Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Содержание

Какой уровень электролита должен быть в аккумуляторе? Рекомендации. Электролит для аккумуляторов Какой объем электролита в 55 аккумуляторе

Несмотря на то, что сегодня большую часть прилавков в магазинах по продаже автомобильных аккумуляторов занимают батареи, не требующие частого обслуживания или так называемые условно необслуживаемые источники питания, бывают ситуации, когда избежать этого невозможно. Одной из самых важных и сложных сервисных операций является замена электролита. О том, как она проводится, и что для этого нужно, поговорим дальше.

У нас вы сможете не просто приобрести электролит высокого качества, но и получить полный спектр по проверке, заливки и диагностики аккумулятора, с возможной заменой батарею на новую и более свежую, с минимальной доплатой, которая значительно сэкономит ваши деньги.

Свинцово-кислотная аккумуляторная батарея — прибор, предназначенный для хранения энергии при помощи химических реакций, происходящих в растворе серной кислоты и дистиллированной воды.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Этот раствор называется электролитом, и периодически нуждается в замене. Решение данной задачи особенно актуально, если речь идет о восстановлении старой батареи. В этом случае поменять электролит перед зарядкой стоит обязательно.

Для того чтобы заменить электролит в аккумуляторе, вам понадобится несколько инструментов и несложных приспособлений. В частности, приготовьте:

  • Аэрометр — прибор для измерения плотности жидкости.
  • Воронка, с помощью которой электролит будет заливаться в « банки».

Кроме того, для приготовления электролита понадобится вода и серная кислота (возможно применение готового раствора, который продается в магазинах).

Теперь перейдем к главному — рассмотрим пошаговую инструкцию по замене электролита в автомобильном аккумуляторе:

  1. Перед заменой электролита промываем батарею изнутри дистиллированной водой. Это позволит удалить механические загрязнения из корпуса. При промывке аккумулятор желательно интенсивно потрусить, пока вся угольная крошка не выйдет вместе с водой.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
    После этого устраняем отложения солей на электродах, и приступаем к следующей операции.
  1. Берем бутылку с готовым электролитом, плотность которого должна составлять 1,28 г/с м³ , и заливаем его в каждую из « банок» через воронку с узким горлышком. При необходимости или по желанию на этом этапе в электролит можно добавить специальные присадки, например, для удаления сульфата с электродов. После того, как под действие электролита из корпуса выйдет весь воздух, а присадка полностью растворится, можно приступить к зарядке. Не торопитесь — обычно полное растворение присадки наступает не ранее, чем через 40-48 часов.
  1. Открутите пробки и подключите . Аккумулятор после замены электролита должен заряжаться циклично, то есть, соблюдая схему « зарядка-разрядка». Этот процесс длится до тех пор, пока плотность полностью не восстановится. При таком режиме зарядки ток должен составлять 0,1 А. Следите за тем, чтобы электролит не « выкипал». О полной зарядке свидетельствует напряжение 2,4 В на каждый секции или 14-15 В на клеммах.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
  1. После достижения номинального напряжения следует уменьшить зарядный ток в два раза. В том случае, если на протяжении 2 часов плотность остается неизменной, зарядку можно прекращать.
  1. Разряжаем батарею с применением тока 0,5 А до тех пор, когда напряжение будет около 10 В. Из времени продолжительности разряда и величины имеющегося тока необходимо вычислить емкость. В том случае, если этот показатель ниже 4 ампер/часов, цикл заряда нужно повторить.
  2. А так же можно для экономии времени просто напросто т.е. аккумулятор и с доплатой приобрести новую стартерную аккумуляторную батарею.

Автомобильный стартерный аккумулятор – это химический источник тока, действие которого основано на использовании обратимых электрохимических процессов. Простейший свинцовый аккумулятор состоит из положительного электрода, активным веществом которого является двуокись свинца (темно-коричневого цвета), и отрицательного электрода, активным веществом которого является губчатый свинец (серого цвета).Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Если оба электрода поместить в сосуд с электролитом (раствор серной кислоты в дистиллированной воде), то между электродами возникнет разность потенциалов.

При подключении к электродам нагрузки (потребителя) в цепи потечет электрический ток, и аккумулятор будет разряжаться. Во время разряда расходуется серная кислота из электролита и одновременно в электролит выделяется вода. Поэтому по мере разряда свинцового аккумулятора уменьшается концентрация серной кислоты, из-за чего плотность электролита понижается. При заряде происходят обратные химические реакции – в электролит выделяется серная кислота и расходуется вода. При этом плотность электролита по мере заряда возрастает. Поскольку при разрядах и зарядах изменяется плотность электролита, то по ее величине можно судить о степени заряженности аккумулятора, чем и пользуются на практике.

Основными электрическими характеристиками аккумулятора являются электродвижущая сила, напряжение и емкость.

Электродвижущей силой (э.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов д.с.) аккумулятора называется разность потенциалов между его электродами при разомкнутой внешней цепи. Величина э.д.с. исправного аккумулятора зависит от плотности электролита (степени его заряженности) и изменяется в пределах от 1,92 до 2,15 вольта.

Напряжением аккумулятора называется разность потенциалов между его выводами, измеренная под нагрузкой. За номинальное напряжение свинцового аккумулятора принимается величина, равная 2 вольта. Величина напряжения при разряде аккумулятора зависит от величины разрядного тока, продолжительности разряда и температуры электролита; она всегда меньше величины э.д.с. Разряжать аккумулятор ниже определенного предела, называемого конечным разрядным напряжением, недопустимо, так как это может привести к переполюсовке и разрушению активной массы электродов. Величина напряжения при заряде зависит главным образом от степени заряженности аккумулятора, температуры электролита и всегда больше величины э.д.с.

Емкостью аккумулятора называется количество электричества, отдаваемое полностью заряженным аккумулятором при его разряде до допустимого конечного разрядного напряжения.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Емкость аккумулятора измеряется в ампер-часах и определяется как произведение величины разрядного тока (в амперах) на продолжительность разряда (в часах). Емкость аккумулятора зависит от количества активной массы (количества и размера электродов), величины разрядного тока, плотности и температуры электролита, срока службы аккумулятора и является его важнейшей эксплуатационной характеристикой. При больших величинах разрядных токов, при низких температурах электролита, а также в конце срока службы емкость, отдаваемая аккумулятором, снижается. За номинальную емкость аккумулятора принимается емкость, которую должен отдавать аккумулятор при разряде током 20-часового или 10-часового разряда, т.е. при величине разрядного тока, численно равной соответственно 0,05 и 0,1 величины номинальной емкости.

Стартерная автомобильная аккумуляторная батарея состоит из 6 одинаковых аккумуляторов, соединенных последовательно. При таком соединении номинальное напряжение батареи равно сумме номинальных напряжений отдельных аккумуляторов, и составляет 12 вольт, а номинальная емкость батареи остается такой же, как и емкость одного аккумулятора.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Приведение АКБ в рабочее состояние

Таблица 1. Количество воды и раствора кислоты для приготовления 1 л электролита
Требуемая
плотность
электролита,
г/см³
Количество
воды, л
Количество
раствора
серной кислоты,
плотностью
1,40 г/см³, л
1,200,5470,476
1,210,5190,500
1,220,4910,524
1,230,4650,549
1,240,4380,572
1,250,4100,601
1,260,3820,624
1,270,3570,652
1,280,3290,679
1,290,3020,705
1,310,2460,760

Автомобильные аккумуляторные батареи, выпускаемые в сухозаряженном состоянии, для приведения в рабочее состояние необходимо залить электролитом и после пропитки электродов измерить плотность электролита и произвести подзарядку батареи.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

При температуре воздуха до -15°С в батареи заливают электролит плотностью 1,24 г/см³. При температуре от -15° до -30°С плотность повышают до 1,26, а при ниже -30° – до 1,28 г/см³.

Электролит требуемой плотности может быть приготовлен непосредственно из кислоты и воды. Однако более удобно применять раствор кислоты плотностью 1,40 г/см³. Количество воды и раствора, необходимое для приготовления 1 л электролита, указано в таблице 1. Серная кислота учитывается не в литрах, а в килограммах. Для перевода литров в килограммы необходимо пользоваться коэффициентом 1,83.

Плотность электролита измеряется с помощью ареометра. Он состоит из цилиндра с резиновой грушей и заборной трубкой и денсиметра (поплавка). При определении плотности электролита необходимо сжать рукой резиновую грушу ареометра, ввести конец заборной трубки в электролит и постепенно отпустить грушу. После того, как денсиметр всплывет, по его шкале определить плотность электролита в аккумуляторе. При измерениях надо следить за тем, чтобы денсиметр свободно плавал в электролите («не прилипал» к стенкам цилиндра).Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Плотность электролита зависит от температуры. Исходной считается температура электролита 25°С. На каждые 15°С изменения температуры плотность изменяется примерно на 0,01 г/см³. Поэтому при измерении плотности электролита следует учитывать его температуру и в необходимых случаях вносить поправку к показаниям ареометра, пользуясь таблицей 2.

Заливать электролит в аккумулятор следует тонкой струей, применяя фарфоровую, полиэтиленовую или эбонитовую кружку и стеклянную, полиэтиленовую или эбонитовую воронку.

Таблица 2. Поправки к показаниям ареометра
Температура
электролита, С°
Поправка к
показаниям, г/см 3
От -55 до -41-0,05
От -40 до -26-0,04
От -25 до -11-0,03
От -10 до 4-0,02
От 5 до 19-0,01
От 20 до 300,00
От 31 до 45+0,01
ОТ 46 до 60+0,02

Температура электролита должна быть не ниже 15°С и не выше 25°С.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов После заливки электролита и пропитки электродов не ранее чем через 20 минут и не позже чем через 2 часа производится контроль плотности электролита. Если плотность электролита понизится не более, чем на 0,03 г/см³ против плотности заливаемого электролита, батарея может эксплуатироваться. Если же плотность электролита понизится более, чем на 0,03 г/см³, батарея подлежит подзаряду. Продолжительность первого подзаряда зависит от срока хранения батареи в сухом виде с момента изготовления до приведения в рабочее состояние. Окончание подзаряда определяется по постоянству напряжения аккумулятора и плотности электролита в течение 2 часов.

Заряд аккумуляторных батарей

Аккумуляторные батареи заряжают при приведении их в рабочее состояние, при проведении контрольно-тренировочного цикла, а также периодически в процессе эксплуатации и при разрядах ниже допустимых пределов. При подготовке к заряду измеряется плотность и уровень электролита во всех аккумуляторах батареи. В аккумуляторах, где уровень недостаточен, он доводится до нормы доливкой дистиллированной воды (но не электролита!).Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Заряд свинцовых аккумуляторных батарей необходимо производить от источника постоянного тока. При этом зарядное устройство, предназначенное для заряда одной 12-вольтовой батареи, должно обеспечить возможность увеличения зарядного напряжения до 16,0-16,5 В, поскольку иначе не удастся зарядить современную необслуживаемую аккумуляторную батарею полностью (до 100% ее фактической емкости). Положительный провод (клемму) зарядного устройства соединяют с положительным выводом батареи, отрицательный — с отрицательным. В практике эксплуатации пользуются, как правило, одним из двух методов заряда батареи: заряд при постоянстве тока или заряд при постоянстве напряжения. Оба эти метода равноценны с точки зрения их влияния на долговечность батареи.

Заряд при постоянстве тока производится током величиной, равной 0,1 от номинальной емкости при 20-часовом режиме разряда. Например, для батареи емкостью 60 А-ч ток заряда должен быть равен 6 А. Для поддержания постоянства тока в течение всего процесса заряда необходимо регулирующее устройство.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Недостаток такого способа — необходимость постоянного контроля и регулирования зарядного тока, а также обильное газовыделение в конце заряда. Для снижения газовыделения и повышения степени заряженности батареи целесообразно ступенчатое снижение силы тока по мере увеличения зарядного напряжения. Когда напряжение достигнет 14,4 В, зарядный ток уменьшают в два раза (3 Ампера для батареи емкостью 60 А-ч) и при таком токе продолжают заряд до начала газовыделения. При заряде батарей, которые не имеют отверстий для доливки воды, целесообразно при увеличении зарядного напряжения до 15 В еще раз уменьшить ток в два раза (1,5 А для батарей емкостью 60 А-ч). Батарея считается полностью заряженной, когда ток и напряжение при заряде сохраняются без изменения в течение 1-2 часов. Для современных необслуживаемых батарей такое состояние наступает при напряжении 16,3-16,4 В в зависимости от состава сплавов решеток и чистоты электролита (при его нормальном уровне).

Температура электролита во время заряда батарей возрастает, поэтому необходимо контролировать ее величину, особенно к концу заряда.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Ее величина не должна превышать 45°С. В случае если температура окажется выше, следует уменьшить наполовину зарядный ток или прервать заряд на время, необходимое для остывания электролита до 30…35°С.

Если к концу заряда плотность электролита отличается от нормы, необходимо произвести корректировку доливкой дистиллированной воды в случаях, когда плотность выше нормы, или доливкой раствора серной кислоты плотностью 1,40 г/см³, когда она ниже нормы. Доводку плотности можно производить только в конце заряда, когда плотность электролита больше не возрастает, а за счет «кипения» обеспечивается быстрое и полное перемешивание. Количество отбираемого электролита и добавляемой воды или раствора кислоты для каждого аккумулятора можно определить, пользуясь данными таблицы 3. После проведения корректировки продолжить заряд в течение 30-40 мин, после чего снова измерить плотность, и если она будет отличаться от нормы, провести ее вновь.

Таблица 3. Примерные нормы в см³ доводки плотности электролита в объеме одного литра
1,241,25
Отсос электролитаДоливка раствора 1,40 г/см 3Доливка водыОтсос электролитаДоливка раствора 1,40 г/см 3Доливка воды
1,246062
1,254445
1,2685883940
1,271221267880
1,28156162117120
1,29190200158162
1,30
Таблица 3.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Продолжение
Плотность электролита в АКБ, г/см 3Необходимая плотность, г/см 3
1,261,27
Отсос электролитаДоливка раствора 1,40 г/см 3Доливка водыОтсос электролитаДоливка раствора 1,40 г/см 3Доливка воды
1,24120125173175
1,256570118120
1,266566
1,274043
1,2880864043
1,291231277578
1,30109113
Таблица 3.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Продолжение
Для пользования таблицей ее данные необходимо умножить на объем одного аккумулятора батареи, выраженный в литрах.
Плотность электролита в АКБ, г/см 3Необходимая плотность, г/см 3
1,291,31
Отсос электролитаДоливка раствора 1,40 г/см 3Доливка водыОтсос электролитаДоливка раствора 1,40 г/см 3Доливка воды
1,24252256
1,25215220
1,26177180290294
1,27122126246250
1,286365198202
1,29143146
1,3036387981

Эксплуатационный уровень электролита устанавливается после окончания корректировки плотности и не ранее, чем через 30 мин после выключения батарей с заряда.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов При уровне электролита ниже нормы в аккумулятор нужно добавить электролит такой же плотности.

При заряде при постоянстве напряжения степень заряженности АКБ по окончании заряда напрямую зависит от величины зарядного напряжения, которое обеспечивает зарядное устройство. Так, например, за 24 часа непрерывного заряда при напряжении 14,4 В полностью разряженная 12-вольтовая батарея зарядится на 75-85%, при напряжении 15 В — на 85-90%, а при напряжении 16 В — на 95-97%. Полностью зарядить разряженную батарею в течение 20-24 часов можно при напряжении зарядного устройства 16,3-16,4 В. В первый момент включения тока его величина может достигать 40-50 А и более, в зависимости от внутреннего сопротивления (емкости) и глубины разряда батареи. Поэтому зарядное устройство снабжают схемными решениями, ограничивающими максимальный ток заряда. По мере заряда напряжение на выводах батареи постепенно приближается к напряжению зарядного устройства, а величина зарядного тока, соответственно, снижается и приближается к нулю в конце заряда.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Это позволяет производить заряд без участия человека в полностью автоматическом режиме. Ошибочно критерием окончания заряда в подобных устройствах считают достижение напряжения на выводах батареи при ее заряде, равного 14,4±0,1 В. При этом, как правило, загорается зеленый сигнал, служащий индикатором достижения заданного конечного напряжения, то есть окончания заряда. Однако для удовлетворительного (на 90-95%) заряда современных необслуживаемых АКБ с помощью подобных зарядных устройств, имеющих максимальное зарядное напряжение 14,4-14,5 В, потребуется около суток.

Ускоренный комбинированный способ заряда применяется при необходимости полного заряда аккумуляторных батарей в сокращенное время. Ускоренный комбинированный заряд производится в два этапа. На первом этапе заряд батарей осуществляется при постоянном зарядном напряжении, на втором этапе – при постоянной величине зарядного тока. Переход к заряду батарей при постоянной величине зарядного тока производится при снижении его на первом этапе заряда до величины 1/10 от емкости.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Контрольно-тренировочный цикл

Контрольно-тренировочный цикл проводится для контроля технического состояния аккумуляторных батарей, проверки отдаваемой ими емкости, исправления отстающих аккумуляторов. Отстающими называются те аккумуляторы батареи, параметры которых ниже остальных.

При контрольно-тренировочном цикле проводятся:

  • предварительный полный заряд;
  • контрольный (тренировочный) разряд током 10-часового режима;
  • окончательный полный заряд.

Предварительный полный заряд при КТЦ проводится зарядным током, величиной 1/10 емкости аккумулятора. Перед началом контрольного разряда температура электролита должна быть 18…27°С. Величина разрядного тока для аккумуляторных батарей должна соответствовать значению, указанному в таблице 4.

Постоянство разрядного тока должно тщательно соблюдаться в течение всего разряда. Разряд ведется до конечного напряжения 10,2 В. При снижении напряжения до 11,1 В измерения производят через каждые 15 минут, а при снижении напряжения до 10,5 В измерения производят непрерывно до конца зарядки.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Подсчет емкости, отдаваемой аккумуляторной батареей, в процентах от номинальной производится по . Фактическая емкость, отдаваемая при контрольном разряде, может быть как меньше, так и больше номинальной. Окончательный полный заряд автомобильных батарей производится нормальным зарядным током с соблюдением всех правил с доводкой плотности электролита в конце заряда.

Как показывает практика далеко не каждый, кто интересуется вопросом, сколько электролита в аккумуляторе, знает, что вообще такое электролит и зачем он нужен, поэтому сейчас вы получите ответы на все озвученные вопросы. Итак, обо всем по порядку.

Что такое электролит и зачем он вообще нужен?

Если вы уже успели прочитать на нашем портале статью: «Какая кислота в аккумуляторе автомобиля », то общее представление об электролите вы уже имеете. Если нет – разъясняем.

Электролит – это раствор серной кислоты и простой дистиллированной воды. Им в нужной концентрации и объеме заполняют свинцово-кислотные аккумуляторные батареи для того, чтобы те благодаря химическим процессам происходящим с этим раствором могли хранить энергию.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Отсюда, если концентрация или количество электролита в АКБ уменьшается, она перестает справляться в полной мере со своими обязанности и начинает нуждаться в замене или восстановлении. В последнем случае перед автомобилистами как раз и встает вопрос: сколько электролита должно быть в аккумуляторе.

Итак, сколько электролита должно быть в АКБ?

То, сколько электролита должна содержать аккумуляторная батарея автомобиля для максимально эффективной своей работы, напрямую определяется ее емкостью. Конечно, в зависимости от производителя возможна некоторая разбежка, но в целом объем электролита для аккумуляторов разной емкости будет следующим:

  • 55 А·ч – 2,5 л +/- 100 г;
  • 60 А·ч – 2,7-3 л;
  • 62 А·ч – около 3 л;
  • 65 А·ч – около 3,5 л;
  • 75 А·ч – 3,7-4 л;
  • 90 А·ч – 4,4-4,8 л;
  • 190 А·ч – порядка 10 л.

Но это лишь примерный литраж, он нужен больше для справки перед походом в магазин. В процессе же восстановления аккумулятора нужно ориентироваться не на него, а на особые метки, присутствующие на корпусе последнего.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Теперь подробнее.

Какой должен быть уровень электролита в аккумуляторе?

Если в вашем аккумуляторе присутствует шкала с минимумом и максимумом, то вопрос, до какого уровня следует заливать электролит, решается очень просто – по верхнюю черту, то есть до отметки «MAX»,

Если же такой шкалы нет, возможно, в отверстиях вашего аккумулятора есть «язычки», тогда электролита в АКБ нужно заливать столько, чтобы они покрылись 5 мм слоем раствора (полностью в него погрузились).

Ну, а если нет ни того, ни другого, залейте в АКБ электролит в рекомендуемом выше объеме (его должно быть не под завязку, а чуть меньше), а затем для самоконтроля возьмите стеклянную трубочку, диаметром до 5 мм и опустите ее внутрь АКБ, пока она не упрется в предохранительный щиток. Закройте верхнее отверстие трубочки пальцем и выньте ее наружу. Если уровень оставшегося в ней электролита находится в пределах 10-15 мм вы все сделали правильно – уровень электролита в АКБ оптимален.

Аккумуляторные батареи отличаются емкостными характеристиками: 55ah, 60ah, 70ah, 44ah и технологией производства.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Индикация ампер-часов (Ah) измеряет емкость аккумулятора – количество тока, которое принято при постоянной температуре 27° C в течение 20 часов до напряжения 1,75 вольт на ячейку батареи. Какие технологии используют в АКБ, содержимое батарей – об этом узнаете ниже.

Кальций (CA + / Ca-). Преимущества:

  • низкое потребление воды,
  • безопасность при авариях,
  • низкий уровень саморазряда.

Кальциевые батареи рекомендуют, если батарея установлена ​​в моторном отсеке и поэтому подвержена воздействию высоких температур или установлена ​​в труднодоступном месте. В новых автомобилях производители теперь используют 90% этого типа батареи.

Гибрид (сурьма + / CA-). Высокое потребление воды по сравнению с чистыми батареями кальция. Время от времени дистиллированную воду пополняют. Таким образом, этот тип аккумулятора распознают по наличию пробки для долива воды. Для дорогих брендовых АКБ потребление воды практически сводится к 0.

Узнай время зарядки своего аккумулятора

Пластины сурьма (сурьма + / сурьма) Редко используется как стартерная батарея.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Высокая прочность цикла, но ограниченный ток холодного пуска. Необходимо частое наполнение водой.

Из перечисленных выше, рассмотрим АКБ обслуживаемого типа – (сурьма + / Cа-) и (сурьма + / сурьма –) свинцово-кислотные батареи, где за счет химической реакции серной кислоты, воды, свинца на электродах батареи образуются электрические заряды. При этом часть химических веществ теряют массу. В большей степени это касается воды.

Снижение уровня электролита в банках аккумулятора происходит за счет уменьшения объема воды. Концентрация серной кислоты при этом не снижается, а может увеличится. Вот почему при отсутствии утечек электролита в банки аккумулятора добавляют дистиллированную воду, чтобы закрыть верхний край пластин на 3-5 мм или до контрольной отметки.

Значение заряда АКБ и плотности электролита

Поскольку уровень заряда батареи будет зависеть от количественного состава химических элементов, участвующих в электролизе, логично предположить, что размеры пластин, вместимость банок – будут отличаться.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Если сравнить 45Ah и 75Ah аккумуляторы, то геометрические размеры и вес последнего будут больше.

Свинцово-кислотные обслуживаемые батареи лучше хранятся в сухом виде, не заправленные электролитом. Так будет происходить окисление пластин, но это гораздо меньше, чем потеря массы пластин во время химической реакции. Электролит, если готовить самостоятельно, смешивают в рекомендованных пропорциях.

О заправке АКБ электролитом

Аккумуляторные заводы дают инструкцию по заправке АКБ. В автомагазинах продают уже готовые электролиты и дистиллированную воду. Воспользуйтесь таблицей для получения 1л электролита.

Требуемая плотность электролита, г/см 3 приведенная к температуре 25°СИсходное количество воды, лТребуемое количество кислоты в л плотностью 1,4г/см 3 при температуре 25°С
1,220,4900,522
1,230,4630,549
1,240,4360,576
1,250,4100,601
1,260,3830,628
1,270,3570,652
!,280,3300,680
1,290,3020,705

Узнать плотность электролита в АКБ можно ареометром.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Как пользоваться указано в прилагаемой инструкции. В зависимости от температуры делается поправка. Если, например, +15°С, то поправка 0, затем на каждые 15 градусов вверх или вниз делается поправка на 0,01г/см3, например, при – 15°С поправку делают – 0,02г/см3.

Раствор электролита готовят из расчета объема, указанного в паспорте. В АКБ 50Ah, 75Ah, 90Ah, 190Ah объем электролита примерно составит 2,5л, 4л, 5л, 10л. Зависит от производителя.

В действительности, уход за обслуживаемыми АКБ, заключается в проверке плотности электролита и заряженности батареи. Надо хотя бы раз в год, в особенности при подготовке к зиме, проверять уровень и плотность электролита, а если АКБ со стажем, то и чаще.

