеродом, на основе двигателя Ford, в котором для штоков клапанов использовался высокотемпературный армированный углеродом полиамид-имид (PAI), а для клапанов — керамика. головки клапанов. Рядный 4-цилиндровый двигатель весил всего 168 фунтов/76 кг, отмечает Рэдфорд. В 1980-х годах Исследовательский центр НАСА в Лэнгли (Вирджиния) осуществил проект двигателя из углеродного волокна, в рамках которого были изготовлены и испытаны клапаны из углеродного композита. В этих предыдущих усилиях использовались многокомпонентные концепции для решения проблем с различными температурами, наблюдаемыми по всему клапану, а клеевое соединение между головкой клапана и штоком клапана часто становилось точкой разрушения конструкции.Команда Рэдфорда считает, что у облегченных цельных клапанов есть потенциал, масштабируемый до объемов производства, хотя остаются значительные проблемы проектирования и производства.

Цельная преформа, высокотемпературная смола

Клапаны, разработанные Рэдфордом и его командой, имеют тот же размер и форму, что и обычные клапаны двигателей внутреннего сгорания. Общая длина составляет около 100 мм/4 дюйма, а вес стали примерно 38 г. Моделирование методом конечных элементов (FEA) показало, что по длине штока клапана из композитного материала требуется очень мало углеродного волокна — двух жгутов 12K было достаточно, если учитывать только прочность.Но в переходной области, в месте пересечения штока и головки, где возникло пиковое напряжение, и в самой головке клапана было указано значительно большее усиление из-за изгибающих нагрузок, создаваемых зоной седла клапана.

Выбранная композитная конструкция включала двухслойную плетеную трубку из углеродного волокна диаметром 6,4 мм/0,25 дюйма, которая включает 60% осевого однонаправленного жгута для дополнительного сопротивления осевому изгибу. К лицевой стороне клапана были добавлены два небольших диска из ткани полотняного переплетения (подробнее об этом ниже), чтобы противостоять изгибающим нагрузкам.Матрица представляет собой высокотемпературную полиимидную смолу PETI-RFI от Langley Research Center.

Смола PETI-RFI ведет себя как термопласт при температуре ниже 280°C/536°F, но сшивается и превращается в термореактивную смолу при температуре отверждения выше 300°C/572°F. Из-за этой уникальной характеристики команда Рэдфорда разработала план введения смолы в форму при повышенной температуре, но ниже температуры отверждения. Как только инжекция была завершена, форму снимали с машины для литья под давлением, невентилируемые крышки формы фиксировали в отверстиях и вентиляционных отверстиях, а форму помещали в печь для полного отверждения и сшивания.

Поскольку клапан должен был быть цельным, команда первоначально разработала и изготовила прототип алюминиевой пресс-формы с одной полостью. Но возникли проблемы: неравномерное заполнение, трудности с удержанием преформы и промывкой волокна, а также застревание деталей в форме. Хуже того, алюминиевая форма со временем деформировалась из-за высоких температур отверждения, что привело к проблемам с герметизацией и, в конечном итоге, к образованию пустот в деталях. В конечном счете, модульная многокомпонентная пресс-форма из нержавеющей стали с разделенными полостями была разработана для улучшения заполнения и смачивания, обеспечения более высокого давления смыкания и облегчения удаления деталей, сообщает Рэдфорд.

Одной из наиболее серьезных проблем было то, как сохранить крошечную оплетку в правильном положении внутри формы во время впрыска. Окончательным решением стала удерживающая втулка, состоящая из двух частей, которая зажимает плетеную втулку на конце наконечника клапана. Втулка удерживает волокна от вымывания формы и «раскрывает» оплетку, заталкивая смолу внутрь, так что, согласно Рэдфорду, смачивание преформы происходит изнутри наружу.