Внимание! Во время работы с электролитом соблюдайте меры предосторожности: работайте в очках и перчатках в проветриваемом помещении. Добавляйте кислоту в воду, а не наоборот. При попадании раствора на кожу, обильно промойте участок проточной водой с добавлением пищевой соды.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Используйте посуду стойкую к кислоте: стекло, керамика, эбонит, пластик.

Если обнаружили, что уровень электролита упал ниже контрольной отметки, проделайте следующее:

  1. Снимите аккумулятор и занесите в теплое проветриваемое помещение.
  2. Добавьте дистиллированную воду до отметки уровня: на 3-5 мм сверху пластин.
  3. Зарядным устройством зарядите аккумулятор.
  4. Если после этого плотность ниже нормы, например, 1,19 – 1,21г/см3, то добавьте электролит, который продается уже в готовом виде плотностью 1,34 – 1,40г/см3. Для этого откачайте грушей электролит из банки и влейте туда свежий.
    Внимание! Ни в коем случае не переворачивайте АКБ вверх дном, возможно замыкание пластин отслоившимися кусочками свинца со дна аккумуляторной банки .
  5. Проделайте эту операцию с другими банками, доведя плотность до нормальной. Для умеренного климата 1,25 – 1,27г/см3. Для суровых условий плотность 1,29г/см3.
  6. Опять зарядите аккумулятор 10% — током Ah аккумулятора, например, если это 60Ah, то ток зарядки сделайте 6А.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Следите за зарядкой, не допускайте разрядов, поддерживайте уровень электролита в банках АКБ. Не допускайте саморазряда аккумулятора, который возможен при неисправностях электропроводки, не плотных контактах, утечках заряда по грязному корпусу аккумулятора. Продлите жизнь АКБ выше гарантийного срока.

Хотя водители используют сегодня необслуживаемые аккумуляторные батареи, замерить уровень электролита в аккумуляторе, или его плотность, никогда не будет лишним. Для этого следует вооружиться стеклянной трубкой с внутренним диаметром 3-5 мм, и обзавестись ареометром.

Измерить уровень

Чтобы измерить уровень электролита в аккумуляторе, надо сорвать упаковочную ленту, если она сохранилась. Выкручивание пробок с каждой банки разрешает получить доступ к электролиту. Стеклянная трубочка погружается в электролит до самого сепаратора, один ее конец закрывается, и тогда извлекаем трубку. Так необходимо проделать с каждой банкой аккумулятора, соответственно, каждый раз необходимо обращать внимание на уровень электролита, который остается в трубке.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Эти показатели не должны быть ниже 10мм.

Измерить плотность

Если же показатели ниже допустимой нормы, следует долить электролит. Но, это еще не все. Электролит бывает разной плотности, и заливать что попало в аккумуляторную батарею не следует. Поэтому надо воспользоваться ареометром и определить плотность электролита в каждой банке батареи. При этом разброс не должен превышать 0,01.

Для южных районов России нормальной считается плотность, если она не ниже 1,25 единиц, а для северных, где морозы покрепче, а лето прохладней – 1,29. Жители средней полосы могут взять за норму среднеарифметическое значение – 1,27 единиц.

В зависимости от показаний ареометра добавляем электролит. Допустим, значение плотности находится на уровне 1,18 единиц, и аккумуляторная батарея эксплуатируется в средней полосе России. Вполне достаточно будет взять электролит плотностью 1,29, и долить его в банку до получения нужной плотности.

Долить электролит

Для того, чтобы уровень электролита в аккумуляторе довести до нормы, и сохранить нужную плотность, сначала, с помощью груши отбираем с банки рабочий электролит плотностью меньше.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Потом заливаем в банку свежий электролит в объеме, равном половине объема изъятого. После этого проверяем плотность ареометром.

При недостаточном значении снова доливаем свежий электролит в объеме четверти изъятого с банки изначально. Если же значение нормализовалось – доливаем нормальный электролит плотностью 1,27. Приготовить его можно самостоятельно, смешивая свежий и рабочий электролит.

Алгоритм добавления свежего электролита прост: при каждом последующем шаге, уменьшать его количество вдвое, чтобы не получить слишком плотный раствор. Если же такое по каким-либо причинам произошло, то желательно иметь под рукой дистиллированную воду, чтобы исправить ситуацию. Кроме дистиллированной, никакой иной воды в аккумулятор доливать нельзя, чтобы не допустить замыкания пластин. После всего, снова проверяем, сколько электролита в аккумуляторе.

Эксплуатация, зарядка, хранение аккумуляторной батареи

23.12.2019

Содержание

1. Техническое отступление
2.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Основные характеристики аккумуляторных батарей
2.1. Расход воды
2.2. Долговечность батареи
2.3. Рекомендации по эксплуатации
3. Терминология
4. Маркировка АКБ
5. Выбор и покупка АКБ
6. Установка АКБ
7. Рекомендации по эксплуатации и обслуживанию
7.1. Обслуживание АКБ в процессе эксплуатации
7.2. Продление жизни новой батарее
7.3. Зарядка аккумулятора зарядным устройством
8. Особенности эксплуатации АКБ в зимний период
8.1. Прикуривание от другого автомобиля
9. Особенности эксплуатации АКБ в летний период
10. Вопросы безопасности
11. Хранение аккумуляторной батареи
12. Приложения
12.1. Реанимация аккумулятора
12.2. Ещё несколько способов, основанных на использовании электрического тока

Скрыть содержание

1.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Техническое отступление

Назначение автомобильной аккумуляторной батареи понятно каждому мало-мальски сведущему в технических вопросах автолюбителю. С первой ее функцией — обеспечением запуска двигателя — мы сталкиваемся каждый день. Есть и вторая — реже применяемая, но от того не менее значимая — использование в качестве аварийного источника питания при выходе из строя генератора. Кроме того, на современных автомобилях с инжекторным впрыском аккумулятор выполняет роль сглаживателя пульсаций напряжения, выдаваемого генератором. Из этого следует, что следует крайне осторожно относиться к отключению аккумулятора на работающем двигателе. Карбюраторному двигателю ничего не будет, а вот как поведёт себя компьютер, управляющий распределённым впрыском — одному богу известно… Можно загубить компьютер.
Все стартерные батареи, выпускаемые в настоящее время для автомобилей, являются свинцово-кислотными. В основу их работы заложен известный еще с 1858 г., и по сей день остающийся практически неизменным принцип двойной сульфатации.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов


Как наглядно видно из формулы, при разряде батареи (стрелка вправо) происходит взаимодействие активной массы положительных и отрицательных пластин с электролитом (серной кислотой), в результате чего образуется сульфат свинца, осаждающийся на поверхности отрицательно заряженной пластины и вода. В итоге плотность электролита падает. При зарядке батареи от внешнего источника происходят обратные электрохимические процессы (стрелка влево), что приводит к восстановлению на отрицательных электродах чистого свинца и на положительных — диоксида свинца. Одновременно с этим повышается плотность электролита.
Любая автомобильная батарея представляет из себя корпус — контейнер, разделенный на шесть изолированных ячеек — банок (см. рис.1).


Каждая банка является законченным источником питания напряжением порядка 2.1 В. В банке находится набор положительных и отрицательных пластин, отделенных друг от друга сепараторами. Как известно из школьного курса физики, две разнозаряженные пластины уже сами по себе являются источником постоянного напряжения, параллельное же их соединение увеличивает ток.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Последовательное соединение шести банок и дает батарею с напряжением порядка 12.6-12.8 В. Любая из пластин, как положительная, так и отрицательная, есть ни что иное, как свинцовая решетка, заполненная активной массой. Активная масса имеет пористую структуру с тем, чтобы электролит заходил в как можно более глубокие слои и охватывал больший ее объем. Роль активной массы в отрицательных пластинах выполняет свинец, в положительных — диоксид свинца.
Вес залитой АКБ ёмкостью 55 Ач составляет около 16.5 кг. Эта цифра складывается из массы электролита — 5кг (что соответствует 4,5 л), массы свинца и всех его соединений — 10 кг, а также 1 кг, приходящегося на долю бака и сепараторов.

2. Основные характеристики аккумуляторных батарей

2.0. Электродвижущая сила (ЭДС)
Зависимость ЭДС (грубо говоря, напряжение на выводах аккумулятора) от плотности электролита выглядит так:

Е = 6 * (0,84 + р) , где Е — ЭДС аккумулятора , (В) р — приведенная к температуре 5°С плотность электролита , г/мл

2.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 1. Расход воды
Показатель, имеющий непосредственное отношение к степени обслуживаемости батареи. Определяется в лабораторных условиях. Батарея считается необслуживаемой, если она имеет очень низкий расход воды в эксплуатации. Необслуживаемые батареи не требуют доливки дистиллированной воды в течении года и более при условии исправной работы регулятора напряжения.
На расход воды прямое влияние оказывает процентное содержание сурьмы в свинцовых решетках пластин. Как известно, сурьма добавляется для придания пластинам достаточной механической прочности. Однако у каждой медали есть обратная сторона. Сурьма способствует расщеплению воды на кислород и водород, следствием чего является выкипание воды и снижение уровня электролита. В батареях предыдущего поколения содержание сурьмы доходило до 10%, в современных этот показатель снижен до 1.5 %.
Панацею от этой беды фирмы видят в освоении т.н. гибридной технологии — замене сурьмы в одной из пластин на кальций. Кальций в решетке является веществом нейтральным по отношению к воде, не снижая при этом механической прочности решеток.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов А потому разложения воды не происходит и уровень электролита остается неизменным.
Преимущества «кальциевых» АКБ — можно устанавливать в местах , не не требующих удобного доступа для обслуживания. Меньше вероятность выхода из строя из-за коррозии решеток электродов. Лучшие стартерные характеристики.
Недостаток «кальциевых» АКБ — при глубоких разрядах происходит образование нерастворимых солей кальция, и емкость АКБ необратимо теряется. Производители АКБ пытаются устранить этот недостаток добавлением в АКБ серебра и др. компонентов, результат пока окончательно не ясен.

2.2. Долговечность батареи
Средний срок службы современных АКБ при условии соблюдения правил эксплуатации — а это недопущение глубоких разрядов и перезарядов, в том числе по вине регулятора напряжения — составляет 4-5 лет.
Наиболее губительными для батарей являются глубокие разряды. Оставленные на ночь включенными световые приборы, либо другие потребители способны разрядить ее до плотности 1.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 12 — 1.15 г/см3, т.е. практически до воды, что приводит к главной беде аккумуляторов — сульфатации свинцовых пластин. Пластины покрываются белым налетом, который постепенно кристаллизуется, после чего батарею практически невозможно восстановить. Отсюда вытекает главный вывод — необходимо постоянно следить за состоянием батареи, периодически замерять плотность электролита. Особенно актуально это в зимнее время. Следует отметить, что сульфатация в определенных пределах — явление нормальное и присутствует всегда. (Вспомните — на основе теории двойной сульфатации построен принцип работы батарей). Но при малом разряде и последующей зарядке батарея легко восстанавливается до исходного состояния. Это возможно и при глубоком разряде батареи, но только в том случае, если следом сразу, же последует заряд. Если же разряжать батарею длительное время, не давая ей «подпитки», то падение плотности, ниже критического значения неизбежно приводит к образованию кристаллов сульфата свинца, не вступающих в реакцию ни при каких обстоятельствах.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов А это означает, что начался необратимый процесс сульфатации.
Не менее опасен для батареи и перезаряд. Это происходит при неисправном регуляторе напряжения. При этом электролит начинает «кипеть» — происходит разложение воды на кислород и водород, и понижение уровня электролита. Вот почему необходимо следить за зарядным напряжением. Естественно, это не составляет труда, если на панели приборов присутствует вольтметр. Ну а если его нет? В этом случае также можно довольно просто оценить зарядное напряжение. Для этого запустите и прогрейте двигатель, установив средние обороты и подключите тестер (в режиме вольтметра) между «+» и «массой» аккумуляторной батареи. Нормальный зарядный режим батареи обеспечивается в диапазоне 14±0.5В. Если напряжение меньше — стоит проверить натяжение ремня, надежность контактных соединений цепей системы электроснабжения. Если же это не помогает — неисправность нужно искать в регуляторе напряжения. Впрочем, точно также вина ложится на регулятор, если напряжение превышает 14.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 5В.
В последнее время широкое распространение получили сепараторы карманного типа — т.н. конвертные сепараторы. Их название говорит за себя — в эти конверты помещают одноименно заряженные пластины. Такая конструкция увеличивает срок службы батареи, так как осыпающаяся в процессе эксплуатации активная масса остается в конверте, тем самым предотвращается замыкание пластин.

2.3. Рекомендации по эксплуатации
Батарея, не эксплуатировавшаяся в течении длительного времени (4-5 мес.) нуждается в подзарядке. Связано это с тем, что батареям свойственно такое явление, как саморазряд. На графиках рис.2,3 показаны характеризующие саморазряд величины для различных батарей. В первом случае — это снижение плотности от времени хранения, во втором — падение напряжения.


Впрочем, зачастую подзарядки требует и находящаяся в эксплуатации батарея. Плотность полностью заряженной батареи составляет 1.27- 1.28 г/см3, напряжение — 12.5 В. О степени разряженности батареи судят по плотности электролита.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Чем ниже плотность электролита, тем сильнее батарея разряжена. Уменьшение плотности на 0.01 г/см3 по сравнению с номинальной означает, что батарея разрядилась примерно на 6 — 8%. Используя график (см. рис.4) можно оценить зависимость степени разряженности батареи от плотности. Степень разряженности определяют по той банке, в которой плотность электролита минимальная. Всем известна аксиома, тем не менее, позволим повторить ее еще раз — батарею, разряженную летом более чем на 50%, а зимой более чем на 25%, необходимо снять с автомобиля и зарядить. При этом следует помнить, что пониженная плотность зимой более опасна, т.к. кроме всего прочего может привести к замерзанию электролита. Так, при плотности электролита 1.2 г/см3 температура его замерзания составляет около -20°С.
Также необходимо подзарядить батарею, если плотность в разных банках отличается более чем на 0.02 г/см3. Оптимальной является зарядка батареи током, равным 0.05 от ее ёмкости. Для батареи с ёмкостью 55 Ач эта величина составляет 2.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 75 А. Чем меньше зарядный ток, тем глубже заряд. Однако не стоит впадать в крайность — при совсем низком токе батарея просто не «закипит», к тому же время зарядки будет несравнимо большим. Наоборот, при очень большом токе батарея «закипит» значительно быстрее, но при этом не успеет зарядиться на все 100%. Признаками окончания зарядки служит бурное выделение газа (т.н. «кипение») и неизменяющаяся на протяжении 1-2 часов плотность электролита.
Для ориентировочной оценки времени, требуемого на зарядку батареи, можно воспользоваться следующим алгоритмом.


Первоначально, используя график (рис.4) необходимо определить степень разряженности батареи, исходя из реальной плотности АКБ, замеренной ареометром. Далее по степени разряженности определяем потерянную ёмкость (или ёмкость, которую необходимо принять батарее).
Затем, выбрав величину зарядного тока, вычисляем ориентировочное время зарядки по формуле:


Тут следует отметить, что не вся энергия идет на повышение ёмкости.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов КПД процесса составляет 60-80%, остальное тратится на нагрев, а также связанные с этим электрохимические процессы. Потому реальное время увеличивается примерно в полтора раза от расчетного (что и учитывается коэффициентом «1.5» в формуле).

Нужно сказать, что использование данного алгоритма оправдано лишь для облегчения процедуры, но ни в коей мере не избавляет от контроля за ходом зарядки. Процесс заряда, а особенно его окончание Вам необходимо контролировать самому, дабы не прозевать начало бурного кипения.
Другой вариант — использование для этих целей автоматических зарядных устройств, отличающихся тем, что зарядка идет при постоянном напряжении, но автоматически изменяющемся в зависимости от степени заряженности батареи токе. При этом зарядное устройство перестает давать ток, если батарея полностью заряжена. Принцип, используемый в подобных устройствах аналогичен зарядке от генератора на автомобиле.
Для примера определим время зарядки батареи ёмкостью 55 Ач током в 5А, плотность которой составляет 1.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 25 г/см3. Как видно из графика, при данной плотности батарея разряжена на 25%, что означает потерю ёмкости на величину


Таким образом, примерное время зарядки


Каждодневным способом зарядки батареи является ее заряд от бортовой сети автомобиля (естественно, при условии исправности последней). При данном способе, во первых, невозможен перезаряд, а во-вторых, происходит постоянное перемешивание электролита и наиболее полное его проникновение во внутренние слои активной массы.
Однако было бы ошибочным полагать, что заряд батареи начинается сразу же после пуска двигателя и продолжается все время, пока двигатель в работе. Исследования показывают, что батарея начинает принимать заряд только после прогрева электролита до положительной температуры, что при эксплуатации в зимних условиях происходит примерно через час после начала движения. Именно этим и опасен довольно распространенный, по крайней мере, в нашем автомобильном городе, способ эксплуатации транспортных средств.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Холодный запуск зимой с получасовым движением до работы, и затем редкие непродолжительные поездки на протяжении рабочего дня не дают прогреться электролиту и, следовательно, зарядиться Вашей батарее. Тем самым разряженность АКБ увеличивается изо дня в день и в итоге может привести к печальному результату. Из этого следует, что зимой необходимо проверять состояние АКБ и своевременно подзаряжать ее регулярно
Физические процессы, происходящие при пуске двигателя, отличаются от процессов при разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та ее часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы. Нормальный запуск двигателя при однократном вращении стартера в течении 10с забирает ёмкость 300А х 10с = 3000 Ас = 0.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 83 Ач, что составляет около 1.5% от ёмкости аккумулятора.
При медленном же разряде участвуют не только поверхностные слои активной массы, но и глубинные, потому и разряд происходит более глубокий. Однако это не означает, что стартерные режимы не так губительны для батареи — стартером точно также можно разрядить батарею до критической величины.
Каковы же признаки выхода из строя батареи? Батарея не заряжается, плотность низкая и не повышается в процессе заряда. Большой саморазряд — батарея зарядилась, но не держит заряд. Можно попытаться потренировать батарею, однако если произошло осыпание активной массы пластин, либо кристаллизация сульфата свинца, то это уже не исправить.
Вообще, освоить способ оценки степени возможной разрядки батареи от каких-либо действий (в том числе и осознанных) не составит большого труда. Необходимо усвоить несколько истин и запомнить несколько цифр.
Батарея начинает принимать заряд лишь только после прогрева электролита до положительной температуры (как вы понимаете, при температуре воздуха -20°С температура электролита в батарее хранящегося на свежем воздухе автомобиля будет примерно такой же.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов )
Коэффициент полезного действия процесса зарядки составляет примерно 50%.
Каждый автомобильный генератор характеризуется следующими показателями:
ток отдачи генератора при работе двигателя на холостом ходу.
ток отдачи генератора при работе двигателя на номинальных оборотах.
Для ВАЗовских автомобилей эти цифры имеют следующие значения:

Таблица 1
Модель автомобиля…………………..2101-2106……2108-2109……2110
ток отдачи на холостом ходу…………….16………………24…………..35
ток отдачи на номинальных оборотах 42……………….55…………..80

Как видно из таблицы, на последних моделях автомобилей Волжского автозавода устанавливаются генераторы, имеющие характеристики тока отдачи, в два раза превосходящие по величине характеристики генераторов первых моделей.

И наконец, примерное потребление энергии автомобильными потребителями:

Таблица 2
потребитель……….ток, А (приблизительно)
зажигание.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов …………….2
габариты……………….4
ближний свет…………9
дальний свет………..12
обогрев стекла……10-11
стеклоподьемник…20-30

вентилятор отопителя:
1-я скорость…………5-7
2-я скорость……….10-11
стеклоочистители…3-5
магнитола…………….5
ИТОГО……………….38-48

Таким образом, оставленные включенными габариты за три часа «съедят» 4А х 3ч= 12 Ач ёмкости батареи, что соответствует разряду приблизительно на 20%. Это не страшно для одного раза. Однако повторив это ещё раз, Вы уже рискуете не завести свою машину, особенно, если дело происходит зимой, т.к. разряд составит порядка 40% (тем более, что к тому же зимой батареи, как правило, эксплуатируются заряженными далеко не на 100%).
Аналогично можно прикинуть, что Вы имеете при продолжительной работе двигателя на холостом ходу. Как уже показано выше, ток отдачи генератора автомобиля ВАЗ-2108 на холостом ходу составляет 24А.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Вычитаем из этой величины 2А, необходимые для обслуживания системы зажигания. Остается 22А. Используя таблицу 2, нетрудно прикинуть, что можно включать с тем, чтобы хоть немного досталось бы и аккумулятору (при этом помните про КПД зарядки, составляющий 50%).
Для владельцев иномарок с автоматической коробкой передач картина ещё более сложная. Обычно, стоя в пробке или на светофоре, Вы не переключаетесь на нейтраль, а давите ногой на тормоз. Это понижает обороты двигателя от стандартных 800-900 об./мин. до 600-700 об./мин., что, соответственно понизит ток, выдаваемый генератором, а стоп-сигналы добавят ещё пару ампер потребления тока. Да и обогрев заднего стекла у немцев, например, существенно мощнее, чем у отечественных автомобилей.
Следует знать, что зимние условия эксплуатации автомобиля в принципе очень тяжелы для аккумуляторной батареи. Наверняка будут полезны следующие данные. Результаты проводимых в ГДР исследований говорят о том, что при эксплуатации автомобиля в очень тяжелых условиях (испытания по так называемому режиму «город-зима-ночь») аккумулятор получает порядка 1Ач в час

3.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Терминология

Аккумуляторная батарея — один из основных элементов электрооборудования автомобиля, поскольку она накапливает и хранит электроэнергию, обеспечивает запуск двигателя в различных климатических условиях, а также питает электроприборы при неработающем двигателе.
Автомобильные свинцово-кислотные 12-вольтовые АКБ состоят из 6-ти последовательно соединенных элементов (банок), объединенных в общий корпус. Каждая банка имеет газоотвод, конструкции которого могут существенно отличаться.
Электролит представляет собой раствор серной кислоты в дистиллированной воде (для средней полосы России плотностью 1.27-1.28 г/см3 при t=+20°С). Кипение электролита — бурное выделение газа при электролитическом разложении воды с выделением кислорода и водорода. Это происходит во время заряда батареи.
Саморазряд — самопроизвольное снижение ёмкости АКБ при бездействии. Скорость саморазряда зависит от материала пластин, химических примесей в электролите, его плотности, от чистоты верхней части корпуса батареи и продолжительности ее эксплуатации.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
Напряжение полностью заряженной аккумуляторной батареи без нагрузки (ЭДС — электродвижущая сила) должно находиться в пределах 12.6-12.9 В. Напряжение в бортовой сети автомобиля при работающем двигателе несколько выше, чем на клеммах АКБ, и должно находиться в пределах 14.0-14.2 В (0,2 В от крайних значений). Значение напряжения ниже 13.8 В ведет к недозаряду батареи, а выше 14.4В — к перезаряду, что одинаково пагубно сказывается на ее сроке службы.
Полярность аккумуляторной батареи — термин, определяющий расположение токосъемных выводов на ее корпусе. На зарубежных батареях полярность может быть прямой или обратной, т. е. ориентировка положительного и отрицательного выводов относительно корпуса может быть различной. По российскому стандарту (если смотреть со стороны выводов) отрицательный (-) должен располагаться справа, положительный (+) слева.
Емкость батареи — способность батареи принимать и отдавать энергию — измеряется в ампер-часах (Ач). Для оценки ёмкости батареи принята методика 20-ти часового разряда током 0.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 05С20 (т.е. током, равным 5% от номинальной ёмкости). Т.е., если ёмкость батареи 55Ач, то разряжая ее током 2.75 А, она полностью разрядится за 20 часов. Аналогично для батарей ёмкостью 60Ач полный 20-ти часовой разряд произойдет при чуть большем токе разряда — 3А.
Данная характеристика определяет возможность питать потребителей в экстремальной ситуации (при отказе генератора). Характеризуется объемом активной массы.
Значение тока холодного старта при -18°С (по DIN) — Величина тока, которую батарея способна отдать при пуске двигателя при температуре -18°С. Наиболее важная характеристика, напрямую сказывающаяся на пуске двигателя. Ведь при -20°С ток, потребляемый стартером, составляет порядка 300А. (Для пуска в летнее время горячего двигателя этот же показатель равен 100-120А.) Значение стартового тока определяется конструкцией батареи, пластин, сепараторов. Сепараторы карманного типа без каких-либо других дополнений увеличивают напряжение батареи на 0.3В, одновременно улучшая стартовые характеристики.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Чем ниже внутреннее сопротивление батареи, тем выше стартовый ток, тем надежнее пуск двигателя при низких температурах.
Резервная ёмкость — время, в течении которого батарея сможет обеспечить работу потребителей в аварийном режиме. Величина резервной ёмкости, выраженная в минутах, последнее время все чаще проставляется изготовителями батарей после значения тока холодного старта.
Корпус современных АКБ изготавливается из пластмассы, в большинстве случаев полупрозрачной, позволяющей контролировать уровень электролита.
Необслуживаемые батареи. Сразу следует оговориться, что этот термин не должен пониматься буквально и восприниматься как руководство к бездействию. Это название говорит об улучшенных потребительских свойствах батареи. Необслуживаемые АКБ требуют долива воды не чаще одного раза в год при условии использования их на автомобилях с исправным электрооборудованием и среднегодовым пробегом 15-20 тыс. км. Встречаются конструкции, исключающие всякое вмешательство на всем протяжении срока службы, но они особенно критичны к состоянию автомобильного электрооборудования.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
Большинство необслуживаемых батарей выпускаются заводами-изготовителями, залитыми электролитом. Так как эти батареи имеют значительно меньший саморазряд, они могут храниться от 6 месяцев до 1 года без подзаряда. Саморазряд новых необслуживаемых батарей за 12 месяцев может составить до 50% от номинальной ёмкости.