Еще одна проблема заключалась в том, как добавить локальное волокнистое усиление на поверхность клапана.Первоначальная идея состояла в том, чтобы «накрутить» конец оплетки на плоскую поверхность, но место ее размещения было неопределенным из-за течения смолы во время инъекции. Ответ заключался в том, чтобы «препрегировать» сухую углеродную ткань полотняного переплетения путем расплавления PETI-RFI в ее термопластическом состоянии на ткань. Затем из ткани, пропитанной смолой, были вырезаны или штампованы небольшие диски того же диаметра, что и поверхность клапана, чтобы сформировать диски, упомянутые выше. По словам Рэдфорда, диски легко вдавливались в лицевую часть пресс-формы клапана во время сборки пресс-формы и обеспечивали необходимый дополнительный объем волокна в области головки.«Когда горячая смола впрыскивается в форму, смола в дисках плавится вместе с ней», — объясняет он. «Мы сняли торцевую заглушку для инжекции, чтобы убедиться, что диск смачивается перед отверждением в печи. Это дает нам гибкость для выполнения аддитивного производства для локальных нагрузок и может перейти к добавлению функциональных характеристик, таких как материалы для теплопередачи».

Результаты испытаний, будущие направления

Клапаны были успешно изготовлены из углеродной заготовки и смолы PETI-RFI в модульной стальной форме.Они весили всего 7,3 г, что составляло всего 19 процентов от стандартного стального клапана (цельный титан весил бы 22 г). Были проведены статические испытания на растяжение, двигательные динамические испытания и испытания двигателя с огнем. Клапаны показали хорошие результаты в статических и механических динамических испытаниях, сообщает Рэдфорд. Разрушение при растяжении произошло в области держателя пружины клапана из-за сдвига, но при нагрузке, на порядок большей, чем нагрузка на клапан, рассчитанная для реального двигателя. В моторном динамическом испытании клапаны были установлены в тестовом двигателе, соединенном с электродвигателем, который приводил клапаны в действие более 15 минут при частоте вращения выше 5000 об/мин без каких-либо повреждений.

Настоящим испытанием стала установка клапанов на настоящий гоночный двигатель в стиле Junior Dragster с боковыми клапанами, воздушным охлаждением и ручным управлением дроссельной заслонкой. Клапаны работали хорошо на холостом ходу, но когда они были доведены почти до полной нагрузки, они вышли из строя в течение 10 минут. При осмотре на поверхности клапана возле седла были обнаружены эрозия и потеря материала. Было очевидно, и это наблюдение впоследствии было подтверждено данными термопары, что температура впускного клапана гоночного двигателя с воздушным охлаждением превышала 425°C/797°F — намного выше, чем ожидалось.«Мы достигли нашей цели по созданию цельного композитного клапана, который конструктивно может работать как впускной клапан, но тепловые характеристики самого композитного материала оказались настоящей проблемой», — заявляет Рэдфорд.

После первых экспериментов группа усовершенствовала свою работу на основе извлеченных уроков. Например, все первоначальные изделия клапана имели небольшую пористость поверхности, что могло повлиять на тепловые характеристики. Рэдфорд сообщает, что вакуумная дегазация расплава перед инжекцией, а также хорошо герметизированная форма в настоящее время считаются критически важными для предотвращения образования пустот.Другие меры включают попытки улучшить тепловые характеристики полиимида с помощью наноразмерных добавок. Также изучаются новые неорганические полимеры, в том числе «геополимеры» на основе алюмосиликата, подобные тем, которые предлагает Pyromeral (Pont Sainte Maxence, Франция и Даллас, Техас). Они работают как двухкомпонентная эпоксидная смола, могут обрабатываться RTM и обеспечивают очень высокие температурные характеристики (~ 750 ° C / 1382 ° F), но прочность является проблемой, отмечает он. Клапаны, сделанные с таким же усилением, но с керамической матрицей, имеют белый цвет, а не черный.