4. Маркировка АКБ

На современные аккумуляторные батареи наносится следующая маркировка:


Некоторые батареи имеют такую маркировку:


Несмотря на то, что после ёмкости стоит значение 280А, цифра, интересующая нас и показывающая ток холодного старта по принятому у нас стандарту DIN равна 255А.
Обозначения основных характеристик на батареях различных производителей отличаются друг от друга. Большинство европейских производителей и значительная их часть в Азии руководствуются промышленным стандартом Германии DIN 43539 часть 2, который оговаривает два основных параметра: ёмкость батареи, измеряемую в ампер-часах (Ач) при +25°С, и ток стартерного разряда в амперах (А) при -18°С.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
Батареи американских производителей испытываются по требованию американского стандарта SAE J537g, который включен в международный стандарт BCI и также вводит два основных параметра: резервную ёмкость, измеряемую в минутах при +27°С, и ток холодной прокрутки — в амперах при -18С. Стандарт SAE не предусматривает измерение ёмкости батареи в ампер-часах.
Первый рассматривает способность батареи к длительным разрядам меньшими токами, второй — разряд большими токами, но за меньший отрезок времени.
Пересчет значения тока стартерного разряда по европейскому стандарту DIN в ток холодной прокрутки по американскому стандарту SAE может производиться с помощью экспериментальных коэффициентов. Для батарей ёмкостью до 90Ач используется коэффициент 1.7, т. е. ISAE = 1.7 IDIN. Для батарей ёмкостью от 90 до 200 Ач используется коэффициент 1.6, т. е. ISAE = 1.6 IDIN.
В настоящее время в Европе наряду с немецким стандартом DIN введен новый единый стандарт En — 60095-1/93.
Кроме того, на необслуживаемых батареях проставляется соответствующая надпись.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Чаще всего на русском, английском или немецком языке (либо на языке производителя, как например, на испанских батареях «Tudor»).

5. Выбор и покупка АКБ

Убедитесь, что выбираемая батарея соответствует конструктивным особенностям вашего автомобиля (ёмкость, место установки, способ крепления, полярность, форма и размер токосъемных выводов). Специализированные торговые фирмы имеют каталоги всего ассортимента, в которых систематизирована информация о модификациях и технических характеристиках.
Нецелесообразно на автомобиль с устаревшей системой электрооборудования устанавливать батарею, исключающую долив воды. Это приведет к сокращению ее срока службы или отказу.
Емкость батареи не должна существенно отличаться от указанной заводом-изготовителем автомобиля. Несоблюдение этого условия приводит к резкому сокращению службы, как батареи, так и стартера.
Очень неплохо знать рекомендуемую величину пускового тока для Вашего автомобиля. На многих (японских) автомобилях устанавливаются стартёры с редуктором.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Это позволяет существенно уменьшить величину пускового тока, а значит существенно продлить жизнь Вашего аккумулятора.
Внимательно изучите текст гарантийного талона. Обратите особое внимание на те разделы, где перечислены: случаи, исключающие гарантийное обслуживание; адреса гарантийных мастерских; условия эксплуатации.
Маркировка аккумулятора должна иметь ссылку на стандарт (DIN, SAE, En или другие). В маркировке по стандарту SAE не указывается значение ёмкости в ампер-часах (Ач). Указание ёмкости в Ач в стандарте SAE – косвенный признак подделки. Наиболее подвержены подделкам дорогие аккумуляторы известных фирм-изготовителей, поэтому приобретать их лучше в торговых фирмах, заслуживающих доверие.
Большинство фирм-изготовителей кодирует дату выпуска АКБ. Современные необслуживаемые батареи допускают достаточно длительное хранение без существенной потери своих потребительских свойств, поэтому дата изготовления менее актуальна. Предпочтительнее приобретать залитый качественным заводским электролитом аккумулятор.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Он готов к работе, легко поддается проверке. Не залитый сухозаряженный аккумулятор требует дополнительного времени и затрат на подготовку к эксплуатации.
Не спешите отдать деньги! Вы вправе требовать проверки аккумулятора. Первым делом сдерите с него защитную упаковочную пленку, какой бы красивой она ни была, и убедитесь, что корпус не поврежден – такое случается довольно часто. Затем попросите продавца измерить плотность электролита – она не должна быть ниже номинальной более чем на 0,02 г/см3 и одинаковой во всех банках, что соответствует примерно 80-процентной заряженности батареи. Последнюю проверку следует провести с нагрузочной вилкой – ее вольтметр должен показать 12.5–12.9 В при отключенной нагрузке, а при включенной – не опускаться в течение 10 секунд ниже 11В.
В случае отклонения от этих значений, батарея может оказаться частично или полностью непригодной к эксплуатации.
Если вам отказывают в проверке аккумулятора, не могут подтвердить качество товара сертификатом, гарантийным талоном, то лучше отказаться от покупки.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

6. Установка АКБ

Перед установкой батареи обязательно полностью удалите с нее полиэтиленовую пленку. Газоотводные отверстия должны быть открытыми. Обратите внимание на правильность подключения. Клеммы АКБ рекомендуется зачистить и после закрепления смазать Литолом-24. Это делается для предохранения контактов от попадания влаги и окисления места контактов. Особенно это касается силовых проводов с медными (а не свинцовыми) наконечниками.
Очень важно уделить внимание проводам. Клеммы необходимо зачистить не только со стороны аккумулятора, но и с другой стороны. Место, куда крепится массовый провод (-) надо тоже тщательно зачистить от краски, масла и прочей грязи. Контакт затянуть туго. Это же касается клеммы на стартёре. Невнимание к проводам и контактам может очень сильно «выйти боком» зимой на морозе.
Батарея должна стоять на своём месте жёстко. Болтание её в крепёжных элементах недопустимо. Дополнительная вибрация скажется на долговечности батареи.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Замыкание и осыпание пластин в банках чаще всего происходят именно из-за вибрации.
Обратите внимание, что на многих автомобилях батарея стоит довольно близко к выпускному коллектору. То есть летом ей будет довольно жарко, а это для батареи очень плохо! На «правильных» машинах предусмотрена термоизоляция АКБ от двигателя.

7. Рекомендации по эксплуатации и обслуживанию

Условия эксплуатации оказывают существенное влияние на срок службы аккумуляторной батареи. Частые запуски двигателя и поездки на короткие расстояния, неисправности электрооборудования (стартер, генератор, реле-регулятор), дополнительные потребители электроэнергии, несвоевременное обслуживание, ненадежное крепление батареи способны сильно сократить срок ее службы.
При продолжительном движении по трассе батарея может перезаряжаться (кипеть) — в городе с малыми пробегами и «пробками» она, как правило, разряжается (см. выше).
Генератор (при холостых оборотах двигателя) не обеспечивает работу большинства штатных потребителей, не говоря о дополнительных.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Зимой ситуация усугубляется. К включенным габаритным огням, ближнему свету фар, стоп-сигналам, указателям поворота, аудиоаппаратуре добавляются обогрев заднего стекла и вентилятор отопителя. Ежедневный недозаряд батареи постепенно уменьшает ее ёмкость, что в итоге приводит к невозможности запуска двигателя стартером.
Отказ аккумуляторной батареи может быть вызван и током утечки в электрооборудовании автомобиля. Это происходит, когда при отключении всех потребителей один или часть из них остается включенным в электрическую цепь (неисправны выключатель или реле). Виновником может быть и сигнализация. После глубокого разряда АКБ может не восстановить свою первоначальную номинальную ёмкость. Батарея не сможет нормально работать, если для запуска двигателя требуется продолжительное включение стартера (неисправны системы питания, зажигания).

7.1. Обслуживание АКБ в процессе эксплуатации сводится к проверке и приведению в соответствие с требованиями: уровня и плотности электролита; чистоты и надежности крепления электрических соединений батареи с корпусом автомобиля, параметров электрооборудования, крепления батареи.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Необходимо также следить за правильным натяжением ремня генератора, очищать и смазывать выводы и клеммы, содержать батарею в чистоте. Протирайте верхнюю поверхность водным раствором питьевой соды. Доведение плотности электролита до требуемой производится путем заряда батареи от стационарного зарядного устройства.
Значение зарядного тока в амперах (А) не должно превышать 1/10 ёмкости батареи (упрощенно).

7.2. Продление жизни новой батарее
Коротко об этом сказать трудно. В первую очередь, следует залить электролит, точно соответствующий не только климатической зоне, но и сезону эксплуатации. Если батарея будет работать только в теплое время года, то плотность электролита может быть 1.20 г/см3, а если до -15°С — 1.24 г/см3 и т.д. Такая точность, безусловно, снизит скорость сульфатации пластин, следовательно, увеличит долговечность батареи.
На срок службы АКБ значительно влияет средняя степень заряженности, которая зависит от исправности реле-регулятора.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Необходимо, чтобы эта величина поддерживалась не ниже 75%.

справка:
Установлено, что отклонение регулируемого напряжения на 10…12% вверх или вниз от оптимального сокращает срок службы батареи в 2…2.5 раза.

Во-первых, отрегулируйте двигатель так, чтобы он легко заводился с пол-оборота. Это предохранит АКБ от глубокого разряда. При пуске двигателя стартером через аккумуляторную батарею проходит ток в несколько сот Ампер, что не способствует ее долговечности. Поэтому, чем легче пуск двигателя, тем лучше для АКБ: она прослужит дольше.

справка:
Сокращение времени работы стартера вдвое при шести-восьми ежедневных пусках повышает срок службы аккумуляторной батареи приблизительно в 1.5 раза.

Во-вторых, отрегулируйте при необходимости реле-регулятор, чтобы напряжение было в пределах 13.8…14.4В. Это одно из важнейших условий. В-третьих, никогда не позволяйте снизиться уровню электролита в банках ниже требуемого.

справка:
Несвоевременная доливка в аккумуляторы дистиллированной воды может снизить срок службы батареи на 30%.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

Эти простые советы, продлят жизнь АКБ.

Кроме этого, специалисты советуют при наличии зарядного устройства при любой возможности (например, на ночь) ставить аккумуляторную батарею на подзарядку малым током — около 1…2А. Для этого можно АКБ не снимать с автомобиля. Только эта операция, если ее проделывать регулярно, не реже одного раза в месяц, увеличивает срок службы батареи, по крайней мере, на год.

7.3. Зарядка аккумулятора зарядным устройством
Ну а теперь как заряжать? Зарядные устройства бывают с ручной и автоматической регулировкой (Орион PW-270, Орион PW-320) или автоматические (все остальные зарядные устройства Орион). Перед зарядкой необходимо открыть все газовые каналы: вывернуть пробки, снять крышки банок.
При зарядке важны три параметра: напряжение, ток зарядки и время. Когда аккумулятор частично процентов на 25 разряжен, то начальный ток заряда при включении выпрямителя может резко скакнуть вверх. Отрегулируйте его на зарядный ток около 1/10 ёмкости аккумулятора или меньше (это общепринятое правило заряда кислотных батарей).Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Т.е., если у Вас батарея имеет маркировку 55Ah — выставляем ток около 5.5А.
Если необходимо зарядить батарею в кратчайшее время, можно выставить и больший ток. В соответствии с законом Вудбриджа который гласит: сила зарядного тока (в амперах) не должна превышать величину заряда (в ампер-часах), недостающего до полной ёмкости акуммулятора. При этом зарядное устройство должно автоматически снижать ток при повышении напряжения или выключаться при достижении порогового напряжения на батарее. В противном случае (если ЗУ этого не делает) необходимо непрерывно контролировать зарядный ток и напряжение в ручную.
Далее в процессе зарядки напряжение будет расти, а ток уменьшаться. Считается, если ток не уменьшается в течение последних 2-3 часов, то аккумулятор заряжен. Важно помнить, что нельзя вести заряд большим током более 25 часов. Электролит сильно нагреется и выкипит, пластины от нагрева может повести и они замкнут друг на друга. Обычно нормальное время полного заряда около 15 часов.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
Иногда необходимо выровнять плотность небольшим током. Например, если плотность электролита в разных банках 1.23, 1.25. Включив зарядное устройство, устанавливаем ток зарядки порядка 1-2А. Данное значение у разных АКБ- разное и зависит от многих факторов: конструкции, пассивационного материала пластин, состояния батареи и т.д. Время такой зарядки до двух суток. Особенно это необходимо делать после того, как аккумулятор разряжен в ноль бесплодными попытками завести двигатель. При чём, делать это надо сразу, пока не началась сульфатация пластин.
Батареи, исключающие долив воды, должны заряжаться только устройствами с автоматическим поддержанием зарядного напряжения. Несоблюдение этого условия приведет к снижению их срока службы. Конкретные требования по режиму заряда, эксплуатации и обслуживанию должны быть изложены в инструкции или гарантийном талоне, прилагаемом к батареям.
В настоящее время разные производители обозначают разное напряжение окончания заряда.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Как правило, оно составляет от 15 до 16В (для батарей устаревших конструкций, с применением в качестве пассивирующего материала сурьмы — меньше). На самом деле, порог ограничения напряжения автоматического зарядного устройства 15 или 16 вольт (для батареи с прописанными, для полного заряда, 16ю вольтами, например Varta) влияет только на время заряда последних 2-4% емкости.
Для доведения уровня электролита до нормы недопустимо использовать электролит! В аккумуляторную батарею доливают только дистиллированную воду. Не используйте воду сомнительного происхождения. При частом выкипании проверьте электрооборудование автомобиля.
Необходимо знать, что при сильном снижении уровня электролита внутри корпуса аккумулятора может образоваться опасная концентрация газовой смеси. Чтобы исключить вероятность взрыва, нельзя подносить к батарее открытое пламя (даже сигарету) и допускать искрение электроконтактов. Системы газоотвода некоторых современных батарей более взрывобезопасны.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов В средней полосе России АКБ не требуют корректировки плотности электролита при смене сезонов.
Перед зимней эксплуатацией автомобиля сделайте обслуживание не только аккумуляторной батареи (см. выше), но и систем, влияющих на запуск двигателя. Обязательно залейте моторное масло, соответствующее сезону. Для облегчения запуска двигателя в сильные морозы занесите батарею на несколько часов в теплое помещение.
Перед длительной зимней стоянкой также обслужите батарею, но не храните ее в теплом помещении, а оставьте на автомобиле со снятыми клеммами. Чем ниже температура, тем меньше скорость ее саморазряда.
Недопустимо оставлять на морозе разряженную батарею. Электролит низкой плотности замерзнет, и кристаллы льда приведут ее в негодность. Плотность электролита разряженного аккумулятора может снизиться до 1,09 г/см3, что приведет к его замерзанию уже при температуре -7°С. Для сравнения – электролит плотностью 1.28 г/см3 замерзает при t=-65°С.
Опрокидывание аккумуляторной батареи и слив электролита могут привести к замыканию пластин и выходу ее из строя.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
Для борьбы с паразитными токами утечки введите себе привычку вытирать корпус батареи насухо от всякой нечисти. Если совсем в лом, то хотя бы делайте чистый круг вокруг плюсовой клеммы, чтобы разорвать паразитные электрические связи. Ну, а если Вы любите свою машину, то разведите немного соды в воде и протрите всю поверхность корпуса батареи и вытрете ее насухо. Все тряпки, которые прикасались к аккумулятору выбросить немедленно! А заодно проверите крепление батареи, уровень электролита и его плотность. Времени это займёт минут 10-15, а сэкономить может часы и кучу нервов.

8. Особенности эксплуатации АКБ в зимний период

Перво-наперво замерим плотность электролита во всех банках без исключения. Норма 1.27-1.28 г/см3. У Вас далеко не так? Значит, снимаем батарею и ставим на зарядку. И это однозначно! Ни в коем случае не пытаемся повысить плотность электролита добавлением концентрированной кислоты, какая бы низкая не была его плотность. Желаемого же результата — повышения ёмкости батареи при этом не произойдет.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
Далее. Обязательно провести ревизию всех силовых проводов, клемм и контактов. Клеммы зачистить мелкой шкуркой. Контакты на АКБ тоже зачистить и затянуть. Можно затем смазать литолом, чтобы к контактам не попадала влага. С другой стороны силовых проводов так же провести ревизию контактов.

8.1. Прикуривание от другого автомобиля
Для российских автовладельцев нормальная ситуация, когда сосед просит «прикурить» его аккумулятор. Для этой нехитрой процедуры помимо автомобиля с заряженным аккумулятором, необходимы ещё и правильные провода. Не забываем, что по этим проводам у нас потечёт около 200 ампер!


На что нужно обратить внимание при покупке:
1. Толщина жилы медного провода. Сняв изоляцию с крокодила (зажима) можно увидеть саму жилу. Чем толще, тем лучше. Не обращайте внимание на толщину кабеля. Главное проводник тока, а не толщина изоляции.
2. Надежность крепления жилы к крокодилу провода прикуривателя. Медная жила д.б. облужена, затем обжата и припаяна.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Если эти условия соблюдены, то потерь в месте соединения будет меньше. Все стартовые провода Орион 100% паяются.
3. Изоляция. Лучший вариант — морозоустойчивая резина или силикон. Зимой такие провода остануться эластичными.
4. Длинна проводов. Провода по длинне нужно выбирать не длинее, чем нужно.
5. Крокодилы (зажимы). При покупке обращайте внимание на толщину стали из которой они сделаны и силу пружины, а не габаритные размеры.
Чтобы не навредить сложным электронным системам вашей собственной машины, эта, казалось бы, элементарная процедура требует соблюдения строгой последовательности действий.
1. Соедините красный кабель с клеммой (+) на заряженном аккумуляторе.
2. Соедините другой конец красного кабеля с клеммой (+) на «севшем» аккумуляторе.
3. Соедините черный кабель с клеммой (-) на заряженном аккумуляторе.
4. Соедините другой конец черного кабеля с чистой точкой заземления на блоке двигателя или на шасси, главное — подальше от аккумулятора, карбюратора, топливных шлангов и т.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов п. В момент подсоединения будьте готовы к небольшой искре.
5. Следите, чтобы оба кабеля не касались движущихся деталей.
6. Попробуйте запустить автомобиль с «севшим» аккумулятором. Если двигатель не заведется, подождите несколько минут и повторите попытку. Если же заведется, дайте ему поработать несколько минут в таком положении. Если не заведется повторите попытку через 2-3 минуты.
7. При отсоединении кабеля следуйте описанной выше процедуре в обратной последовательности.

8.2 Запуск машины при помощи предпускового зарядного устройства Вымпел. Подключаете устройство, выставляете максимальный ток 18А, оживляете акумулятор в течении 10-15 мин. Затем не отключая зарядного устройства пробуете завести. Если не получилось повторяете попытку заново.

9. Особенности эксплуатации АКБ в летний период

Не удивляйтесь, если однажды вам будет трудно или вообще не завести машину в жаркую погоду. Теплое время года — такое же испытание, как и холод.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Тепло ускоряет химические процессы. Неисправности и дефекты электрической системы автомобиля или аккумулятора незамедлительно скажутся на состоянии батареи. Но, скорее всего, узнаете вы об этом в самый неподходящий момент. Например, ночью во время дождя, когда придется включить освещение, вентиляцию и стеклоочистители. Поэтому не расслабляйтесь. Лето — самый подходящий период для покупки нового аккумулятора.
Летом автомобилист не сразу заметит, что в аккумуляторе плотность электролита и его уровень в банках недостаточные. Но чем выше температура окружающей среды, тем активнее электрохимические процессы. В результате электролиза кислород вступает во взаимодействие с пластинами, а ставший свободным водород испаряется. Таким образом, из электролита исчезает вода. Как только уровень раствора оказывается ниже уровня пластин, начинается сульфатация пластин (сульфат свинца растворяется в электролите, а затем оседает на поверхности пластин уже в виде крупных нерастворимых кристаллов и происходит изоляция пластин от электролита).Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Емкость батареи уменьшается. Электрохимические реакции останавливаются. Аккумулятор выходит из строя.
Имейте в виду, что во время длительного хранения аккумулятора происходит саморазряд (снижение ёмкости). Оставлять батарею в разряженном состоянии не рекомендуется: в этом случае вода испаряется, и открываются пластины. А дальше все, как описано выше.
Саморазряд увеличивается от высокой температуры, грязи и электролита (воды) на крышке батареи. Еще одна причина возникновения паразитных токов — неодинаковая плотность электролита в разных банках и на разных уровнях. Это может произойти после доливки большого количества воды. Чтобы избежать неприятностей, зарядите аккумулятор или проедьте на машине, чтобы плотность раствора сравнялась. Есть еще один совет: доливайте дистиллированную воду в аккумулятор при работающем двигателе. Это обеспечит ее перемешивание с кислотой.
Ускорение электролиза способствует уплотнению активной массы. Этой “болезнью” страдают отрицательные пластины, активная масса которых во время эксплуатации постепенно уплотняется, а ее пористость уменьшается.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Доступ электролита внутрь отрицательных пластин затрудняется, что снижает ёмкость батареи. К тому же уплотнение активной массы может сопровождаться образованием трещин и отслаиванием.
Пластины коробятся при увеличении силы зарядного тока, при коротком замыкании, понижении уровня электролита, частом и продолжительном включении стартера, когда батарея нагружается разрядным током большой силы. Чаще короблению подвержены положительные пластины, при этом в их активной массе образуются трещины, и она (активная масса) начинает выпадать из решеток.
Причиной выпадения активной массы из решеток пластин может стать длительная перезарядка, плохое крепление пластин, вибрация и т.д. Осыпающийся активный слой в конце-концов замыкает пластины, сокращает мощность и срок службы. В современных аккумуляторах пластины помещаются в конверт-сепараторы; осадок выпадает, но короткого замыкания удается избежать.
Летом вентиляционные отверстия забиваются пылью. Чтобы батарея не лопнула и не взорвалась следите за чистотой аккумулятора.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Пробки заливных отверстий должны быть плотно закрыты.

Как сохранить свой аккумулятор летом?
Во-первых, следите за уровнем электролита и регулярно доливайте дистиллированную воду. Во-вторых, не оставляйте батарею незаряженной. В-третьих, следите за чистотой корпуса. В-четвертых, следите за состоянием электрической системы автомобиля. Неисправный стартер и генератор совершенно незаметно “подготовят” батарею к зиме и с первыми морозами она откажет.
Если вы планируете заменить аккумулятор, лучше не ждать до осени. В сезон выбор значительно меньше, цены выше, а желающих больше. В любом случае потребуется помощь подготовленного продавца-консультанта. Летом он сможет больше уделить вам времени.

10. Вопросы безопасности

Помните, что опасность возгорания кислорода и водорода, выделяющихся во время зарядки (а также после ее завершения), вполне реальна.
Хотя большинство серьезных производителей оборудуют крышки аккумуляторов ограничителями пламени, призванными предотвратить его попадание внутрь аккумулятора, подобная вероятность по-прежнему сохраняется.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
Помните также, что искра возникает не только при отсоединении клеммы. Статического электричества от синтетической одежды может оказаться достаточно, чтобы вызвать взрыв.
Взрыв аккумулятора можно сравнить по мощности с выстрелом из ружья калибра 12мм. Результат представляет собой жуткое зрелище, и происходит это чаще, чем вы можете себе представить. При том, что взрыв, вероятно, не будет смертельным, он может серьезно травмировать вас, особенно лицо, так как осколки пластика разлетаются во все стороны. Поэтому всегда следует быть в защитных очках.
Если вдруг позарез понадобилось отсоединить аккумулятор на машине с работающим мотором (лучше, конечно, не подвергать свой автомобиль таким испытаниям), прежде надо включить как можно больше потребителей электроэнергии: печку, фары, противотуманки, «дворники». Если этого не сделать, то может сгореть регулятор напряжения, а следом откажет электрооборудование и в том числе — системы управления двигателем. А для начала загляните в инструкции: позволяет ли она вообще производить такую операцию.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Ведь на автомобилях некоторых марок, напичканных современной аппаратурой, любое отключение аккумулятора выводит из строя сложные электронные системы.