В качестве альтернативы высокотемпературным матрицам также исследуются различные золь-гели и суспензии частиц коллоидного кремнезема. Кроме того, команда ищет способы сделать свою оригинальную конструкцию из углеродного волокна/полиимида более термостойкой и устойчивой к эрозии. «Мы рассматриваем различные тепловые барьеры, в том числе напыляемые покрытия или металлические поверхности на поверхности клапана, но все еще должны решить проблемы с коэффициентом теплового расширения (КТР)», — добавляет Рэдфорд.

Учитывая текущий экономический спад и связанный с ним спад в автомобильной промышленности, OEM-производители, озабоченные тем, чтобы заново изобретать себя и разрабатывать «более экологичные» автомобили, которые определят будущее транспорта, вряд ли будут рассматривать композитные клапаны в качестве приоритета.Тем не менее, исследование многообещающее. В автогонках, где скорость по-прежнему важнее зеленого, композитные клапаны и (кто знает?) даже полностью композитный двигатель могут стать следующим прорывом в конкурентной борьбе.

Клапаны двигателя

Топливно-воздушная смесь поступает в цилиндры через отверстия впускных клапанов, а сгоревшие газы выбрасываются через отверстия выпускных клапанов. Головка каждого клапана открывает и закрывает эти отверстия цилиндра. Клапаны, используемые в авиационных двигателях, представляют собой обычные тарельчатые клапаны.Створки также типичны по форме и называются то ли грибовидными, то ли тюльпанными из-за сходства с формой этих растений. На рис. 1-20 показаны различные формы и типы этих клапанов.

Рисунок 1-20. Различные типы клапанов.

Конструкция клапана

Клапаны в цилиндрах авиационных двигателей подвергаются воздействию высоких температур, коррозии и эксплуатационных нагрузок; таким образом, металлический сплав в клапанах должен противостоять всем этим факторам. Поскольку впускные клапаны работают при более низких температурах, чем выпускные, их можно изготавливать из хромоникелевой стали.Выпускные клапаны обычно изготавливаются из нихромовой, сильхромовой или кобальт-хромовой стали, так как эти материалы гораздо более термостойкие.

Головка клапана имеет шлифованную поверхность, которая образует уплотнение относительно шлифованного седла клапана в головке цилиндра, когда клапан закрыт. Поверхность клапана обычно шлифуют под углом 30° или 45°. В некоторых двигателях торец впускного клапана шлифуется под углом 30°, а торец выпускного клапана — под углом 45°. Поверхности клапанов часто делают более прочными за счет применения материала, называемого стеллитом.Около 1⁄16 дюйма этого сплава приварено к поверхности клапана и отшлифовано под правильным углом. Стеллит устойчив к высокотемпературной коррозии, а также выдерживает удары и износ, связанные с работой клапана. Некоторые производители двигателей используют нихромовую накладку на клапаны. Это служит той же цели, что и материал стеллит.

Рисунок 1-21. Вид направляющей клапана, установленной на головке блока цилиндров.

Шток клапана действует как направляющая для головки клапана и перемещается в направляющей клапана, установленной для этой цели в головке блока цилиндров.[Рис. 1-21] Поверхность штока клапана закалена для защиты от износа. Шейка — это часть, которая образует соединение между головкой и стеблем. Наконечник клапана закален, чтобы выдерживать удары коромысла клапана, когда он открывает клапан. В обработанную канавку на штоке возле наконечника входят шпонки штока с разрезным кольцом. Эти штоковые шпонки образуют стопорное кольцо, удерживающее стопорную шайбу пружины клапана на месте. [Рис. 1-22]Рис. 1-22. Стержневые шпонки, образующие стопорное кольцо, удерживают стопорные шайбы клапанной пружины на месте.

Стержни некоторых впускных и выпускных клапанов полые и частично заполнены металлическим натрием. Этот материал используется потому, что он является отличным проводником тепла. Натрий плавится примерно при 208 °F, и возвратно-поступательное движение клапана обеспечивает циркуляцию жидкого натрия, позволяя ему отводить тепло от головки клапана к штоку клапана, где оно рассеивается через направляющую клапана к головке блока цилиндров и ребрам охлаждения.

Ответить

Ваш адрес email не будет опубликован.