11. Хранение аккумуляторной батареи

1.снимите аккумулятор с машины (оставьте на машине со снятыми клеммами), очистите от грязи, полностью зарядите.
2.при отсутствии возможности подзарядки во время хранения АКБ можно рекомендовать следующий способ. Электролит в аккумуляторе необходимо заменить 5-процентным раствором борной кислоты. Перед заменой электролита АКБ полностью заряжают, а затем сливают электролит в течение 15 минут. Затем ее сразу же промывают дважды дистиллированной водой, выдерживая воду по 20 минут. После промывки наливают раствор борной кислоты, заворачивают пробки с открытыми вентиляционными отверстиями, вытирают батарею и ставят на хранение. Саморазряд аккумуляторов с раствором борной кислоты практически отсутствует.

Справка
Для приготовления 5-процентного раствора борной кислоты необходимо в 1 литре дистиллированной воды, нагретой до 50.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов ..60°С, растворить 50г борной кислоты. Раствор заливают в аккумуляторы при температуре 20…30°С.

Хранить батарею надо при температуре не ниже 0°С, поскольку заливаемый 5-процентный раствор борной кислоты может замерзнуть. А для ввода такой батареи в действие из нее выливают раствор борной кислоты в течение 15…20 минут и сразу же заливают сернокислый электролит плотностью 1.38…1.40 г/см3 для нашей зоны. После 40-минутной пропитки пластин электролитом АКБ можно устанавливать на автомобиль, если плотность электролита не уменьшилась ниже 1.24…1.25 г/см3. Если она стала ниже, следует откорректировать плотность отбором слабого раствора и добавлением электролита плотностью 1.40 г/см

12. Приложения

12.1. Реанимация аккумулятора
Реанимация аккумулятора. Старый фирменный аккумулятор может послужить еще, если его правильно восстановить! Итак, начнём. Имеем на руках убитый или почти убитый аккумулятор.
Нам понадобятся некоторые материалы и инструменты:
1) Свежий электролит (номинальной + желательно повышенной плотности)
2) Дистиллированная вода.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
3) Измеритель плотности электролита (ареометр). Например ареометр производства НПП «Орион CПб»

4) Зарядное устройство, способное обеспечить малые (0.05-0.4А) токи зарядки.
5) Маленькая клизма (простите, надо!) и пипетка для наливных целей.
6) Нагрузочная вилка. НПП «Орион СПб» производит 4 модели: от простых и дешевых НВ-01, НВ-02, до профессиональных НВ-03, НВ-04.


Для начала определимся с возможными неисправностями:
1) Засульфатированность пластин — ёмкость аккумулятора падает почти до нуля.
2) Разрушение угольных пластин — при зарядке электролит становится черным.
3) Замыкание пластин — электролит в одной из секций аккумулятора выкипает, секция греется. (Тяжелый случай, но иногда небезнадежный)
4) Перемёрзший аккумулятор — распухшие бока, электролит при заряде сразу вскипает (многочисленные замыкания пластин) — тут уж ничем не помочь, аминь, упокой Господь его душу!

Начнем с конца списка. (п.3) При замыкании пластин ни в коем случае не пытайтесь его заряжать! Начинаем промывку дистиллированной водой.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Не бойтесь переворачивать и трясти аккумулятор, хуже уже не будет. Промывайте его до тех пор, пока не перестанет вымываться угольная крошка (надеюсь, этот момент наступит, иначе прекратите этот мазохизм). При промывке часто замыкание пластин устраняется, и мы переходим от пункта (3) к пункту (2). После промывки и вытряхивания всякого мусора из недр аккумулятора приступаем к пункту (1), а именно к устранению отложений солей на пластинах аккумулятора. Следуйте инструкциям к присадке. Мой опыт может отличаться от того, что вы прочтёте в инструкции. Далее я делаю так:
1) Заливаем аккумулятор электролитом номинальной плотности (1.28 г/см3).
2) Добавляем присадку, исходя из объёма аккумулятора (см. инструкцию)
3) Даём электролиту выдавить воздух из секций, а присадке — раствориться в течении 48 часов (!), при необходимости доливаем электролит до номинального уровня. Кстати, присадку можно растворить в электролите до заливки в аккумулятор, если, конечно, она хорошо растворяется.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
4) Подключаем зарядное устройство (не забудьте снять пробки!). НО МЫ НЕ БУДЕМ ЕГО ЗАРЯЖАТЬ! НЕ СЕЙЧАС! Сначала мы будем гонять его по циклу «зарядка-разрядка», иначе «тренировка», то есть заряжать и разряжать его, пока не восстановится нормальная ёмкость. Выставляем ток зарядки в районе 0.1- 0.2 А и следим за напряжением на клеммах. Не давайте электролиту кипеть или нагреться! Если необходимо, уменьшите зарядный ток, пузырьки газа и перегрев разрушают аккумулятор! Заряжайте, пока напряжение на клеммах аккумулятора не достигнет 2.3 — 2.4В на каждую секцию, т.е. для 12-вольтового аккумулятора — 13.8-14.4 В.
5) Уменьшаем зарядный ток вдвое и продолжаем зарядку. Зарядку аккумулятора прекращаем, если в течении 2 часов плотность электролита и напряжение на клеммах остаются неизменными.
6) Доводим плотность до номинальной доливкой электролита повышенной плотности (1.4) или дистиллированной воды.
7) Разряжаем аккумулятор через лампочку током примерно в 0.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 5А до падения напряжения на клеммах до 1.7В на элемент. Для 12-вольтового аккумулятора эта величина составит 10.2В, для 6-вольтового 5.1 соответственно. Из имеющихся величин тока разряда и времени разряда вычисляем ёмкость нашего аккумулятора. Если она ниже номинальной (4 ампер-часа), то:
 Повторяем цикл заряда с начала до тех пор, пока ёмкость аккумулятора не приблизится к номинальной.
9) Добавляем в электролит ещё немного присадки и закрываем отверстия аккумулятора. ВСЁ!!! Мы имеем на руках рабочий аккумулятор, который, иногда способен проработать дольше китайского!

Дальше обращаемся с аккумулятором, как положено.

12.2. Ещё несколько способов, основанных на использовании электрического тока.

Способ первый — простой. Электролит заменить дистиллированной водой и зарядить аккумулятор или батарею очень небольшим (примерно 0.01 ёмкости) током. При этом в банках степень сульфатации снижается и образуется электролит, который заменять не нужно. После двух часов зарядки ее прекращают на такое же время.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов А затем снова повторяют.
Доказано, что после одного-трех таких циклов степень сульфатации резко снижается.

Второй способ — наиболее трудоемкий, но в безвыходном положении его тоже можно применить. Он химический, включает следующие операции: заряд батареи в течение 2…3 часов, слив электролита из банок, двух-трехкратная их промывка дистиллированной водой, заправка 2.5-процентным (25 г на 1 л) раствором питьевой соды и выдержка в течение 2…3 часов, слив раствора, заправка 2…3-процентным раствором повареной соли, заряд батареи в течение 1ч, слив раствора, промывка 4-процентным раствором питьевой соды, полный (из расчета 150-процентной ёмкости) заряд батареи, третья промывка банок, заправка их электролитом, полный (150-процентной ёмкости) заряд батареи.


Условия эксплуатации автоаккумуляторов

1. Указание мер безопасности.

1.1. Заряд батареи производите в помещении, оборудованном приточно-вытяжной вентиляцией.
1.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 2. Во время заряда и обслуживания аккумуляторных батарей запрещается курить и пользоваться открытым пламенем.
1.3. Для приготовления электролита применяйте стойкую к действию серной кислоты посуду (керамическую, эбонитовую, освинцованную), в которую заливайте сначала воду, а затем при непрерывном помешивании серную кислоту. Вливать воду в концентрированную серную кислоту запрещается во избежание несчастного случая.
1.4. При приготовлении электролита и заливке батарей надевайте очки, резиновые перчатки, резиновые сапоги, фартук или костюм из кислотостойкого материала.
1.5. При случайном попадании брызг серной кислоты на кожу немедленно, до оказания медицинской помощи, осторожно снимите кислоту ватой, промойте пораженные места обильной струей воды и затем 5% раствором кальцинированной соды или аммиака.
1.6. При работе с металлическим инструментом не допускайте коротких замыканий одновременным прикосновением к разнополярным выводам аккумулятора.


2.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Приведение в рабочее состояние сухозаряженных аккумуляторов.

2.1. Снять блок пробок.
2.2. Залить батарею электролитом.
2.3. Залить каждый элемент до требуемого уровня электролитом (метки уровня указаны на тыльной стороне АКБ), имеющим плотность при температуре 25 С: (1,28+-0,01) г/см3 для батарей «нормального исполнения», (1,23+-0,01) г/см3 для батарей «тропического исполнения».
2.4. Электролит для заливки батарей готовьте из серной кислоты (ГОСТ667-73 сорт высший или первый) и дистиллированной воды (ГОСТ 6709-72). Плотность электролита измеряйте ареометром аккумуляторным ГОСТ 18481-81.
2.5. Температура электролита должна быть не выше 30 С. Не рекомендуется заливать батареи электролитом ниже 15 С.
Примечание: при повышении температуры на 1 С, плотность электролита уменьшается на 0,0007 г/куб.см, а при понижении температуры плотность увеличивается. Исходной считается температура 25 С.
Операции приведения в рабочее состояние должны производиться при температуре 25 +/- 10 С.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
После заливки электролита через 20 минут проверить напряжение батареи без нагрузки. Если напряжение не менее 12.5 вольт, АКБ готова к работе. Если напряжение менее 12.5 вольт, но более 10.5 вольт АКБ необходимо подзарядить до напряжения, указанного изготовителем. При напряжении менее 10,5 вольт аккумулятор бракуется.


3. Заряд батареи.

3.1. Присоединить батарею к источнику постоянного тока, соединяя положительный полюсной вывод с положительным зажимом источника и аналогично, отрицательный полюсной вывод с отрицательным зажимом источника тока.
3.2. Заряжать током равным 10 % номинальной емкости батареи (5,5 А для 6СТ55, 6,6 А для 6СТ66 и т.д.).
3.3. Время зарядки ориентировочно до начала газовыделения. Плотность электролита после зарядки должна быть 1.27+/-0,01 г/куб.см, напряжение на клеммах не ниже 12,6 вольт.


4. Приведение в рабочее состояние залитых батарей.

Измерить плотность и напряжение, которые должны быть не ниже 1,27 г/куб.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов см и 12,6 вольт соответственно.
Если напряжение и плотность не соответствуют указанным в п. 3.3., АКБ необходимо зарядить до плотности 1.27 г/куб.см.
4.1. Снять блок пробок.
4.2. Заряд АКБ производить согласно пункту 2.5.


5. Техническое обслуживание.

Не реже одного раза в две недели:
5.1. Проверяйте надежность крепления батареи в гнезде и плотность контакта наконечников проводов с выводами батареи, при необходимости снимите оксидную пленку с выводов.
5.2. Чистите батарею от пыли и грязи. Попавший на поверхность батареи электролит вытирайте ветошью, смоченной в растворе аммиака или кальцинированной соды (10%). Прочистите вентиляционные отверстия.
5.3. При падении уровня электролита ниже отметки min на корпусе батареи доводите его до нормы дистиллированной водой непосредственно перед запуском двигателя для быстрого перемешивания с электролитом.
5.4. В зимнее время, особенно при температуре воздуха ниже -30 С, а также в случаях ненадежного запуска двигателя, периодически проверяйте плотность электролита.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Не оставляйте на морозе частично разряженную батарею. При эксплуатации батареи при температуре ниже 30 С, плотность электролита в ней должна быть 1.30 г/куб.см.
5.5. Периодически следите за тем, как происходит зарядка батареи во время работы двигателя автомобиля.

Примечание: Неисправности в реле-регуляторе двигателя автомобиля влияют на качество и работоспособность батареи. Если напряжение генератора будет чрезмерно, высоким может произойти перезаряд батареи. Признаками этого являются: преждевременное разрушение аккумуляторных пластин (электродов) и, как следствие, быстрое уменьшение фактической емкости батареи и сокращение срока ее службы. При перезарядке резко снижается уровень электролита. Недостаточное напряжение генератора, особенно при эксплуатации при низких температурах, может привести к недозарядке батареи и ухудшению ее стартерных свойств. Напряжение, поступающее от генератора двигателя на аккумуляторную батарею должно быть 13,8-14,4 В.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов

5.6. Доливать электролит в батарею разрешается только в случае, если произошло его выплескивание из АКБ.
5.7. Пуск стартера производить короткими включениями, но не более чем на 15 секунд. Езда при помощи стартера не допускается.
5.8. При перерывах в эксплуатации батареи свыше одного месяца производить подзарядку АКБ.
5.9. Батареи, временно снятые с машин хранить только в заряженном состоянии. Благоприятная температура хранения — от 0 С до — 10 С, но не ниже — 30 С.
5.10. Если батарея находится в периоде «бездействия» при положительных температурах необходимо заряжать ее раз в месяц, при отрицательных, только в случае, если падение плотности электролита более чем на 0,04 г/куб.см. В таком состоянии батареи могут находиться при положительных температурах не более 9 месяцев.

Сколько свинца в аккумуляторе | Таблица содержания свинца по маркам АКБ

От того, сколько свинца в аккумуляторе, зависит цена источника питания при продаже на лом.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Зная точное количество металла, вы решите, как поступить с батареей: разобрать и сдать чистый цветной металл или отправить на переработку в собранном виде.

Содержание свинца в различных типах аккумуляторов

Приём б/у аккумуляторов включает анализ устройства на содержание металлов в составе. Количество цветмета зависит от ёмкости АКБ и представлено такими значениями:

  • 55 А/ч. Всего – до 10,5 кг свинца. Извлечь без специального оборудования получится около 3-3,5 кг.
  • 60 А/ч. Всего – 12 кг. Сколько свинца в АКБ доступного к самостоятельному извлечению? Только 3,4 кг чистого сплава.
  • 75 А/ч. Всего – 15,5 кг. Для самостоятельного извлечения доступно 4,5 кг.
  • 90 А/ч. Всего – 19 кг, из которых вы извлечёте 5,5 кг.
  • 190 А/ч. Всего – 30 кг, количество добываемое вручную сплава – 8-9 кг.

Чаще встречаются источники питания на 55, 60 и 190 А/ч. Ёмкие модели выгоднее разбирать и сдавать на лом чистый металл.

Сколько электролита в аккумуляторе?

Сколько свинца в 1 аккумуляторе зависит от содержания электролита.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Рабочее вещество занимает 20-25% от массы устройства. Точный объём жидкости связан с ёмкостью источника.

В батареях на 55 А/ч – 2,5 литра электролита. Для моделей на 60 А/ч используют на 0,2-0,5 литра больше. Чем выше ёмкость устройства, тем больше электролита требуется.

Вес составных частей аккумулятора

Когда проводится скупка аккумуляторов, важно не только сколько свинца в автомобильном аккумуляторе или устройствах другого типа. Важен вес всех элементов конструкции, так как некоторые из них тоже подходят для утилизации и могут принести доход.

Общее содержание неметаллических элементов, а также цветных металлов другого вида – 10-12% от массы устройства. Для установления точного веса понадобится разобрать источник питания и взвесить каждую пластину и другие составляющие. В обычном АКБ на 55 Ампер содержится 1,5-1,7 кг неметаллических элементов (то есть выполненных из ПВХ).

Зачем знать содержание свинца в аккумуляторе?

Компания К-2 занимается скупкой металлолома, в том числе источников питания для переработки и утилизации.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Зная, сколько цветного металла в устройстве, вы заранее просчитаете стоимость батареи и выберите удобный вариант сотрудничества – с самостоятельным разбором и АКБ на цветмет или предоставив сортировку и прочие сложные работы нашим сотрудникам.

Аккумуляторы стартерные

НаименованиеМасса, кг
Аккумулятор 6 ст-5512,1
Аккумулятор 6 ст-6013,2
Аккумулятор 6 ст-6614,3
Аккумулятор 6 ст-7415,4
Аккумулятор 6 ст-7716,2
Аккумулятор 6 ст-9020,5
Аккумулятор 6 ст-10019,8
Аккумулятор 6 ст-11025,6
Аккумулятор 6 ст-13231,4
Аккумулятор 6 ст-14036,9
Аккумулятор 6 ст-19047,9
Аккумулятор 6 ст-21527,3
Аккумулятор 3 ст-150 эм23,2
Аккумулятор 3 ст-155 эм25
Аккумулятор 3 ст-215 эм35,8
Аккумулятор 6 ст-50 эм17,5
Аккумулятор 6-ст 55 эм19,2
Аккумулятор 6 ст-60 эм21,1
Аккумулятор 6 ст-75 эм25,6
Аккумулятор 6 ст-75 тм23,9
Аккумулятор 6 ст-90 эм30,4
Аккумулятор 6 ст-132 эм43,1
Аккумулятор 6 ст-182 эм60,4
Аккумулятор 6 ст-190 тм61,7

Стационарные АКБ открытого типа

НаименованиеМасса, кг
Аккумулятор ПСК, СК-1 6,8
Аккумулятор ПСК, СК-2 12
Аккумулятор ПСК, СК-3 16
Аккумулятор ПСК, СК-4 21
Аккумулятор ПСК, СК-5 25
Аккумулятор ПСК, СК-6 30
Аккумулятор ПСК, СК-8 37
Аккумулятор ПСК, СК-10 46
Аккумулятор ПСК, СК-12 53
Аккумулятор ПСК, СК-14 61
Аккумулятор ПСК, СК-16 68
Аккумулятор ПСК, СК-18 101
Аккумулятор ПСК, СК-20 110
Аккумулятор ПСК, СК-24 138
Аккумулятор ПСК, СК-28 155
Аккумулятор ПСК, СК-32 172
Аккумулятор ПСК, СК-36 188
Аккумулятор ПСК, СК-40 208
Аккумулятор ПСК, СК-44 226
Аккумулятор ПСК, СК-48 243
Аккумулятор ПСК, СК-52 260
Аккумулятор ПСК, СК-56 278
Аккумулятор ПСК, СК-60 295
Аккумулятор ПСК, СК-64 312
Аккумулятор ПСК, СК-68 330
Аккумулятор ПСК, СК-72 347
Аккумулятор ПСК, СК-76 365
Аккумулятор ПСК, СК-80 382
Аккумулятор ПСК, СК-84 397
Аккумулятор ПСК, СК-88 414
Аккумулятор ПСК, СК-92 434
Аккумулятор ПСК, СК-96 450
Аккумулятор ПСК, СК-104 467
Аккумулятор ПСК, СК-108 487
Аккумулятор ПСК, СК-112 506
Аккумулятор ПСК, СК-116 524
Аккумулятор ПСК, СК-120 541
Аккумулятор ПСК, СК-124 559
Аккумулятор ПСК, СК-128 577
Аккумулятор ПСК, СК-132 592
Аккумулятор ПСК, СК-136 312
Аккумулятор ПСК, СК-140 631
Аккумулятор СКЭ-1669
Аккумулятор СКЭ-1875
Аккумулятор СКЭ-2085
Аккумулятор СКЭ-24105
Аккумулятор СКЭ-28120
Аккумулятор СКЭ-32144
Аккумулятор СКЭ-36159
Аккумулятор СКЭ-40176
Аккумулятор СКЭ-44191
Аккумулятор СКЭ-48208
Аккумулятор СКЭ-52223
Аккумулятор СКЭ-56240
Аккумулятор СКЭ-60255
Аккумулятор СКЭ-64271
Аккумулятор СКЭ-68287
Аккумулятор СКЭ-72303
Аккумулятор СКЭ-76319

Стационарные АКБ закрытого типа

НаименованиеМасса, кг
Аккумулятор 3 СН-3613,2 
Аккумулятор СН-727,5
Аккумулятор СН-1089,5
Аккумулятор СН-14412,4
Аккумулятор СН-18014,5
Аккумулятор СН-21618,9
Аккумулятор СН-22823,3
Аккумулятор СН-36028,8
Аккумулятор СН-43234,5
Аккумулятор СН-50437,8
Аккумулятор СН-57645,4
Аккумулятор СН-64848,6
Аккумулятор СН-72054,4
Аккумулятор СН-86464,5
Аккумулятор СН-100874,2
Аккумулятор СН-115284

Как часто проверять уровень электролита в аккумуляторе

Электролит является неотъемлемым элементом функционирования автомобильного аккумулятора.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов Необходимый уровень электролита обеспечивает стабильную работу батареи на протяжении всего срока эксплуатации. Автолюбители задаются вопросом: как часто проверять уровень жидкости, чтобы избежать негативных последствий его снижения?

В процессе заряда-разряда происходит электрохимическая реакция, в результате которой дистиллированная вода из состава электролита испаряется, понижая его уровень. Малое количество жидкости в банках аккумулятора способно вывести АКБ из строя. Снижению уровня способствует перезаряд от стационарного устройства или при неисправном генераторе автомобиля. Кроме того, при переворачивании аккумулятора, при неплотно закрученных пробках существует риск выплескивания жидкости

Прежде всего основным моментом, влияющим на возможность и необходимость проверки, является форм-фактор батареи и технологические особенности производства.

  •  AGM аккумуляторы изготавливаются по технологии, где электролит находится в абсорбированном (не жидком) виде, что исключает его выкипание и выплескивание.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов  
  •  В аккумуляторах, произведенных по кальциевой технологии, расход дистиллированной воды значительно снижен, поэтому зачастую они изготавливаются в необслуживаемых корпусах с лабиринтной крышкой. Такая крышка позволяет возвращать конденсат дистиллированной воды обратно в банки АКБ.
Важно: запрещается нарушать целостность крышки необслуживаемой батареи с целью проверки плотности и уровня электролита. Такие действия могут привести к выходу аккумулятора из строя.
  • Малосурьмянистые АКБ более подвержены выкипанию. Расход воды в них напрямую связан с маркой батареи, особенностями эксплуатации, техническими характеристиками авто. Для проверки уровня и доливки воды на крышке АКБ расположены отверстия с пробками. Рекомендуемая частота проверки — каждые 25 тысяч километров.

На корпусе аккумулятора в большинстве случаев нанесены метки о минимально и максимально допустимом уровне жидкости.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов При выкручивании пробок уровень можно определить визуально: вершина пластин батареи должна быть скрыта электролитом примерно на 1 см. Доливать надлежит исключительно дистиллированную воду. После доливки рекомендуется не использовать батарею в течение 2-3 часов, затем произвести замеры плотности. Если после доливки плотность жидкости не соответствует норме в 1,26 г/см³, то требуется произвести зарядку батареи.

Инструкции по эксплуатации аккумуляторных батарей

БАТАРЕЯ АККУМУЛЯТОРНАЯ СВИНЦОВАЯ СТАРТЕРНАЯ

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

1. МЕРЫ БЕЗОПАСНОСТИ

1.1. Не допускается замыкание полюсов батареи.
1.2. Не допускается эксплуатация батареи с плохими: контактами между выводами батареи и клеммами проводов.
1.3. В помещениях, где ведется заряд батареи, запрещается курить и пользоваться открытым пламенем.
1.4. При работе с электролитом, осмотре заряжающейся батареи глаза должны быть защищены очками.
1.5. После любой работы с батареей и электролитом необходимо вымыть руки с мылом.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
1.6. При попадании электролита на кожу или одежду необходимо немедленно промыть это место проточной водой, затем раствором соды.
1.7. Аккумуляторная батарея, заполненная электролитом, должна храниться в местах, недоступных для детей.
1.8. Присоединение и отсоединение батареи от бортовой сети автомобиля производить при выключенных потребителях. Сначала присоединить положительный вывод, а затем отрицательный, соединенный с массой автомобиля. Отсоединение производить в обратном порядке.
1.9. Батарея должна быть надежно закреплена в штатном установочном месте автомобиля, соединительные клеммы плотно зажаты на полюсных выводах, а сами провода прослаблены.

2. ПОДГОТОВКА БАТАРЕИ К ЭКСПЛУАТАЦИИ

2.1. Перед началом эксплуатации батареи необходимо полностью удалить с нее упаковочный материал, изучить руководство по эксплуатации.
2.2. Ориентировочная степень заряженности батареи может быть определена по напряжению без нагрузки (см. Таблицу далее) и плотности электролита в батареях с пробками.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
2.3. Необходимо учитывать, что после заряда или эксплуатации на автомобиле батарее требуется 12-15 часов для стабилизации электрических показателей, после чего можно производить измерение степени заряженности по напряжению.


3. ЭКСПЛУАТАЦИЯ АККУМУЛЯТОРНОЙ БАТАРЕИ

3.1. Эксплуатация батареи на транспортных средствах допускается только при исправной зарядной системе (при напряжении реле-регулятора в пределах от 13,8В до 14,4В для 12-вольтовых систем электропитания, а для 24-вольтовых систем электропитания- от 26,8В до 28,0В летом и от 28,0В до 29,6В зимой), токе утечки не более 30 мА, плотности электролита согласно Таблице и уровне электролита не ниже 10 мм над пластинами.
3.2. При запуске двигателя длительность работы стартера не должна превышать для карбюраторных автомобилей 10 секунд, для дизельных — 15 секунд. Если попытка запуска не удалась, необходимо сделать перерыв в течение 1 минуты. После этого вновь можно повторить запуск. После пяти неудавшихся запусков рекомендуется проверить систему зажигания и подачу топлива на автомобиле.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
3.3. При эксплуатации батареи и не реже одного раза в месяц:
— проверяйте и, при необходимости, очищайте батарею от пыли и грязи. Если на поверхности батареи оказался электролит, удаляйте его с помощью ветоши, смоченной в десятипроцентном растворе соды;
— проверяйте и, при необходимости, прочищайте вентиляционные отверстия в пробках;
— проверяйте уровень электролита и, при необходимости, доливайте дистиллированную воду до нормального уровня (при наличии пробок). Доливать электролит в батарею с пробками можно только в тех случаях, когда точно известно, что понижение уровня электролита произошло за счет его выплескивания;
— проверяйте надежность крепления батареи в месте установки и контакты наконечников проводов, установленных на полюсные выводы;
— не реже одного раза в месяц проверяйте степень заряженности батареи. При необходимости зарядите батарею в соответствии с п.4.
3.4. Зимой требования предыдущего пункта следует выполнять обязательно (не реже одного раза в месяц).Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов
3.5. Глубокий разряд батареи недопустим! При отрицательных температурах это приводит к замерзанию электролита и разрушению корпуса батареи.


4. ЗАРЯДКА БАТАРЕИ

4.1. Зарядка аккумуляторной батареи должна производиться в специально оборудованном для этих целей, хорошо вентилируемом нежилом помещении с соблюдением правил противопожарной безопасности.
4.2. Перед началом зарядки аккумуляторной батареи следует вывернуть все пробки (при их наличии).
4.3. Зарядка аккумуляторной батареи должна осуществляться зарядным устройством заводского изготовления в соответствии с инструкцией к этому зарядному устройству и руководством по эксплуатации на батарею.


Таблица: Степень заряженности, напряжение без нагрузки и плотность электролита.

Напряжение без нагрузки, В

Степень заряженности,%

Плотность электролита
при +25°С, г/см
12.75-12.60100-801.27-1.Сколько электролита должно быть в аккумуляторе 55: Сколько электролита в аккумуляторе? Разберем объемы вариантов от 55 до 190 Ампер-часов 26
12.55-12.4075-651.25-1.24
12.35-12.3050-401.23-1.21*

*- эксплуатировать батарею нельзя, требуется зарядить.

4.4. Аккумуляторные батареи без пробок необходимо заряжать автоматическим зарядным устройством, чтобы не допустить интенсивного перезаряда и, как следствие, выкипания электролита.
4.5. Температура электролита в батарее перед зарядкой должна быть в пределах от +15°С до +25°С. Если измерить температуру невозможно по причине отсутствия доступа к электролиту, а батарея находилась при более низкой температуре, то перед зарядкой необходимо выдержать батарею при комнатной температуре не менее 10 часов.
4.6. Не допускается зарядка батареи при температуре электролита выше 50°С.
4.7. Для зарядки положительную клемму батареи присоединить к положительному полюсу зарядного устройства, а отрицательную — к отрицательному.
4.8. При зарядке батарей, имеющих пробки, необходимо откорректировать уровень электролита, добавив дистиллированную воду в случае, если уровень ниже отметки MIN или ниже 10 мм от верхних кромок пластин и сепараторов.


5. ЭЛЕКТРОЛИТ

5.1. Плотность заливаемого в сухозаряженную батарею электролита, приведенная к +25°С, должна быть 1,27-1,28 г/см3.
6. ХРАНЕНИЕ АККУМУЛЯТОРНОЙ БАТАРЕИ
6.1. Батарея устанавливается на хранение полностью заряженной. Рекомендуется ежемесячно проверять напряжение на выводах батареи и, при наличии пробок, плотность электролита. При снижении степени заряженности до 50% (см. Таблицу), батарею необходимо зарядить, эксплуатировать такую батарею нельзя.
6.2. При длительном (сезонном) хранении залитые и заряженные батареи рекомендуется хранить в сухом холодном помещении при температуре до минус 30°С.


7. УТИЛИЗАЦИЯ АККУМУЛЯТОРНОЙ БАТАРЕИ

7.1. Вышедшая из строя батарея подлежит обязательной сдаче в пункт приема отработанных аккумуляторов для последующей надлежащей утилизации.

Берегите окружающую среду! Не выбрасывайте отработанные батареи, сдавайте их в специализированные пункты приема.

Что нужно сделать, чтобы машина даже зимой заводилась с пол-оборота

Когда вы садитесь в ваш автомобиль ранним утром, включаете зажигание, а двигатель не заводится, у кого угодно испортится настроение. Главным виновником, как правило, выступает аккумулятор, который вовсе не обязательно старый или поврежденный. Так что же делать, чтобы исключить такие ситуации?

Когда машина стала регулярно заводиться не с первого раза, это повод задуматься о причинах. Помимо неисправного бензонасоса и отходивших свое свечей такую симптоматику наиболее часто выдает проблемный аккумулятор.

Что может быть с ним не так? Самая частая причина, конечно же, возраст батареи. Современные устройства служат беспроблемно в среднем пять лет. Однако иногда «вылетают» уже через два-три года эксплуатации, а иногда держатся и с десяток лет. На продолжительность жизни аккумулятора влияет целый ряд факторов и прежде всего качество батареи, характер езды, наличие или отсутствие утечек тока.

Качество батареи

При выборе аккумулятора обращайте внимание на победителей рейтингов профильных автомобильных изданий и, соответственно, обходите стороной аутсайдеров таких хит-парадов, а также аккумуляторы «ноунейм», название которых не на слуху.

С другой стороны, понятно, что чем более именитый бренд, тем выше цена на продукт. Так что логично выбирать «золотую середину» — оптимальный вариант по соотношению цена-качество. Кроме того, смотрите на дату выпуска устройства. Аккумулятор, залежавшийся на полке, основательно разрядился и подрастерял заявленный ресурс.

Какие модели лучше

При покупке обходите стороной обслуживаемые малосурьмянистые аккумуляторы (АКБ этого типа содержат в составе свинцовых пластин примерно 5% сурьмы и служат, как правило, не более трех лет).

Делайте выбор в пользу кальциевых, гелевых, гибридных (положительный электрод — из малосурьмянистого сплава, отрицательный — с использованием кальция) или AGM (свинцово-кислотных) моделей.

Что касается емкости, автомобилям с дизельными моторами нужны более емкие батареи. Скажем, если бензиновым двигателям объемом 1,5 л оптимально подойдет батарея на 50-55 Ач, то дизельным требуется АКБ уже на 65 Ач. Понятно также, что аккумулятор меньшей емкости, чем указано в мануале, послужит недолго, и с зимним пуском наверняка будут проблемы.

Правильная эксплуатация

Батарея может плохо держать прежде всего из-за повышенной нагрузки. К примеру, если вы ежедневно стоите в глухих пробках, зарядка батареи на холостых оборотах практически не осуществляется, поскольку генератор не способен в таком режиме обеспечить достаточный уровень напряжения.

Если же вы еще и задействуете весь арсенал бортовой электроники (фары, навигацию, акустику, зарядки, подогревы сидений, зеркал, стекол и «лобовухи»), то при таком раскладе заряд высадится еще быстрее.

Хорошо если после таких простоев вы проедете какое то время в бодром темпе, чтобы генератор хотя бы частично восстановил емкость батареи. А именно — в теплую погоду заряд аккумулятора восстановится почти полностью после 30-60 мин езды на средних и высоких оборотах. Зимой же процесс заряда АКБ от генератора (на ходу) может занять уже более 1-2 часов. А теперь представьте, что после заторов вы не начали активную езду, а наоборот, поставили машину в гараж, а того хуже — на морозную улицу, да еще и с включенной сигнализацией. При таком раскладе шанс, что батарея высадится в «ноль», весьма велик.

Следить за состоянием батареи

Ответственный водитель будет открывать капот не только для того, чтобы долить омывайку, но и как минимум следить за состоянием батареи.

Основное внимание следует уделить клеммам аккумулятора. Они должны быть чистыми. В противном случае их следует прочистить шкуркой или щеткой, смоченной раствором соды.

Следует также хотя бы раз в пару месяцев подтягивать клеммы аккумулятора, чтобы не потерять соединение — это напрямую влияет на эффективность заряда батареи.

Кроме того, если аккумулятор обслуживаемый, проверяем уровень электролита и при необходимости доливаем дистиллированную воду. Если же батарея необслуживаемая, просто следим за исправностью электрооборудования. Но и необслуживаемый аккумулятор имеет существенный минус. Если разрядить его «в ноль», после зарядки он потеряет значительную часть своей мощности.

Не экспериментируйте с электрикой

Не злоупотребляйте «прикуриванием». Во-первых, современная электроника крайне чувствительна к перепадам и превышениям напряжения.

Во-вторых, если вы подзаряжаете автомобиль, батарея которого мощнее вашей, и если подзаряжаемый — с дизельным мотором, то шанс потерять почти весь заряд своей батареи очень велик.

Рекомендуем также проводить любые вмешательства в электросхему автомобиля только у «официалов». Конечно, соблазн сэкономить велик. Но если «спецы» со стороны подключат магнитолу, сигнализацию или другие потребители неправильно, это чревато утечкой тока и как следствие — глубоким разрядом батареи.

Профилактические меры

При запуске двигателя не крутите стартер подолгу. При таком раскладе аккумулятор отдает неоправданно много энергии.

Возьмите за правило крутить стартер не более пяти секунд. Если же это время увеличивается до 10 секунд, повышается вероятность, что перегреются обмотки и износятся щетки и коллектор якоря стартера. Прежде чем устанавливать новую батарею, поставьте ее на зарядку.

Преимущественно в зимний период, а лучше регулярно, раз в пару месяцев заряжайте аккумулятор дома или в гараже с помощью зарядного устройства. Также время от времени проверяйте мультиметром напряжение в бортовой сети. При работающем моторе напряжение должно быть примерно 14,0-14,4 В.  При неработающем, повторимся, 12,5-12,8 В.

Между тем зачастую АКБ выдает на неработающем моторе 12,2 — 12,4В. Что же касается собственно езды, старайтесь избегать как экстремально коротких, так и длительных поездок. В первом случае АКБ потратит больше энергии, чем успеет восполнить, а во втором — батарея будет постоянно заряжаться, соответственно, резко снижаться ее ресурс.

Обзор моделирования анодной межфазной границы с твердым электролитом (SEI) для литий-ионных батарей

  • 1.

    Тараскон, Дж. М. и Арман, М. Проблемы и проблемы, с которыми сталкиваются литиевые аккумуляторные батареи. Nature 414 , 359–367 (2001).

    Артикул Google ученый

  • 2.

    Zu, C.-X. & Ли, Х. Термодинамический анализ плотности энергии батарей. Energy Environ. Sci. 4 , 2614–2624 (2011).

    Артикул Google ученый

  • 3.

    Гуденаф, Дж. Б. и Парк, К.-С. Литий-ионная аккумуляторная батарея: перспектива. J. Am. Chem. Soc. 135 , 1167–1176 (2013).

    Артикул Google ученый

  • 4.

    Дей А. Н. Формирование пленки на литиевом аноде в пропиленкарбонате. J. Electrochem. Soc. 117 , C248 (1970).

    Артикул Google ученый

  • 5.

    Пелед Э. Электрохимическое поведение щелочных и щелочноземельных металлов в неводных аккумуляторных системах — межфазная модель твердого электролита. J. Electrochem. Soc. 126 , 2047–2051 (1979).

    Артикул Google ученый

  • 6.

    Пелед Э., Голодницкий Д. и Ардел Г. Усовершенствованная модель межфазных электродов из твердого электролита в жидких и полимерных электролитах. J. Electrochem. Soc. 144 , L208 – L210 (1997).

    Артикул Google ученый

  • 7.

    Aurbach, D. et al. Новое понимание взаимодействия электродных материалов и растворов электролитов для современных неводных аккумуляторов. J. Источники энергии 81 , 95–111 (1999).

    Артикул Google ученый

  • 8.

    Винтер, м.Межфазная фаза твердого электролита — наиболее важный и наименее изученный твердый электролит в перезаряжаемых литиевых батареях. Z. Fur Phys. Chem. 223 , 1395–1406 (2009).

    Артикул Google ученый

  • 9.

    Verma, P., Maire, P. и Novak, P. Обзор характеристик и анализ межфазной границы твердого электролита в литий-ионных батареях. Электрохим. Acta 55 , 6332–6341 (2010).

    Артикул Google ученый

  • 10.

    Гуденаф, Дж. Б. и Ким, Ю. Проблемы литиевых аккумуляторных батарей. Chem. Mater. 22 , 587–603 (2010).

    Артикул Google ученый

  • 11.

    Xing, L., Borodin, O., Smith, G. D. & Li, W. Изучение функциональной теории плотности роли анионов в реакции окислительного разложения пропиленкарбоната. J. Phys. Chem. A. 115 , 13896–13905 (2011).

    Артикул Google ученый

  • 12.

    Чжан, Х. Р., Пью, Дж. К. и Росс, П. Н. Расчет термодинамических потенциалов окисления органических растворителей с использованием теории функционала плотности. J. Electrochem. Soc. 148 , E183 – E188 (2001).

    Артикул Google ученый

  • 13.

    Бородин О. и Джоу Т. Р. в Неводные электролиты для литиевых батарей . Vol. 33 ECS Transactions (ред. Б. Лучт, В. А. Хендерсон, Т. Р. Джоу и М. У.) 77–84 (Электрохимическое общество, Нью-Джерси, 2011).

  • 14.

    Ли Т. и Балбуэна П. Б. Теоретические исследования восстановления карбоната этилена. Chem. Phys. Lett. 317 , 421–429 (2000).

    Артикул Google ученый

  • 15.

    Ван, Ю. Х., Накамура, С., Уэ, М. и Балбуэна, П. Б. Теоретические исследования для понимания химии поверхности угольных анодов для литий-ионных батарей: механизмы восстановления этиленкарбоната. J. Am. Chem. Soc. 123 , 11708–11718 (2001).

    Артикул Google ученый

  • 16.

    Gauthier, M. et al. Интерфейс электрод – электролит в литий-ионных батареях: текущее понимание и новые идеи. Дж.Phys. Chem. Lett. 6 , 4653–4672 (2015).

    Артикул Google ученый

  • 17.

    Delp, S.A. et al. Важность восстановления и устойчивости к окислению высоковольтных электролитов и присадок. Электрохим. Acta 209 , 498–510 (2016).

    Артикул Google ученый

  • 18.

    Ву Ф., Бородин О. и Юшин Г. Защита поверхности на месте для повышения стабильности и производительности катодов конверсионного типа.MRS Energ. Выдержать. 4 , E9 (2017).

  • 19.

    Сео, Д. М., Бородин, О., Хан, С.-Д., Бойл, П. Д. и Хендерсон, В. А. Сольватация электролитов и ионная ассоциация II. Смеси ацетонитрил-литиевых солей: высокодиссоциированные соли. J. Electrochem. Soc. 159 , A1489 – A1500 (2012).

    Артикул Google ученый

  • 20.

    Бородин О. и др. Моделирование электрохимической стабильности электролита батареи и межфазной структуры. В соотв. Chem. Res. 50 , 2886–2894 (2017).

    Артикул Google ученый

  • 21.

    Vetter, J. et al. Механизмы старения литий-ионных аккумуляторов. J. Источники энергии 147 , 269–281 (2005).

    Артикул Google ученый

  • 22.

    Сюй К. Жидкие неводные электролиты для литиевых аккумуляторных батарей. Chem.Ред. 104 , 4303–4417 (2004).

    Артикул Google ученый

  • 23.

    Сюй, К. Электролиты и межфазные границы в литий-ионных батареях и не только. Chem. Ред. 114 , 11503–11618 (2014).

    Артикул Google ученый

  • 24.

    Агубра В. А. и Фергус Дж. У. Формирование и стабильность границы раздела твердого электролита на графитовом аноде. J. Источники энергии 268 , 153–162 (2014).

    Артикул Google ученый

  • 25.

    An, S.J. et al. Состояние понимания межфазной границы твердого электролита с графитом литий-ионных аккумуляторов (SEI) и ее связи с цикличностью пласта. Карбон Нью-Йорк 105 , 52–76 (2016).

    Артикул Google ученый

  • 26.

    Назри, Г.И Мюллер, Р. Х. Состав поверхностных слоев литиевых электродов в ПК, LiClO 4 с очень низким содержанием воды. J. Electrochem. Soc. 132 , 2050–2054 (1985).

    Артикул Google ученый

  • 27.

    Aurbach, D., Daroux, M. L., Faguy, P. W. & Yeager, E. Идентификация поверхностных пленок, образованных на литии в растворах пропиленкарбоната. J. Electrochem. Soc. 134 , 1611–1620 (1987).

    Артикул Google ученый

  • 28.

    Канамура, К., Тамура, Х. и Такехара, З.-И. XPS-анализ поверхности лития, погруженной в раствор пропиленкарбоната, содержащий различные соли. J. Electroanal. Chem. 333 , 127–142 (1992).

    Артикул Google ученый

  • 29.

    Канамура, К., Тамура, Х., Шираиши, С. и Такехара, Зи XPS-анализ литиевых поверхностей после погружения в различные растворители, содержащие LiBF 4 . J. Electrochem. Soc. 142 , 340–347 (1995).

    Артикул Google ученый

  • 30.

    Лу П. и Харрис С. Дж. Транспорт лития в межфазной границе твердого электролита. Электрохим. Commun. 13 , 1035–1037 (2011).

    Артикул Google ученый

  • 31.

    Shi, S.Q. et al. Прямой расчет литий-ионного транспорта в межфазной границе твердого электролита. J. Am. Chem. Soc. 134 , 15476–15487 (2012).

    Артикул Google ученый

  • 32.

    v. Cresce, A., Russell, S. M., Baker, D. R., Gaskell, K. J. & Xu, K. Определение на месте и количественные характеристики межфазных фаз твердых электролитов. Нано. Lett. 14 , 1405–1412 (2014).

    Артикул Google ученый

  • 33.

    Чжэн, Дж.и другие. Трехмерная визуализация неоднородной многослойной структуры и модуля Юнга межфазной границы твердого электролита (SEI) на кремниевых анодах для литий-ионных аккумуляторов. Phys. Chem. Chem. Phys. 16 , 13229–13238 (2014).

    Артикул Google ученый

  • 34.

    Zhang, Q. L. et al. Синергетические эффекты неорганических компонентов в межфазной фазе твердого электролита на высокоцикловую эффективность литий-ионных батарей. Nano Lett. 16 , 2011–2016 (2016).

    Артикул Google ученый

  • 35.

    Слейн, С. М. и Фостер, Д. Л. Литий-ионная перезаряжаемая интеркаляционная ячейка. US1076-H; CA2053746-A (1992).

  • 36.

    Zhang, W.-J. Обзор электрохимических характеристик легированных анодов для литий-ионных аккумуляторов. J. Источники энергии 196 , 13–24 (2011).

    Артикул Google ученый

  • 37.

    Xu, W. et al. Литий-металлические аноды для аккумуляторных батарей. Energy Environ. Sci. 7 , 513–537 (2014).

    Артикул Google ученый

  • 38.

    Li, Y., Leung, K. & Qi, Y. Вычислительное исследование границы раздела Li-электрод / электролит в присутствии межфазного слоя твердый электролит нанометровой толщины. В соотв. Chem. Res. 49 , 2363–2370 (2016).

    Артикул Google ученый

  • 39.

    Zhang, K., Lee, G.-H., Park, M., Li, W. & Kang, Y.-M. Последние разработки литий-металлического анода для аккумуляторных неводных батарей. Adv. Energy Mater . 6 , 1600811 (2016).

  • 40.

    Cheng, X. B. et al. Обзор межфазных границ твердого электролита на аноде из металлического лития. Adv. Sci. 3 , 1500213 (2016).

    Артикул Google ученый

  • 41.

    Линь, Д., Лю Ю. и Цуй Ю. Возрождение металлического литиевого анода для высокоэнергетических батарей. Nat. Нанотехнологии. 12 , 194–206 (2017).

    Артикул Google ученый

  • 42.

    Фонг Р., Фон Сакен У. и Дан Дж. Р. Исследования интеркаляции лития в углерод с использованием неводных электрохимических ячеек. J. Electrochem. Soc. 137 , 2009–2013 (1990).

    Артикул Google ученый

  • 43.

    Наджи, А., Ганбаджа, Дж., Гумберт, Б., Уиллманн, П., Бийо, Д. Электровосстановление графита в электролите из LiClO 4 -этиленкарбонат. определение характеристик пассивирующего слоя с помощью просвечивающей электронной микроскопии и инфракрасной спектроскопии с преобразованием Фурье. J. Источники энергии 63 , 33–39 (1996).

    Артикул Google ученый

  • 44.

    Новак, П., Йохо, Ф., Имхоф, Р., Паниц, Дж. К.& Хаас, О. Исследование на месте взаимодействия между графитом и растворами электролита. J. Источники энергии 81 , 212–216 (1999).

    Артикул Google ученый

  • 45.

    Сото, Ф. А., Мартинес де ла Хоз, Дж. М., Семинарио, Дж. М. и Балбуэна, П. Б. Моделирование межфазных явлений твердый электролит в кремниевых анодах. Curr. Мнение. Chem. Англ. 13 , 179–185 (2016).

    Артикул Google ученый

  • 46.

    Менг, Ю. С. и Арройо-де Домпабло, М. Э. Первые принципы проектирования вычислительных материалов для материалов аккумуляторов энергии в литий-ионных батареях. Energy Environ. Sci. 2 , 589–609 (2009).

    Артикул Google ученый

  • 47.

    Оуян К. и Чен Л. Физика материалов для литиевых вторичных батарей нового поколения: краткий обзор с точки зрения дизайна вычислительных материалов. Sci. China Phys.Мех. 56 , 2278–2292 (2013).

    Артикул Google ученый

  • 48.

    Франко А.А. Мультимасштабное моделирование и численное моделирование перезаряжаемых литий-ионных батарей: концепции, методы и проблемы. RSC Adv. 3 , 13027–13058 (2013).

    Артикул Google ученый

  • 49.

    Редди, В. П., Бланко, М. и Бугга, Р.Рецепторы анионов на основе бора в литий-ионных и металл-воздушных батареях. J. Источники энергии 247 , 813–820 (2014).

    Артикул Google ученый

  • 50.

    Shi, S. et al. Методы многомасштабных вычислений: их применение в исследованиях и разработках литий-ионных аккумуляторов. Подбородок. Phys. В 25 , 018212 (2016).

  • 51.

    Грациоли Д., Магри М. и Сальвадори А. Вычислительное моделирование литий-ионных батарей. Comput. Мех. 58 , 889–909 (2016).

    Артикул Google ученый

  • 52.

    Урбан, А., Сео, Д. Х. и Седер, Г. Вычислительное понимание литий-ионных аккумуляторов. NPJ Comput. Mater. 2 , 16002 (2016).

    Артикул Google ученый

  • 53.

    Гальвес-Аранда, Д. Э., Понсе, В. и Семинарио, Дж. М. Молекулярно-динамическое моделирование первого заряда литий-ионной нанобатареи с кремнием анодом. J. Mol. Модель. 23 , 120 (2017).

    Артикул Google ученый

  • 54.

    Балбуэна П. Б. в обзоре материалов и технологий электрохимического хранения. Vol. 1597, AIP Conference Proceedings (ред. Д. К. Мейер и Т. Лейзеганг) 82–97 (Американский институт физики, Нью-Йорк, 2014 г.).

  • 55.

    Ramos-Sanchez, G. et al. Расчетные исследования межфазных реакций на анодных материалах: начальные этапы формирования межфазного слоя твердый электролит. J. Electrochem. En. Конв. Stor. 13 , 031002 (2016).

    Артикул Google ученый

  • 56.

    Мартинес де ла Хоз, Дж. М., Сото, Ф. А. и Бальбуэна, П. Б. Влияние состава электролита на реакции SEI на кремниевых анодах литий-ионных аккумуляторов. J. Phys. Chem. С 119 , 7060–7068 (2015).

    Артикул Google ученый

  • 57.

    Камачо-Фореро, Л. Э., Смит, Т. В. и Бальбуэна, П. Б. Влияние высокой и низкой концентрации соли в электролитах на поверхности литий-металлических анодов. J. Phys. Chem. С 121 , 182–194 (2017).

    Артикул Google ученый

  • 58.

    Блинт, Р. Дж. Связывание простых и карбонильных атомов кислорода с ионом лития. J. Electrochem. Soc. 142 , 696–702 (1995).

    Артикул Google ученый

  • 59.

    Аурбах Д., Леви М. Д., Леви Э. и Шехтер А. Механизмы отказа и стабилизации графитовых электродов. J. Phys. Chem. B 101 , 2195–2206 (1997).

    Артикул Google ученый

  • 60.

    Ю., Дж., Балбуэна, П. Б., Будзиен, Дж. И Леунг, К. Статические и молекулярно-динамические исследования избыточных электронов в жидком этиленкарбонате на основе функциональных гибридных методов DFT. J. Electrochem. Soc. 158 , A400 – A410 (2011).

    Артикул Google ученый

  • 61.

    Xu, M. et al. Исследование и применение дифтор (оксалат) бората лития (LiDFOB) в качестве добавки для повышения термической стабильности электролита для литий-ионных аккумуляторов. J. Источники энергии 196 , 6794–6801 (2011).

    Артикул Google ученый

  • 62.

    Леунг К. и Будзиен Дж. Л. Ab initio молекулярно-динамическое моделирование начальных стадий межфазного образования твердого электролита на графитовых анодах литий-ионных аккумуляторов. Phys. Chem. Chem. Phys. 12 , 6583–6586 (2010).

    Артикул Google ученый

  • 63.

    Бедров Д., Смит Г. Д. и ван Дуин А. С. Т. Реакции однократно восстановленного этиленкарбоната в электролитах литиевых батарей: исследование моделирования молекулярной динамики с использованием ReaxFF. J. Phys. Chem. A. 116 , 2978–2985 (2012).

    Артикул Google ученый

  • 64.

    Мартинес де ла Хоз, Дж. М., Леунг, К. и Балбуэна, П. Б. Механизмы восстановления этиленкарбоната на кремниевых анодах литий-ионных батарей: влияние степени литиирования и природы открытой поверхности. ACS Appl. Mater. Интерфейсы 5 , 13457–13465 (2013).

  • 65.

    Леунг, К. Двухэлектронное восстановление этиленкарбоната: квантовая химия заново исследует механизмы. Chem. Phys. Lett. 568-569 , 1–8 (2013).

    Артикул Google ученый

  • 66.

    Леунг К. и Тенни К. М. Прогнозирование первых принципов зависимости напряжения межфазных процессов электролит / электролит в литий-ионных батареях. J. Phys. Chem. С. 117 , 24224–24235 (2013).

    Артикул Google ученый

  • 67.

    Окамото Ю. Расчеты ab initio механизма термического разложения электролитов на основе LiPF6 для литий-ионных аккумуляторов. J. Electrochem. Soc. 160 , A404 – A409 (2013).

    Артикул Google ученый

  • 68.

    Леунг, К. Прогнозирование зависимости напряжения межфазных электрохимических процессов на краевых плоскостях из интеркалированного литием графита. Phys. Chem. Chem. Phys. 17 , 1637–1643 (2015).

    Артикул Google ученый

  • 69.

    Islam, M. M. & van Duin, A.C. T. Восстановительные реакции разложения этиленкарбоната путем явного переноса электрона от лития: исследование молекулярной динамики eReaxFF. J. Phys. Chem. С. 120 , 27128–27134 (2016).

    Артикул Google ученый

  • 70.

    Hammer, N. I. et al. Дипольные анионы высокополярных молекул: этиленкарбоната и виниленкарбоната. J. Chem. Phys. 120 , 685–690 (2004).

    Артикул Google ученый

  • 71.

    Jin, Y. et al. Выявление структурной основы повышенной стабильности межфазной границы твердого электролита, образованной на кремнии с добавкой фторэтиленкарбоната. J. Am. Chem. Soc. 139 , 14992–15004 (2017).

    Артикул Google ученый

  • 72.

    Onuki, M. et al. Идентификация источника выделяющегося газа в литий-ионных батареях с использованием (13) C-меченных растворителей. J. Electrochem. Soc. 155 , A794 – A797 (2008).

    Артикул Google ученый

  • 73.

    Шкроб И. А., Чжу Ю., Марин Т. В. и Абрахам Д. Уменьшение содержания карбонатных электролитов и образование поверхности раздела твердый электролит (SEI) в литий-ионных батареях. 1. Спектроскопические наблюдения радикальных интермедиатов, образующихся при одноэлектронном восстановлении карбонатов. J. Phys. Chem. C 117 , 19255–19269 (2013).

    Артикул Google ученый

  • 74.

    Тасаки, К. Разложение растворителей и физические свойства соединений разложения в электролитах литий-ионных аккумуляторов изучены с помощью расчетов DFT и моделирования молекулярной динамики. J. Phys. Chem. B 109 , 2920–2933 (2005).

    Артикул Google ученый

  • 75.

    Бородин, О. и Смит, Г. Д. Квантовая химия и моделирование молекулярной динамики электролитов диметилкарбонат: этиленкарбонат, легированных LiPF 6 . J. Phys. Chem. Б. 113 , 1763–1776 (2009).

    Артикул Google ученый

  • 76.

    Бородин, О. Развитие поляризуемых силовых полей и молекулярно-динамическое моделирование ионных жидкостей. J. Phys. Chem. B. 113 , 11463–11478 (2009).

    Артикул Google ученый

  • 77.

    Seo, D. M. et al. Сольватация электролитов и ионная ассоциация I.Смеси ацетонитрил-литиевых солей: промежуточные и высокоассоциированные соли. J. Electrochem. Soc. 159 , A553 – A565 (2012).

    Артикул Google ученый

  • 78.

    Ким, С. П., ван Дуин, А. К. Т. и Шеной, В. Б. Влияние электролитов на структуру и эволюцию межфазной границы твердого электролита (SEI) в литий-ионных батареях: исследование молекулярной динамики. J. Источники энергии 196 , 8590–8597 (2011).

    Артикул Google ученый

  • 79.

    Бородин, О., Ольгин, М., Спир, К. Э., Лейтер, К. В. и Кнап, Дж. На пути к высокопроизводительному скринингу электрохимической стабильности электролитов аккумуляторных батарей. Нанотехнологии 26 , 354003 (2015).

    Артикул Google ученый

  • 80.

    Бородин О. и др. Проблемы, связанные с проверкой электрохимической стабильности электролитов литиевых батарей на основе квантовой химии. ECS Trans. 69 , 113–123 (2015).

    Артикул Google ученый

  • 81.

    Кэмпион, К. Л., Ли, У. Т. и Лухт, Б. Л. Термическое разложение электролитов на основе LiPF 6 для литий-ионных батарей. J. Electrochem. Soc. 152 , A2327 – A2334 (2005).

    Артикул Google ученый

  • 82.

    Аурбах, Д., Мошкович, М., Коэн, Й. и Шехтер, А. Изучение образования поверхностной пленки на электродах из благородных металлов в растворах алкилкарбонатов / солей лития с одновременным использованием in situ AFM, EQCM, FTIR и EIS. Langmuir 15 , 2947–2960 (1999).

    Артикул Google ученый

  • 83.

    Леунг, К. Моделирование электронной структуры электрохимических реакций на границах раздела электрод / электролит в литий-ионных батареях. J. Phys. Chem. C 117 , 1539–1547 (2013).

    Артикул Google ученый

  • 84.

    Ван, Ю. Х. и Балбуэна, П. Б. Теоретические исследования совместной сольватации иона лития и восстановительного разложения растворителем в бинарных смесях алифатических карбонатов. Внутр. J. Quantum Chem. 102 , 724–733 (2005).

    Артикул Google ученый

  • 85.

    Тасаки К., Канда К., Накамура С. и Уэ М. Разложение LiPF 6 и стабильность PF 5 в электролитах литий-ионных аккумуляторов — теория функционала плотности и исследования молекулярной динамики. J. Electrochem. Soc. 150 , A1628 – A1636 (2003).

    Артикул Google ученый

  • 86.

    Kim, H. et al. Формирование на месте защитных покрытий на серных катодах литиевых батарей с использованием органических электролитов на основе LiFSI. Adv. Energy Mater. 5 , 1401792 (2015).

    Артикул Google ученый

  • 87.

    Suo, L. et al. Усовершенствованная высоковольтная литий-ионная аккумуляторная батарея на водной основе с использованием электролита «вода в бисоле». Angew. Chem. Int. Эд. 55 , 7136–7141 (2016).

    Артикул Google ученый

  • 88.

    Suo, L. et al. Как образуется межфазная фаза твердого электролита в водных электролитах. J. Am. Chem. Soc. 139 , 18670–18680 (2017).

    Артикул Google ученый

  • 89.

    Кресче, А.В. У., Бородин, О. и Сюй, К. Сопоставление структуры сольватной оболочки Li + с межфазной химией на графите. J. Phys. Chem. С 116 , 26111–26117 (2012).

    Артикул Google ученый

  • 90.

    Owejan, J.Э., Оведжан, Дж. П., ДеКалуве, С. К. и Дура, Дж. А. Межфазная фаза твердого электролита в литий-ионных батареях: развивающиеся структуры, измеренные на месте с помощью нейтронной рефлектометрии. Chem. Mater. 24 , 2133–2140 (2012).

    Артикул Google ученый

  • 91.

    Ватаману, Дж., Бородин, О. и Смит, Г. Д. Исследования с помощью моделирования молекулярной динамики структуры смеси карбонат / LiPF 6 Электролит вблизи поверхности графита как функция электродного потенциала. J. Phys. Chem. С 116 , 1114–1121 (2012).

    Артикул Google ученый

  • 92.

    Йорн, Р., Кумар, Р., Абрахам, Д. П. и Вот, Г. А. Атомистическое моделирование границы раздела электрод-электролит в литий-ионных системах накопления энергии: структурирование электролита. J. Phys. Chem. С 117 , 3747–3761 (2013).

    Артикул Google ученый

  • 93.

    Бойер, М. Дж., Вильчаускас, Л. и Хванг, Г. С. Структура и перенос ионов Li + в смешанном электролите карбонат / LiPF 6 вблизи поверхностей графитовых электродов: исследование молекулярной динамики. Phys. Chem. Chem. Phys. 18 , 27868–27876 (2016).

    Артикул Google ученый

  • 94.

    Понсе, В., Гальвес-Аранда, Д. Э. и Семинарио, Дж. М. Анализ литий-ионной нанобатареи с графитовым анодом с использованием моделирования молекулярной динамики. J. Phys. Chem. С. 121 , 12959–12971 (2017).

    Артикул Google ученый

  • 95.

    Ватаману, Д., Бедров, Д. и Бородин, О. О применении методов моделирования постоянного электродного потенциала в атомистическом моделировании двойных электрических слоев. Мол. Simula. 43 , 838–849 (2017).

    Артикул Google ученый

  • 96.

    Ганеш П., Кент П. Р. и Цзян Д.-Э. Межфазное образование твердого электролита и восстановление электролита на графитовых анодах литий-ионных аккумуляторов: выводы из первых принципов молекулярной динамики. J. Phys. Chem. С. 116 , 24476–24481 (2012).

    Артикул Google ученый

  • 97.

    Эбади, М., Бранделл, Д. и Арауджо, К. М. Разложение электролита на литий-металлических поверхностях из теории первых принципов. J. Chem. Phys. 145 , 204701 (2016).

    Артикул Google ученый

  • 98.

    Ма, Y. & Balbuena, P. B. Исследование DFT механизмов восстановления этиленкарбоната и фторэтиленкарбоната на кластерах Si, адсорбированных Li + . J. Electrochem. Soc. 161 , E3097 – E3109 (2014).

    Артикул Google ученый

  • 99.

    Морадабади А., Бахтиари М. и Кагазчи П. Влияние состава анода на межфазное образование твердого электролита. Электрохим. Acta 213 , 8–13 (2016).

    Артикул Google ученый

  • 100.

    Камачо-Фореро, Л. Э., Смит, Т. У., Бертолини, С. и Балбуэна, П. Б. Реакционная способность на литий-металлической поверхности анода литий-серных батарей. J. Phys. Chem. С 119 , 26828–26839 (2015).

    Артикул Google ученый

  • 101.

    Лю, З., Бертолини, С., Балбуэна, П. Б. и Мукерджи, П. П. Формирование пленки Li2S на поверхности литиевого анода Li – S батарей. ACS Appl. Mater. Интерфейсы 8 , 4700–4708 (2016).

    Артикул Google ученый

  • 102.

    Nandasiri, M. I. et al. Химическая визуализация in situ эволюции межфазного слоя твердого электролита в Li – S батареях. Chem. Mater. 29 , 4728–4737 (2017).

    Артикул Google ученый

  • 103.

    Ханкинс К., Сото Ф. А. и Балбуэна П. Б. Анализ интеркаляции Li и образования SEI на нанокластерах LiSi. J. Electrochem. Soc. 164 , E3457 – E3464 (2017).

    Артикул Google ученый

  • 104.

    Леунг К. и Линхеер А.Как падения напряжения проявляются конфигурациями ионов лития на границах раздела и в тонких пленках на электродах батареи. J. Phys. Chem. С 119 , 10234–10246 (2015).

    Артикул Google ученый

  • 105.

    Метекар, Р. Н., Нортроп, П. В. К., Чен, К., Браатц, Р. Д. и Субраманиан, В. Р. Кинетическое моделирование методом Монте-Карло неоднородности поверхности в графитовых анодах для литий-ионных батарей: формирование пассивного слоя. J. Electrochem. Soc. 158 , A363 – A370 (2011).

    Артикул Google ученый

  • 106.

    Ван, Ю. X. и Балбуэна, П. Б. Ассоциации алкилдикарбонатов лития через взаимодействия O ··· Li ··· O. J. Phys. Chem. A 106 , 9582–9594 (2002).

    Артикул Google ученый

  • 107.

    Уширогата К., Содеяма К., Футера, З., Татеяма, Ю. и Окуно, Ю. Механизм прибрежной агрегации продуктов разложения электролита для объяснения межфазного образования твердого электролита. J. Electrochem. Soc. 162 , A2670 – A2678 (2015).

    Артикул Google ученый

  • 108.

    Takenaka, N., Suzuki, Y., Sakai, H. & Nagaoka, M. О электролитозависимом образовании межфазной пленки твердого электролита в литий-ионных батареях: высокая чувствительность к небольшим структурным различиям молекул электролита . J. Phys. Chem. С 118 , 10874–10882 (2014).

    Артикул Google ученый

  • 109.

    Хао, Ф., Лю, З., Балбуэна, П. Б. и Мукерджи, П. П. Мезомасштабное объяснение образования межфазного слоя твердого электролита в аноде литий-ионной батареи. J. Phys. Chem. С 121 , 26233–26240 (2017).

    Артикул Google ученый

  • 110.

    Balbuena, P. B. & Wang, Y. Литий-ионные батареи: твердоэлектролитная межфазная поверхность . (World Scientific, Сингапур, 2004 г.).

  • 111.

    Ван, Й. Х. и Балбуэна, П. Б. Теоретические сведения о восстановительном разложении пропиленкарбоната и виниленкарбоната: исследования теории функционала плотности. J. Phys. Chem. B 106 , 4486–4495 (2002).

    Артикул Google ученый

  • 112.

    Мухопадхьяй, А., Токранов, А., Сяо, X. и Шелдон, Б. В. Развитие напряжений из-за поверхностных процессов в графитовых электродах для литий-ионных аккумуляторов: первый отчет. Электрохим. Acta 66 , 28–37 (2012).

    Артикул Google ученый

  • 113.

    Тасаки, К., Голдберг, А. и Винтер, М. О различиях в циклическом поведении литий-ионных аккумуляторных элементов между электролитами на основе этиленкарбоната и пропиленкарбоната. Электрохим. Acta 56 , 10424–10435 (2011).

    Артикул Google ученый

  • 114.

    Тасаки, К., Голдберг, А., Лян, Ж.-Дж. И Уинтер, М. в Неводные электролиты для литиевых батарей . Vol. 33, Транзакции ECS (ред. Б. Лучт, В. А. Хендерсон, Т. Р. Джоу и М. У.) 59–69 (Электрохимическое общество, Нью-Джерси, 2011).

  • 115.

    Ли, О. С. и Кариньяно, М.A. Отслоение графена с интеркалированным электролитом: исследование с помощью моделирования молекулярной динамики. J. Phys. Chem. C 119 , 19415–19422 (2015).

    Артикул Google ученый

  • 116.

    Guk, H., Kim, D., Choi, S.-H., Chung, DH & Han, SS Термостабильный искусственный интерфейсный слой твердого электролита, ковалентно связанный с графитом для литий-ионной батареи: моделирование молекулярной динамики . J. Electrochem. Soc. 163 , A917 – A922 (2016).

    Артикул Google ученый

  • 117.

    Тасаки, К. Исследование функциональной теории плотности структурных и энергетических характеристик соединений интеркаляции графита. J. Phys. Chem. С 118 , 1443–1450 (2014).

    Артикул Google ученый

  • 118.

    Бхатт, М. Д. и О’Дуайер, К. Роль карбонатных и сульфитных добавок в электролитах на основе пропиленкарбоната в формировании слоев SEI на анодах графитовых литий-ионных аккумуляторов. J. Electrochem. Soc. 161 , A1415 – A1421 (2014).

    Артикул Google ученый

  • 119.

    Уширогата, К., Содеяма, К., Окуно, Ю. и Татеяма, Ю. Аддитивный эффект на восстановительное разложение и связывание растворителя на основе карбоната с образованием межфазной фазы твердого электролита в литий-ионной батарее. J. Am. Chem. Soc. 135 , 11967–11974 (2013).

    Артикул Google ученый

  • 120.

    Leung, K. et al. Моделирование электрохимического разложения фторэтиленкарбоната на поверхности кремниевых анодов литий-ионных аккумуляторов. J. Electrochem. Soc. 161 , A213 – A221 (2014).

    Артикул Google ученый

  • 121.

    Мартинес де ла Хоз, Дж. М. и Балбуэна, П. Б. Механизмы восстановления присадок на кремниевых анодах литий-ионных аккумуляторов. Phys. Chem. Chem. Phys. 16 , 17091–17098 (2014).

    Артикул Google ученый

  • 122.

    МакАртур, М. А., Трасслер, С. и Дан, Дж. Р. Исследования на месте роста слоя SEI на материалах электродов для литий-ионных аккумуляторов с использованием спектроскопической эллипсометрии. J. Electrochem. Soc. 159 , A198 – A207 (2012).

    Артикул Google ученый

  • 123.

    Янг, З., Гевирт, А. А. и Трэхи, Л.Исследование влияния фторэтиленкарбоната на электроды литий-ионных аккумуляторов на основе олова. ACS Appl. Mater. Интерфейсы 7, (6557–6566 (2015).

    Google ученый

  • 124.

    Xing, L., Li, W., Xu, M., Li, T. & Zhou, L. Восстановительный механизм этиленсульфита как твердого электролита, образующего межфазную пленку, для литий-ионных аккумуляторов. J. Источники энергии 196 , 7044–7047 (2011).

    Артикул Google ученый

  • 125.

    Sun, Y. & Wang, Y. Новые взгляды на электровосстановление сульфита этилена в качестве добавки к электролиту для облегчения образования межфазной границы твердого электролита в литий-ионных батареях. Phys. Chem. Chem. Phys. 19 , 6861–6870 (2017).

    Артикул Google ученый

  • 126.

    Вродниг, Г. Х., Безенхард, Дж. О. и Винтер, М. Сульфит этилена в качестве добавки к электролиту для литий-ионных элементов с графитовыми анодами. J. Electrochem. Soc. 146 , 470–472 (1999).

    Артикул Google ученый

  • 127.

    Leggesse, E. G. & Jiang, J.-C. Теоретическое исследование восстановительного разложения сульфита этилена: пленкообразующей добавки к электролиту в литий-ионных батареях. J. Phys. Chem. А. 116 , 11025–11033 (2012).

    Артикул Google ученый

  • 128.

    Xu, M. Q. et al. Влияние бутилсультона на характеристики литий-ионной батареи и границу раздела графитового электрода. Acta Phys. Чим. Грех. 22 , 335–340 (2006).

    Артикул Google ученый

  • 129.

    Chen, R. et al. Бутиленсульфит как пленкообразующая добавка к электролитам на основе пропиленкарбоната для литий-ионных аккумуляторов. J. Источники энергии 172 , 395–403 (2007).

    Артикул Google ученый

  • 130.

    Xu, M. Q., Li, W. S., Zuo, X. X., Liu, J. S. & Xu, X. Повышение эффективности литий-ионной батареи с использованием ПК в качестве компонента растворителя и BS в качестве добавки, формирующей SEI. J. Источники энергии 174 , 705–710 (2007).

    Артикул Google ученый

  • 131.

    Xing, LD, Wang, CY, Xu, MQ, Li, WS & Cai, ZP Теоретическое исследование механизма восстановления 1,3-бензодиоксол-2-она для образования границы раздела твердых электролитов на аноде литий-ионный аккумулятор. J. Источники энергии 189 , 689–692 (2009).

    Артикул Google ученый

  • 132.

    Селф, Дж., Холл, Д. С., Мадек, Л. и Дан, Дж. Р. Роль проп-1-ен-1,3-сультона как добавки в литий-ионных элементах. J. Источники энергии 298 , 369–378 (2015).

    Артикул Google ученый

  • 133.

    Leggesse, E. G. & Jiang, J.-C. Теоретическое исследование восстановительного разложения 1,3-пропансультона: SEI-образующая добавка в литий-ионных батареях. RSC Adv. 2 , 5439–5446 (2012).

    Артикул Google ученый

  • 134.

    Jung, H. M. et al. Фторпропановый сультон в качестве добавки, образующей SEI, превосходит виниленкарбонат. J. Mater. Chem. A 1 , 11975–11981 (2013).

    Артикул Google ученый

  • 135.

    Ding, Z., Li, X., Wei, T., Yin, Z. & Li, X. Улучшенная совместимость графитового анода для литий-ионной батареи с использованием сложных эфиров серной кислоты. Электрохим. Acta 196 , 622–628 (2016).

    Артикул Google ученый

  • 136.

    Wang, B. et al. Влияние 3,5-бис (трифторметил) бензолбороновой кислоты в качестве добавки на электрохимические характеристики электролитов на основе пропиленкарбоната для литий-ионных аккумуляторов. Электрохим. Acta 54 , 816–820 (2008).

    Артикул Google ученый

  • 137.

    Xu, M., Zhou, L., Xing, L., Li, W. & Lucht, BL. Экспериментальные и теоретические исследования 4,5-диметил-1,3-диоксол-2-она в твердом состоянии. Добавка, образующая интерфейс электролита для литий-ионных аккумуляторов. Электрохим. Acta 55 , 6743–6748 (2010).

    Артикул Google ученый

  • 138.

    Xu, M. et al. Экспериментальные и теоретические исследования диметилацетамида (DMAc) как добавки, стабилизирующей электролит для литий-ионных аккумуляторов. J. Phys. Chem. С 115 , 6085–6094 (2011).

    Артикул Google ученый

  • 139.

    Hall, D. S. et al. Межфазное образование поверхностных электролитов в литий-ионных элементах, содержащих добавки пиридинового аддукта. J. Electrochem. Soc. 163 , A773 – A780 (2016).

    Артикул Google ученый

  • 140.

    Forestier, C. et al. Легкое восстановление псевдокарбонатов: продвижение межфазных границ твердых электролитов с дицианокетеновыми алкиленовыми ацеталями в литий-ионных батареях. J. Источники энергии 303 , 1–9 (2016).

    Артикул Google ученый

  • 141.

    Forestier, C. et al. Сравнительное исследование межфазных границ твердых электролитов, образованных добавками к электролиту винилэтиленкарбоната и дицианокетена-винилэтиленацетала. J. Источники энергии 345 , 212–220 (2017).

    Артикул Google ученый

  • 142.

    Лу З., Янг Л. и Го Ю. Термическое поведение и кинетика разложения шести солей электролитов с помощью термического анализа. J. Источники энергии 156 , 555–559 (2006).

    Артикул Google ученый

  • 143.

    Тасаки, К., Канда, К., Кобаяси, Т., Накамура, С. и Уэ, М. Теоретические исследования восстановительного разложения растворителей и добавок для литий-ионных аккумуляторов вблизи литиевых анодов. J. Electrochem. Soc. 153 , A2192 – A2197 (2006).

    Артикул Google ученый

  • 144.

    Ue, M., Murakami, A. & Nakamura, S. Анодная стабильность нескольких анионов исследована ab initio теориями молекулярных орбиталей и функционала плотности. J. Electrochem.Soc. 149 , A1572 – A1577 (2002).

    Артикул Google ученый

  • 145.

    Хан, Й.-К., Юнг, Дж., Ю, С. и Ли, Х. Понимание характеристик высоковольтных добавок в литий-ионных батареях: эффекты растворителя. J. Источники энергии 187 , 581–585 (2009).

    Артикул Google ученый

  • 146.

    Холлз, М. Д. и Тасаки, К.Высокопроизводительная квантовая химия и виртуальный скрининг добавок к электролиту литий-ионных аккумуляторов. J. Источники энергии 195 , 1472–1478 (2010).

    Артикул Google ученый

  • 147.

    Парк, М. Х., Ли, Ю. С., Ли, Х. и Хан, Ю.-К. Низкое сродство связывания Li + : важная характеристика добавок, образующих межфазные границы твердых электролитов в литий-ионных батареях. J. Источники энергии 196 , 5109–5114 (2011).

    Артикул Google ученый

  • 148.

    Янковски, П., Вичорек, В. и Йоханссон, П. SEI-образующие добавки к электролиту для литий-ионных батарей: разработка и тестирование вычислительных подходов. J. Mol. Модель. 23 , 6–6 (2017).

    Артикул Google ученый

  • 149.

    Хуш Т. и Корт М. Как оценить межфазные характеристики твердого электролита при скрининге материалов электролита. Phys. Chem. Chem. Phys. 17 , 22799–22808 (2015).

    Артикул Google ученый

  • 150.

    Кнап, Дж., Спир, К., Лейтер, К., Беккер, Р. и Пауэлл, Д. Вычислительная структура для масштабирования в многомасштабном моделировании. Внутр. J. Numer. Meth. Англ. 108 , 1649–1666 (2016).

    Артикул Google ученый

  • 151.

    Йорн Р. и Кумар Р. Сломая чашу весов: моделирование электролита в металл-ионных батареях. Электрохим. Soc. Интерфейс 26 , 55–59 (2017).

    Артикул Google ученый

  • 152.

    Qu, X.H. et al. Проект электролитного генома: подход с использованием больших данных в открытии материалов для аккумуляторов. Comput. Mater. Sci. 103 , 56–67 (2015).

    Артикул Google ученый

  • 153.

    Wang, Y., Zhang, W., Chen, L., Shi, S. & Liu, J. Количественное описание взаимосвязей структура-свойство материалов литий-ионных аккумуляторов для высокопроизводительных вычислений. Sci. Technol. Adv. Мат. 18 , 134–146 (2017).

    Артикул Google ученый

  • 154.

    Джордж С. М. Осаждение атомных слоев: обзор. Chem. Ред. 110 , 111–131 (2010).

    Артикул Google ученый

  • 155.

    Райли, Л. А., Кавана, А. С., Джордж, С. М., Ли, С.-Х. И Диллон, А.С. Улучшенная механическая целостность композитных электродов с ALD-покрытием для литий-ионных аккумуляторов. Электрохим. Solid State Lett. 14 , A29 – A31 (2011).

    Артикул Google ученый

  • 156.

    Линь, Ю.-Х. и другие. Связь необратимой потери емкости литий-ионных аккумуляторов с электронными изолирующими свойствами твердоэлектролитных межфазных компонентов (SEI). J. Источники энергии 309 , 221–230 (2016).

    Артикул Google ученый

  • 157.

    Leung, K. et al. Использование осаждения атомных слоев для предотвращения разложения растворителя в литий-ионных батареях: моделирование из первых принципов и экспериментальные исследования. J. Am. Chem. Soc. 133 , 14741–14754 (2011).

    Артикул Google ученый

  • 158.

    Сото, Ф. А., Ма, Й., Мартинес де ла Хоз, Дж. М., Семинарио, Дж. М. и Балбуэна, П. Б. Механизмы образования и роста межфазных слоев твердого электролита в аккумуляторных батареях. Chem. Mater. 27 , 7990–8000 (2015).

    Артикул Google ученый

  • 159.

    Liu, Z. et al. Межфазное исследование межфазной границы твердого электролита на металлическом литиевом аноде: значение для роста литий-дендритов. J. Electrochem.Soc. 163 , A592 – A598 (2016).

    Артикул Google ученый

  • 160.

    Леунг, К. и Юнгйоханн, К. Л. Пространственные неоднородности и начало нарушения пассивирования на границах раздела литиевый анод. J. Phys. Chem. C 121 , 20188–20196 (2017).

    Артикул Google ученый

  • 161.

    Бенитес, Л., Кристанчо, Д., Семинарио, Дж.М., Мартинес де ла Хоз, Дж. М. и Бальбуэна, П. Б. Перенос электронов через межфазные слои твердого электролита, сформированные на кремниевых анодах литий-ионных аккумуляторов. Электрохим. Acta 140 , 250–257 (2014).

    Артикул Google ученый

  • 162.

    Бенитес, Л. и Семинарио, Дж. М. Транспорт электронов и восстановление электролита на границе раздела твердых электролитов перезаряжаемых литий-ионных батарей с кремниевыми анодами. J. Phys. Chem. С 120 , 17978–17988 (2016).

    Артикул Google ученый

  • 163.

    Li, D. et al. Моделирование образования SEI на графитовых электродах в аккумуляторах LiFePO 4 . J. Electrochem. Soc. 162 , A858 – A869 (2015).

    Артикул Google ученый

  • 164.

    Joho, F. et al. Связь между свойствами поверхности, структурой пор и потерей заряда в первом цикле графита как отрицательного электрода в литий-ионных батареях. J. Источники энергии 97 , 78–82 (2001).

    Артикул Google ученый

  • 165.

    Feng, T. et al. Недорогой слой покрытия Al 2 O 3 в виде предварительно отформованного SEI на порошке природного графита для повышения кулоновской эффективности и стабильности литий-ионных аккумуляторов при высокоскоростном циклировании. ACS Appl. Mater. Интерфейсы 8 , 6512–6519 (2016).

    Артикул Google ученый

  • 166.

    Рамос-Санчес, Г., Чен, Г., Арутюнян, А. Р., Бальбуэна, П. Б. Теоретические и экспериментальные исследования емкости накопления лития в пучках однослойных углеродных нанотрубок. RSC Adv. 6 , 27260–27266 (2016).

    Артикул Google ученый

  • 167.

    Nie, M. et al. Литий-ионная батарея графитовая граница раздела фаз с твердым электролитом обнаружена методами микроскопии и спектроскопии J. Phys. Chem. C. 117 , 1257–1267 (2013).

    Артикул Google ученый

  • 168.

    Гарсиа-Ластра, Дж. М., Мюрдал, Дж. С.Г., Кристенсен, Р., Тайгесен, К.С. и Вегге, Т. Исследование поляронной проводимости в Li 2 O 2 и Li 2 методом DFT плюс U CO 3 : последствия для воздушно-литиевых батарей. J. Phys. Chem. С. 117 , 5568–5577 (2013).

    Артикул Google ученый

  • 169.

    Ши, С., Ци, Й., Ли, Х. и Гектор, Л. Дж. Младший. Термодинамика дефектов и механизмы диффузии в Li 2 CO 3 и последствия для межфазной границы твердого электролита в литий-ионных батареях. J. Phys. Chem. С. 117 , 8579–8593 (2013).

    Артикул Google ученый

  • 170.

    Бумм, Л. А., Арнольд, Дж. Дж., Данбар, Т. Д., Аллара, Д. Л. и Вайс, П. С. Перенос электрона через органические молекулы. J. Phys. Chem. В 103 , 8122–8127 (1999).

    Артикул Google ученый

  • 171.

    Ямада Ю., Ирияма Ю., Абэ Т. и Огуми З. Кинетика переноса ионов лития на границе раздела между графитом и жидкими электролитами: влияние растворителя и поверхностной пленки. Langmuir 25 , 12766–12770 (2009).

    Артикул Google ученый

  • 172.

    Xu, K., von Cresce, A. & Lee, U. Дифференциальный вклад в барьер «ионного переноса» от межфазного сопротивления и десольватации Li + на границе электролит / графит. Langmuir 26 , 11538–11543 (2010).

    Артикул Google ученый

  • 173.

    Чен, Ю. К., Оуян, К. Ю., Сонг, Л. Дж. И Сан, З. Л. Электрическая динамика и динамика ионов лития в трех основных компонентах межфазной границы твердого электролита из исследования теории функционала плотности. J. Phys. Chem. С 115 , 7044–7049 (2011).

    Артикул Google ученый

  • 174.

    Иддир, Х. и Кертисс, Л. А. Механизмы диффузии ионов лития в объемных моноклинных кристаллах Li 2 CO 3 по результатам исследований функционала плотности. J. Phys. Chem. С 114 , 20903–20906 (2010).

    Артикул Google ученый

  • 175.

    Бородин, О., Смит, Г. Д., Фан, П. Молекулярно-динамическое моделирование алкилкарбонатов лития. J. Phys. Chem. B 110 , 22773–22779 (2006).

    Артикул Google ученый

  • 176.

    Бородин О., Чжуанг, Г. Р. В., Росс, П. Н. и Сюй, К. Моделирование молекулярной динамики и экспериментальное исследование переноса ионов лития в дикарбонате этилен-дилития. J. Phys. Chem. С. 117 , 7433–7444 (2013).

    Артикул Google ученый

  • 177.

    Бедров Д., Бородин О. и Хупер Дж. Б. Ли + Транспортные и механические свойства модельных межфазных фаз твердых электролитов (SEI): понимание атомистического молекулярно-динамического моделирования. J. Phys. Chem. С. 121 , 16098–16109 (2017).

    Артикул Google ученый

  • 178.

    Бородин, О.в Электролиты для литиевых и литий-ионных батарей (ред. Т. Р. Джоу, К. Сю, О. Бородин и М. У.) 371-401 (Спрингер, Нью-Йорк, 2014).

  • 179.

    Pan, J., Cheng, Y.-T. & Qi, Y. Общий метод прогнозирования зависимой от напряжения ионной проводимости в твердом электролитном покрытии электродов. Phys. Ред. B 91 , 134116 (2015).

    Артикул Google ученый

  • 180.

    Бенитес, Л.И Семинарио, Дж. М. Коэффициент диффузии ионов через межфазную фазу твердого электролита в литий-ионных батареях. J. Electrochem. Soc. 164 , E3159 – E3170 (2017).

    Артикул Google ученый

  • 181.

    Йилдирим, Х., Киначи, А., Чан, М. К. Й. и Грили, Дж. П. Анализ из первых принципов термодинамики дефектов и ионного транспорта в неорганических соединениях SEI: LiF и NaF. ACS Appl. Mater. Интерфейсы 7 , 18985–18996 (2015).

    Артикул Google ученый

  • 182.

    Soto, F. A. et al. Настройка межфазной границы твердого электролита для селективного хранения Li- и Na-Ion в твердом углероде. Adv. Mater . 29 , 1606860 (2017).

  • 183.

    Фан, Л., Чжуан, Х. Л., Гао, Л., Лу, Ю. и Арчер, Л. А. Регулирование осаждения лития на границах раздела искусственных твердых электролитов. J. Mater. Chem. А 5 , 3483–3492 (2017).

    Артикул Google ученый

  • 184.

    Liang, C. C. Проводящие характеристики твердых электролитов иодид лития-оксид алюминия. J. Electrochem. Soc. 120 , 1289–1292 (1973).

    Артикул Google ученый

  • 185.

    Пан, Дж., Чжан, К., Сяо, X., Ченг, Ю.-Т. & Qi, Y. Дизайн наноструктурированных гетерогенных твердых ионных покрытий через многомасштабную модель дефекта. ACS Appl. Mater. Интерфейсы 8 , 5687–5693 (2016).

    Артикул Google ученый

  • 186.

    Бородин О. и Бедров Д. Межфазная структура и динамика компонентов SEI алкилдикарбоната лития в контакте с электролитом литиевой батареи. J. Phys. Chem. С 118 , 18362–18371 (2014).

    Артикул Google ученый

  • 187.

    Shang, S.-L. и другие. Динамика решетки, термодинамика и упругие свойства моноклинного Li 2 CO 3 из теории функционала плотности. Acta Mater. 60 , 5204–5216 (2012).

    Артикул Google ученый

  • 188.

    Shin, H., Park, J., Han, S., Sastry, AM & Lu, W. Компонентная / структурно-зависимая эластичность межфазного слоя твердого электролита в литий-ионных батареях: экспериментальные и расчетные исследования. J. Источники энергии 277 , 169–179 (2015).

    Артикул Google ученый

  • 189.

    Зверева Е., Калисте Д. и Почет П. Идентификация межфазной границы твердого электролита на графите. Карбон Нью-Йорк 111 , 789–795 (2017).

    Артикул Google ученый

  • 190.

    Сото, Ф. А. и Бальбуэна, П. Б. Выяснение взаимодействий олигомер-поверхность и олигомер-олигомер на литированной поверхности кремния. Электрохим. Acta 220 , 312–321 (2016).

    Артикул Google ученый

  • 191.

    Verbrugge, M. W., Qi, Y., Baker, D. R., Cheng, Y.-T. Напряжения, вызванные диффузией, в структурах сердцевина – оболочка и последствия для надежной конструкции электродов и выбора материалов (Wiley-VCH Verlag, Weinheim, 2015).

  • 192.

    Тасаки К. и Харрис С. Дж. Расчетное исследование растворимости солей лития, образующихся на отрицательном электроде литиево-ионной батареи, в органических растворителях. J. Phys. Chem. С. 114 , 8076–8083 (2010).

    Артикул Google ученый

  • 193.

    Леунг К., Сото Ф., Ханкинс К., Балбуэна П. Б. и Харрисон К. Л. Стабильность межфазных компонентов твердого электролита на поверхности металлического лития и реактивного анодного материала. J. Phys. Chem. С 120 , 6302–6313 (2016).

    Артикул Google ученый

  • 194.

    Xu, K. et al. Синтез и характеристика алкилмоно- и дикарбонатов лития как компонентов поверхностных пленок в Li-lon батареях. J. Phys. Chem. В 110 , 7708–7719 (2006).

    Артикул Google ученый

  • 195.

    Окуно Ю., Уширогата К., Содеяма К. и Татеяма Ю. Разложение фторэтиленкарбонатной добавки и склеивающее действие продуктов фторида лития на межфазную фазу твердого электролита: исследование ab initio. Phys. Chem. Chem. Phys. 18 , 8643–8653 (2016).

    Артикул Google ученый

  • 196.

    Чжан, К. и Кагазчи, П. Зависимость переноса ионов от электроотрицательности составляющих атомов в ионных кристаллах. Chemphyschem 18 , 965–969 (2017).

    Артикул Google ученый

  • 197.

    Леунг К. Моделирование из первых принципов миграции Mn (II), описанное выше, и растворения с поверхностей Li x Mn 2 O 4 (001). Chem. Mater. 29 , 2550–2562 (2017).

    Артикул Google ученый

  • 198.

    Аурбах, Д., Эйн-Эли, Й. и Забан, А. Химия поверхности литиевых электродов в растворах алкилкарбонатов. J. Electrochem. Soc. 141 , L1 – L3 (1994).

    Артикул Google ученый

  • 199.

    Херстедт, М., Абрахам, Д. П., Керр, Дж.Б. и Эдстрем, К. Рентгеновская фотоэлектронная спектроскопия отрицательных электродов от мощных литий-ионных элементов, показывающая различные уровни затухания мощности. Электрохим. Acta 49 , 5097–5110 (2004).

    Артикул Google ученый

  • 200.

    Ньюман Дж. С. и Тобиас К. В. Теоретический анализ распределения тока в пористых электродах. J. Electrochem. Soc. 109 , 1183–1191 (1962).

    Артикул Google ученый

  • 201.

    Ньюман Дж., Томас К. Э., Хафези Х. и Уиллер Д. Р. Моделирование литий-ионных батарей. J. Источники энергии 119 , 838–843 (2003).

    Артикул Google ученый

  • 202.

    Broussely, M. et al. Механизм старения в ионно-литиевых ячейках и календарные прогнозы жизни. J. Источники энергии 97-98 , 13–21 (2001).

    Артикул Google ученый

  • 203.

    Кристенсен Дж. И Ньюман Дж. Математическая модель литий-ионной межфазной границы твердого электролита отрицательного электрода. J. Electrochem. Soc. 151 , A1977 – A1988 (2004).

    Артикул Google ученый

  • 204.

    Колклаже, А. М., Смит, К. А. и Ки, Р. Дж. Детальное моделирование химического состава и переноса пленок на границе раздела твердых электролитов (SEI) в литий-ионных батареях. Электрохим. Acta 58 , 33–43 (2011).

    Артикул Google ученый

  • 205.

    Плоэн, Х. Дж., Рамадасс, П. и Уайт, Р. Е. Модель диффузии растворителя для старения литий-ионных аккумуляторных элементов. J. Electrochem. Soc. 151 , A456 – A462 (2004).

    Артикул Google ученый

  • 206.

    Лю Л., Парк Дж., Линь X., Састри А.М. и Лу, W. Термо-электрохимическая модель, которая дает пространственно-зависимый рост межфазной границы твердого электролита в литий-ионной батарее. J. Источники энергии 268 , 482–490 (2014).

    Артикул Google ученый

  • 207.

    Пинсон, М. Б. и Базант, М. З. Теория образования SEI в перезаряжаемых батареях: уменьшение емкости, ускоренное старение и прогноз срока службы. J. Electrochem. Soc. 160 , A243 – A250 (2013).

    Артикул Google ученый

  • 208.

    Тан, М., Лу, С. и Ньюман, Дж. Экспериментальное и теоретическое исследование механизмов образования твердого электролита и межфазной границы на стеклоуглероде. J. Electrochem. Soc. 159 , A1775 – A1785 (2012).

    Артикул Google ученый

  • 209.

    Гуань П., Лю Л. и Линь X. Моделирование и эксперимент по эволюции морфологии межфазной границы твердого электролита (SEI) и диффузии ионов лития. J. Electrochem. Soc. 162 , A1798 – A1808 (2015).

    Артикул Google ученый

  • 210.

    Сингл, Ф., Хорстманн, Б. и Латц, А. Динамика и морфология межфазной границы твердых электролитов (SEI). Phys. Chem. Chem. Phys. 18 , 17810–17814 (2016).

    Артикул Google ученый

  • 211.

    Сингл, Ф., Хорстманн, Б.И Латц, А. Выявление морфологии SEI: углубленный анализ подхода к моделированию. J. Electrochem. Soc. 164 , E3132 – E3145 (2017).

    Артикул Google ученый

  • 212.

    Теккерей, М. М., Волвертон, К. и Айзекс, Э. Д. Хранение электрической энергии для транспортировки, приближающееся к литий-ионным батареям и выходящее за их пределы. Energy Environ. Sci. 5 , 7854–7863 (2012).

    Артикул Google ученый

  • 213.

    Саал, Дж. Э., Кирклин, С., Эйкол, М., Мередиг, Б. и Волвертон, К. Дизайн и открытие материалов с помощью теории функционала высокой плотности: открытая база данных квантовых материалов (OQMD). JOM 65 , 1501–1509 (2013).

    Артикул Google ученый

  • 214.

    Aykol, M. et al. Высокопроизводительный вычислительный дизайн катодных покрытий для литий-ионных аккумуляторов. Nat. Commun. 7 , 13779 (2016).

    Артикул Google ученый

  • 215.

    Кох, С. Л., Морган, Б. Дж., Пассерини, С. и Теобальди, Г. Скрининг теории функций плотности для стратегий обработки газа для стабилизации анодов из металлического лития с высокой плотностью энергии. J. Источники энергии 296 , 150–161 (2015).

    Артикул Google ученый

  • 216.

    Y, Z., X, H. & Y, M. Стратегии, основанные на химии нитридных материалов, для стабилизации анода из металлического Li. Adv. Sci. 4 , 1600517 (2017).

    Артикул Google ученый

  • 217.

    Букамп Б. А. и Хаггинс Р. А. Быстрая ионная проводимость в нитриде лития. Mater. Res. Бык. 13 , 23–32 (1978).

    Артикул Google ученый

  • 218.

    Shi, L., Xu, A. & Zhao, T. Исследования из первых принципов рабочего механизма 2D h-BN в качестве межфазного слоя для анода литий-металлических батарей. ACS Appl. Mater. Интерфейсы 9, (1987–1994 (2017).

    Google ученый

  • 219.

    Ma, Y. et al. Структура и реакционная способность пленок, покрытых алуконом на поверхностях Si и Li x Si y . ACS Appl. Mater. Интерфейсы 7 , 11948–11955 (2015).

    Артикул Google ученый

  • 220.

    Jung, Y. S. et al. Нанесение ультратонких атомных слоев на композитные электроды для получения высокопрочных и безопасных литий-ионных аккумуляторов. Adv. Mater. 22 , 2172–2176 (2010).

    Артикул Google ученый

  • 221.

    Kozen, A.C. et al. Конструирование анодов из металлического лития нового поколения посредством осаждения атомных слоев. Acs Nano 9 , 5884–5892 (2015).

    Артикул Google ученый

  • 222.

    Сяо, Х.С., Лу, П. и Ан, Д. Ультратонкие многофункциональные оксидные покрытия для литий-ионных батарей. Adv. Mater. 23 , 3911–3915 (2011).

    Артикул Google ученый

  • 223.

    Катияр П., Джин С. и Нараян Р. Дж. Электрические свойства тонких пленок аморфного оксида алюминия. Acta Mater. 53 , 2617–2622 (2005).

    Артикул Google ученый

  • 224.

    Piper, D. M. et al. Реверсивные кремниевые нанокомпозитные аноды большой емкости для литий-ионных аккумуляторов за счет осаждения молекулярных слоев. Adv. Mater. 26 , 1596–1601 (2014).

    Артикул Google ученый

  • 225.

    Kim, S.-Y. & Ци, Ю.Эволюция свойств Al 2 O 3 Si-электроды с покрытием и без покрытия: исследование первых принципов. J. Electrochem. Soc. 161 , F3137 – F3143 (2014).

    Артикул Google ученый

  • 226.

    Kim, S.-Y. и другие. Само-генерируемое покрытие с градиентом концентрации и модуля упругости для защиты кремниевых нанопроволочных электродов во время литирования. Phys. Chem. Chem. Phys. 18 , 3706–3715 (2016).

    Артикул Google ученый

  • 227.

    Гомес-Баллестерос, Дж. Л. и Балбуэна, П. Б. Восстановление компонентов электролита на кремниевом аноде с покрытием литий-ионных батарей. J. Phys. Chem. Lett. 8 , 3404–3408 (2017).

    Артикул Google ученый

  • 228.

    Zhang, L.Q. et al. Контроль деформации, вызванной литированием, и скорости зарядки в электродах с нанопроволокой путем нанесения покрытия. АСУ Нано 5 , 4800–4809 (2011).

    Артикул Google ученый

  • 229.

    Чжао, К., Фарр, М., Хартл, Л., Влассак, Дж. Дж. И Суо, З. Разрушение и расслоение литий-ионных батарей с электродами из наноструктур с полым ядром и оболочкой. J. Источники энергии 218 , 6–14 (2012).

    Артикул Google ученый

  • 230.

    Стоурнара, М.Э., Ци, Ю. и Шеной, В. Б. От расчетов ab initio до многомасштабного проектирования частиц Si / C ядро ​​– оболочка для литий-ионных анодов. Нано. Lett. 14 , 2140–2149 (2014).

    Артикул Google ученый

  • 231.

    Qi, Y., Hector, L. G. Jr., James, C. & Kim, K. J. Упругие свойства материалов электродов батареи, зависящие от концентрации лития, на основе расчетов из первых принципов. J. Electrochem. Soc. 161 , F3010 – F3018 (2014).

    Артикул Google ученый

  • 232.

    Перес-Бельтран, С., Рамирес-Кабальеро, Г. Э. и Бальбуэна, П. Б. Расчеты из первых принципов литиирования гидроксилированной поверхности аморфного диоксида кремния. J. Phys. Chem. С 119 , 16424–16431 (2015).

    Артикул Google ученый

  • 233.

    Heine, J.и другие. Фторэтиленкарбонат в качестве добавки к электролиту в электролитах на основе диметилового эфира тетраэтиленгликоля для применения в литий-ионных и литий-металлических батареях. J. Electrochem. Soc. 162 , A1094 – A1101 (2015).

    Артикул Google ученый

  • 234.

    Хуанг, Дж., Фан, Л.-З., Ю, Б., Син, Т. и Цю, У. Исследования теории функций плотности на B-содержащих солях лития. Ionics 16 , 509–513 (2010).

    Артикул Google ученый

  • 235.

    Чжан, X. Р., Костецки, Р., Ричардсон, Т. Дж., Пью, Дж. К. и Росс, П. Н. Электрохимические и инфракрасные исследования восстановления органических карбонатов. J. Electrochem. Soc. 148 , A1341 – A1345 (2001).

    Артикул Google ученый

  • 236.

    Ван, Ю. Х., Накамура, С., Тасаки, К., и Балбуэна, П.B. Теоретические исследования для понимания химии поверхности угольных анодов для литий-ионных батарей: как виниленкарбонат играет свою роль в качестве добавки к электролиту? J. Am. Chem. Soc. 124 , 4408–4421 (2002).

    Артикул Google ученый

  • 237.

    Бхатт, М. Д. и О’Дуайер, С. Межфазные границы твердых электролитов на графитовых анодах литий-ионных аккумуляторов в электролитах на основе пропиленкарбоната (ПК), содержащих FEC, LiBOB и LiDFOB в качестве добавок. Chem. Phys. Lett. 618 , 208–213 (2015).

    Артикул Google ученый

  • 238.

    Профатилова И.А., Ким С.-С. И Чой, Н.-С. Повышенные термические свойства межфазной границы твердого электролита, образованной на графите в электролите с фторэтиленкарбонатом. Электрохим. Acta 54 , 4445–4450 (2009).

    Артикул Google ученый

  • 239.

    Фоллмер, Дж. М., Кертисс, Л. А., Виссерс, Д. Р. и Амин, К. Механизмы восстановления этилена, пропилена и винилэтиленкарбонатов — квантово-химическое исследование. J. Electrochem. Soc. 151 , A178 – A183 (2004).

    Артикул Google ученый

  • 240.

    Yu, T. et al. Влияние сульфолана на морфологию и химический состав межфазного слоя твердого электролита в электролите на основе бис (оксалато) бората лития. Прибой. Интерфейс Анал. 46 , 48–55 (2014).

    Артикул Google ученый

  • 241.

    Ни, М., Ся, Дж. И Дан, Дж. Р. Разработка добавок пиридин-борного трифторида к электролиту для литий-ионных батарей. J. Electrochem. Soc. 162 , A1186 – A1195 (2015).

    Артикул Google ученый

  • 242.

    Каймаксиз, С.и другие. Электрохимическая стабильность салицилатоборатов лития в качестве добавок к электролиту в литий-ионных аккумуляторах. J. Источники энергии 239 , 659–669 (2013).

    Артикул Google ученый

  • 243.

    Паниц, Й.-К., Вительманн, У., Вахтлер, М., Стрёбеле, С. и Вольфарт-Меренс, М. Образование пленки в электролитах, содержащих LiBOB. J. Источники энергии 153 , 396–401 (2006).

    Артикул Google ученый

  • 244.

    Zhang, L. et al. Молекулярная инженерия в направлении стабилизации интерфейса: добавка к электролиту для высокоэффективных литий-ионных аккумуляторов. J. Electrochem. Soc. 161 , A2262 – A2267 (2014).

    Артикул Google ученый

  • Перспективы — Электрохимическая стабильность водно-солевых электролитов

    Вода обладает многими превосходными свойствами как растворитель электролита. Он обладает высокой диэлектрической постоянной, низкой вязкостью, нетоксичен, негорючий и недорогой.Однако его основным недостатком является ограниченное окно электрохимической стабильности (ESW), термодинамически составляющее всего 1,23 В при 25 ° C. Это обычно ограничивает напряжение водных аккумуляторов до ≤1,5 ​​В, за исключением свинцово-кислотных аккумуляторов, достигающих 2,1 В при полной зарядке. Благодаря сочетанию объемных, межфазных и межфазных эффектов высококонцентрированные водные растворы на основе перфторалкилсульфонилимида лития и родственных солей имеют более широкие ESW, чем традиционные водные электролиты, используемые в e.г. никель-металлогидридные или свинцово-кислотные батареи. 1–4 Моделирование молекулярной динамики показывает, что, в частности, анионы бис (трифторметансульфонил) имида (TFSI) накапливаются на поверхности электрода при положительной поляризации, образуя зону обеднения воды, что приводит к более высокой окислительной стабильности таких электролитов. 2 Повышенная восстановительная стабильность была связана с образованием межфазной фазы твердого электролита на анодной стороне в результате разложения литиевой соли. 1,3 По аналогии с подходом растворителя в соли, 5 эти электролиты также называются водно-солевыми электролитами, поскольку они содержат больше соли, чем вода, по массе и объему. 1

    Относительно широкий ESW водно-солевых электролитов позволил разработать новые, в основном интеркаляционного типа, водные батареи с более высокими напряжениями элементов, чем это было возможно ранее, сужая разрыв в напряжении по сравнению с элементами на основе органических электролитов. . 1,6–9

    Сообщается, что ESW водно-солевых электролитов, таких как 21 моль кг −1 (21 м) LiTFSI, достигает 3 В. 1,7,10 Это обеспечило стабильную циклическую смену высоковольтных катодных материалов, таких как LiMn 2 O 4 и Na 3 (VOPO 4 ) 2 F в течение нескольких сотен циклов даже при низкой температуре. скорость заряда / разряда. 1,9,11 В сочетании со стратегиями защиты анода, например углеродных покрытий или гидрофобных полимерных покрытий, стабильная цикличность также была продемонстрирована с TiO 2 , Li 4 Ti 5 O 12 , NaTi 2 (PO 4 ) 3 и даже графитовыми анодами. 6,8,9,12

    Тем не менее, все большее количество исследований предлагает батареи и суперконденсаторы со все более высоким напряжением элементов. В некоторых случаях очевидно, что напряжение ячейки слишком велико, как в случае суперконденсаторов> 3 В. 13,14 В других случаях стабильная цикличность была достигнута на высоких скоростях, но о характеристиках низкой скорости не сообщается или наблюдается относительно быстрое замирание емкости. 7,10

    Эти высоковольтные устройства обычно имеют низкую массовую нагрузку активного материала (≤5 мг · см −2 ) и большое количество электролита (обычно ~ 100 мкл · см −2 относительно к области электродов).Вместе с часто используемыми высокими значениями температуры ≥5 ° C трудно оценить стабильность электролита в более практических условиях. Когда элемент работает с высокими скоростями, электролит подвергается сильным восстановительным или окислительным условиям в течение гораздо более короткого времени за цикл, чем при низких скоростях. Следовательно, величина тока оказывает значительное влияние на скорость разложения электролита за цикл. Реалистичные элементы с высокими массовыми нагрузками (≥20 мг / см −2 ) потенциально не смогут поддерживать такие высокие скорости из-за транспортных ограничений в электролите.Наконец, появление пагубных эффектов гидролиза воды, например осаждение соли или (локальное) изменение pH, 15,16 может быть отложено на длительное время при использовании больших количеств электролита, так как в этом случае относительное изменение состава электролита будет небольшим.

    Сколько электролита будет в реальной батарее на основе водно-солевых электролитов? Учитывая, что литий-ионная проводимость типичных водно-солевых электролитов при комнатной температуре составляет порядка 1–7 мСм см –1 , 7,17 i.е. сравнимо с таковым для органических электролитов на основе карбоната, 18 расстояние между токосъемниками, состоящее из толщины анода, сепаратора и катода, должно быть таким же, как в коммерческих литий-ионных батареях. На рисунке 1а показана эволюция перенапряжения, связанного с сопротивлением электролита, с увеличением расстояния между токосъемниками для трех гипотетических ячеек. Предположения здесь — литий-ионная проводимость 3 мСм см −1 при комнатной температуре и 0.1 мСм см −1 для низкотемпературного сценария. Для высокоэнергетических и мощных аккумуляторов мы рассматриваем плоские емкости и токи 5 и 2 мАч см –2 и C / 5 и 10 C соответственно.

    Приблизить Уменьшить Сбросить размер изображения

    Рис. 1. (a) Расчетная зависимость перенапряжения, обусловленного объемным сопротивлением электролита (омическая капля), от расстояния между электродами для трех гипотетических сценариев ячейки.Предполагается, что проводимость составляет 3 мСм см -1 при комнатной температуре (комнатная температура) и 0,1 мСм см -1 при низкой температуре (низкая температура). Для высокоэнергетических и высокомощных ячеек учитывались поверхностные емкости и токи 5 и 2 мАч см -2 и C / 5 и 10 C, соответственно. (б) Результирующее влияние омического падения на энергоэффективность гипотетического элемента на 2,0 В. (c), (d) Расчетное изменение концентрации электролита в зависимости от номера цикла для (c) реалистичной ячейки и (d) типичной лабораторной ячейки.Расчет проводился для кулоновской эффективности 90%, 99%, 99,9% и 99,99%. Для реалистичной ячейки и лабораторной ячейки были рассмотрены емкости 5 и 0,5 мАч см -2 , соответственно. Единственное другое различие между двумя ячейками — это количество электролита: 5,6 мкл см -2 для реалистичной ячейки (на основе 2 электродов × толщиной 100 мкм с пористостью 25% и разделителя толщиной 15 мкм с пористость 40%) и 100 мкл см -2 для лабораторной ячейки.В качестве (исходного) электролита был выбран LiTFSI 20 мкм. Пунктирная горизонтальная линия на (c) и (d) отмечает начальную концентрацию кристаллизации 22 моль кг -1 , рассматриваемую для обсуждения.

    Загрузить рисунок:

    Стандартный образ Изображение высокого разрешения

    Для этих трех сценариев омические потери пренебрежимо малы вплоть до рассматриваемого максимального расстояния между токосъемниками (без учета извилистости электродов) 1 мм для высокоэнергетической батареи, работающей при комнатной температуре.Для двух других сценариев омические потери из-за электролита уже превышают 100 мВ на расстоянии 100 и 150 мкм соответственно. Такое перенапряжение приводит к потере 9,5% энергоэффективности гипотетической ячейки со средним напряжением 2,0 В (см. Рис. 1b). 19 Следовательно, расстояние между электродами практических элементов на основе водно-солевых электролитов должно быть ограничено для обеспечения высокой энергоэффективности. Это отличается от свинцово-кислотных аккумуляторов, у которых сернокислый электролит имеет проводимость при комнатной температуре, которая на три порядка выше, 20 , что обеспечивает большее расстояние между электродами и большую толщину.Еще один аргумент в пользу ограничения расстояния между электродами в ячейках на основе водно-солевого электролита и, следовательно, количества электролита, — это высокая стоимость большинства водно-солевых электролитов, которая связана с высокой ценой и концентрацией используемых солей.

    Поскольку водно-солевые электролиты обычно работают вблизи предела растворимости соли или комбинации солей, потеря воды может привести к кристаллизации соли в ячейке. 9 Кристаллизация может привести к закупорке пор, потере емкости и увеличению сопротивления ячейки. 9,15 На рисунках 1c и 1d сравнивается изменение концентрации электролита с номером цикла для реалистичного высокоэнергетического элемента, как установлено выше, и типичного лабораторного элемента при допущении, что необратимая емкость обусловлена ​​исключительно гидролизом воды.

    Для реалистичной ячейки мы предполагаем, что ее емкость составляет 5 мАч см −2 , а для лабораторной ячейки 0,5 мАч см −2 . Единственное другое различие между двумя ячейками — это количество электролита: 5,6 мкл см -2 для реалистичной ячейки (получено из 2 электродов × толщиной 100 мкм с пористостью 25% и разделителя толщиной 15 мкм с пористость 40%) и 100 мкл см -2 для лабораторной ячейки.Значение 5,6 мкл см −2 для элемента емкостью 5 мАч см −2 хорошо соответствует диапазону от 1,3 до 1,5 граммов электролита на ампер-час емкости элемента, описанному в литературе для коммерческих литий-ионных аккумуляторов. батареи, учитывая более высокую плотность водно-солевых электролитов (наше предположение в этом исследовании: 1,75 г см −3 ) по сравнению с плотностью коммерческих жидких органических электролитов (~ 1,3 г см −3 ): 5,6 мкл см −2 × 1.75 г см −3 /5 мАч см −2 = 1,96 г Ач −1 . 21, 22 В этом примере мы рассматриваем 20-миллиметровый раствор LiTFSI в качестве (исходного) электролита. Если кулоновский КПД составляет всего ~ 90%, как это иногда бывает в случае медленно повторяющихся элементов на основе водно-солевого электролита, о которых сообщается в литературе, 7,10 , концентрация электролита в реалистичном элементе быстро увеличивается и превышает предполагаемое значение. предел растворимости 22 м после менее чем одного цикла. Только клетки, показывающие кулоновскую эффективность ≥99.99% могут выдерживать более 500 циклов. Напротив, лабораторная ячейка может работать более 100 циклов, даже если кулоновская эффективность составляет всего 90%. Следовательно, избыток электролита явно действует как ускоритель жизненного цикла. Этот расчет не учитывает другие вредные эффекты гидролиза воды, такие как локальные изменения pH, которые могут привести к деградации активного материала и коррозии токоприемника. 16,23

    Хотя настоящее исследование фокусируется на электрохимической стабильности электролита и ее влиянии на срок службы и энергоэффективность, желательна комплексная оценка новых компонентов элемента с точки зрения всех соответствующих показателей производительности для оценки их практической значимости. . 24,25 Например, гравиметрическая плотность энергии аккумуляторов на основе высококонцентрированных электролитов немного ниже при прочих равных из-за более высокой плотности таких электролитов по сравнению с традиционными более разбавленными электролитами (например, 1 M LiPF 6 в смеси этиленкарбонат: диметилкарбонат 1: 1 (по массе) имеет плотность 1,30 г / см −3 при 24 ° C, тогда как 27,8 м Li (TFSI) 0,7 (LiBETI) 0,3 имеет плотность 1,78 г · см −3 при 25 ° C). 7,22

    Учитывая, что для практических элементов на основе водно-солевых электролитов требуется кулоновская эффективность ≥99,9% при низких скоростях, чтобы обеспечить достаточный срок службы, необходимо использовать довольно строгие критерии при определении ESW воды на входе. -солевые электролиты, чтобы избежать несоответствия между заявленными значениями ESW и стабильностью при циклических нагрузках в реальных условиях. С этой целью мы пересмотрели данные по электрохимической стабильности для архетипической системы H 2 O – LiTFSI. ЭСВ электролитов обычно определяют с помощью экспериментов по вольтамперометрии с использованием (инертных) металлических рабочих электродов. 18 Общим критерием определения ESW по данным вольтамперометрии является плотность тока отсечки. 26 Однако в большинстве исследований водно-солевых электролитов указывается (широкий) ЭСВ без упоминания критерия, используемого для анализа данных вольтамперометрии, на которых основывается заявленный ЭСВ.

    Чтобы изучить влияние плотности тока отсечки на кажущуюся ESW, мы записали вольтамперограммы водных растворов LiTFSI со скоростью сканирования 0,1 мВ с −1 с использованием рабочих электродов из нержавеющей стали и золота для обеспечения восстановительной и окислительной стабильности. соответственно (рис.2а). Все измерения проводились в трехэлектродных ячейках Swagelok с электрохимической рабочей станцией Bio-Logic VMP3. Гранулы на основе активированного угля использовали в качестве противоэлектрода, миниатюрный электрод Ag / AgCl (eDAQ) использовали в качестве электрода сравнения, а фильтр из стекловолокна типа Whatman GF / D, пропитанный 150 мкл электролита, использовали в качестве сепаратора. В качестве электрода сравнения использовали диски из нержавеющей стали диаметром 12 мм (сорт 1.4310, Brütsch / Rüegger Werkzeuge AG) или золотой дисковый электрод диаметром 1 мм от eDAQ соответственно.

    Приблизить Уменьшить Сбросить размер изображения

    Рисунок 2. Окна электрохимической устойчивости дегазированных водных растворов LiTFSI различной концентрации. (а) Вольтамперограммы с линейной разверткой для нержавеющей стали (для восстановительной стабильности) и золота (для устойчивости к окислению) соответственно. Термодинамические начала реакций выделения водорода и кислорода для pH 5 показаны пунктирными вертикальными линиями.На вставке — увеличение слаботочной области катодного сканирования. (b) Пределы стабильности электролитов, определенные путем применения трех различных пороговых плотностей тока к данным вольтамперометрии, показанным на (a). (c) Окно стабильности LiTFSI 21 м как функция плотности тока отсечки. (d) Вольтамперограммы с линейной разверткой для LiTFSI 21 м на платине, золоте, нержавеющей стали (SS), титане, стеклоуглероде (GC) и алюминии. PH всех растворов доводили до значения ~ 5. Все эксперименты проводились при комнатной температуре со скоростью сканирования 0.1 мВ с −1 .

    Загрузить рисунок:

    Стандартный образ Изображение высокого разрешения

    Затем мы определили пределы катодной и анодной стабильности для различных концентраций LiTFSI с использованием различных плотностей тока отсечки (см. Рис. 2b). Для плотности тока отсечки 50 мкА см −2 , что соответствует почти вертикальным участкам кривых плотности тока и потенциала, мы получаем нереально широкую ESW 2,6 В уже для самой низкой концентрации 1 м.Следовательно, этот критерий явно слишком расплывчатый. Значительно меньшая плотность тока отсечки 2 мкА см −2 приводит к более реалистичным ESW 1,4–1,5 В для концентраций LiTFSI 1 м, 7 м и 14 м. Для раствора LiTFSI 21 м мы получаем ЭСВ 2,1 В, а для раствора 27,8 м Li (TFSI) 0,7 (LiBETI) 0,3 (LiBETI = бис (пентафторэтансульфонил) имид лития) ЭСВ 2,4 В составляет получено. 7

    На рисунке 2c показано изменение кажущейся ЭСВ 21-метрового LiTFSI с увеличением плотности тока отсечки.Используя порог 100 мкА · см −2 , наши результаты подтверждают заявленное значение ESW 3 В. При понижении порога отсечки от 100 до 5 мкА · см −2 ESW медленно уменьшается с 3,1 до 2,7 В, в то время как оно падает до 2,1 В для предела 2 мкА · см −2 . Связывание этой плотности тока с целью кулоновской эффективности, например 99,9% непросто, поскольку измеренная плотность тока в таком эксперименте по вольтамперометрии зависит от скорости сканирования, типа рабочего электрода и в определенной степени геометрии используемой ячейки.Для ячейки с емкостью 5 мАч см -2 , работающей при скорости тока C / 5, кулоновский КПД 99,9% соответствует средней плотности необратимого тока 1 мкА см -2 . Поскольку во многих приложениях требуется поддерживать состояние заряда батареи не менее 50%, и поскольку даже кулоновский КПД 99,9% не позволяет проводить сотни циклов, более низкая плотность тока для разложения воды <1 мкА / см −2 кажется желательным, если заправка невозможна.Тем не менее, водно-солевой подход явно улучшает электрохимическую стабильность водных электролитов. В частности, окислительная стабильность водно-солевых электролитов с нейтральным pH оказывается (по крайней мере) на одном уровне со стабильностью традиционных электролитов на карбонатной основе, что продемонстрировано вышеупомянутой превосходной стабильностью при циклировании нескольких высоковольтных катодных материалов. . Эти результаты еще более впечатляющие, учитывая, что начало реакции выделения кислорода сдвигается на 59 мВ на единицу pH в сторону более отрицательных потенциалов при увеличении pH от ≤0 (например.г. серной кислоты, используемой в свинцово-кислотных аккумуляторах) до обычно близкого к нейтральному pH водно-солевых электролитов. Кроме того, потенциалы внедрения / интеркаляции литий-ионных ионов сдвигаются на ≥200 мВ в сторону более положительных потенциалов в водно-солевых электролитах, что дополнительно увеличивает необходимую окислительную стабильность. 1,7

    Что касается катодного сканирования, то несколько исследований показывают, что измеренная плотность тока является суммой нескольких конкурирующих процессов: реакции выделения водорода (HER), восстановления растворенных газов и электрохимического восстановления анионов. 1,3,7 Появляется все больше свидетельств того, что последний процесс приводит к образованию межфазной границы твердого электролита (SEI), которая, следовательно, ограничивает HER. 3,7 Недавно был предложен другой механизм, касающийся процесса образования SEI в водно-солевых электролитах: согласно этому исследованию, восстановление анионов скорее является результатом нуклеофильной атаки гидроксид-анионами, которые образуются как побочный продукт HER. . 4 Необходима дополнительная работа, чтобы лучше понять процесс образования и эффективность образования SEI в водно-солевых электролитах.

    Измеренные плотности тока также сильно зависят от каталитической активности материала электрода, как показано на рис. 2d. Мы наблюдаем существенно разные плотности тока на платине (дисковый электрод 1 мм, eDAQ), золоте, нержавеющей стали, титане (диск 12 мм,> 99,6%, Goodfellow), стеклоуглероде (дисковый электрод 1 мм, eDAQ) и алюминии (12 мм диск,> 99,3%, MTI). Различия в катодной стабильности по отношению к восстановлению воды соответствуют зарегистрированным тенденциям каталитической активности этих материалов. 27 При анодном сканировании плотность тока уменьшается в следующем порядке: нержавеющая сталь ≈ золото> платина> стеклоуглерод> титан. В литературе также сообщалось о сопоставимых различиях в плотности тока между различными материалами рабочих электродов. 7,28

    Наконец, количественная оценка продуктов окисления и восстановления электролита, возникающих в результате конкуренции различных процессов на аноде (выделение водорода, восстановление растворенных газов, восстановление анионов) и на катодной стороне (выделение кислорода, коррозия токоприемника и потенциально анионное окисление) предоставляют ценные дополнительные сведения, особенно если они проводятся с использованием композитных аккумуляторных электродов в качестве рабочих электродов.В частности, необходимы исследования выделения газа, чтобы продемонстрировать реальную практичность аккумуляторов на основе водно-солевых электролитов. Первое такое исследование было опубликовано недавно. 3

    Водно-солевой подход позволил использовать водные батареи и суперконденсаторы со значительно более высокими напряжениями элементов. Однако, как показано выше, ESW может легко отличаться на 1–1,5 В в зависимости от плотности тока отсечки, выбранной для оценки данных вольтамперометрии. Эта чувствительность к критерию отсечки внесла свой вклад в рассогласование между зарегистрированными ESW и заявленной стабильностью цикличности / кулоновской эффективностью батарей и суперконденсаторов, содержащих водно-солевые электролиты.Кроме того, ESW водно-солевых электролитов сильно зависит от материала электрода, так как высокая стабильность является результатом кинетической стабилизации, которая зависит от электрокаталитических свойств материала электрода. Чтобы дать более подходящую для применения оценку ESW водно-солевых электролитов, следует использовать более строгие критерии при извлечении ESW из данных вольтамперометрии. В идеале электроды, выбранные для экспериментов ESW, должны иметь такие же электрокаталитические свойства, что и электроды целевого устройства.Кроме того, должны быть предоставлены все соответствующие экспериментальные данные, такие как тип ячейки, материал электрода, массовая нагрузка (если применимо), скорость сканирования и метод анализа плотности тока отсечки / данных, чтобы позволить оценку и сравнение данных ESW от вольтамперометрии.

    Наконец, очень желательны более реалистичные испытания элементов с использованием небольшого количества электролита, высоких массовых нагрузок и низких значений тока. Такие элементы также следует подвергать постоянному напряжению при различных состояниях заряда и различных температурах, чтобы изучить их стабильность в различных реальных условиях.

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или уточнить у системного администратора.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Межфазный твердый электролит (SEI) в ионно-калиевых батареях

    Калий-ионные аккумуляторы (PIB) вызвали значительный интерес как кандидаты для крупномасштабных накопителей энергии из-за естественных богатых ресурсов калия и низкой стоимости. С момента появления PIBs, межфазная фаза твердого электролита (SEI) была критической проблемой, которая играет жизненно важную роль в кулоновской эффективности, стабильности при циклическом изменении и даже безопасности батарей. Однако SEI PIB остается малоизученным.В этом обзоре мы начнем с обсуждения различий в химическом составе и структуре K-ion SEI по сравнению с , гораздо более известными Li-ion и Na-ion SEI. Ясно определены оставшиеся без ответа научные вопросы о природе K-ion SEI. Мы рассматриваем результаты, использованные для понимания механизма образования SEI на графите, и существование SEI в электролитах на основе эфира открыто обсуждается. Текущее понимание SEI для различных типов анодов всесторонне обобщено и обсуждено с акцентом на то, как повышенная стабильность SEI фундаментально влияет на эффективность и обратимость электрохимических реакций.Наконец, мы подробно описываем основные проблемы, связанные с анодами, и обсуждаем новые направления исследований для дальнейшей разработки PIB.

    У вас есть доступ к этой статье

    Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуй снова?

    % PDF-1.5 % 347 0 объект > endobj xref 347 107 0000000016 00000 н. 0000003846 00000 н. 0000004007 00000 п. 0000004059 00000 н. 0000004188 00000 п. 0000004628 00000 н. 0000004771 00000 п. 0000004808 00000 п. 0000004856 00000 н. 0000004904 00000 н. 0000004951 00000 н. 0000006135 00000 н. 0000006281 00000 п. 0000006428 00000 н. 0000009473 00000 н. 0000010103 00000 п. 0000010199 00000 п. 0000020375 00000 п. 0000020603 00000 п. 0000021055 00000 п. 0000021147 00000 п. 0000027502 00000 п. 0000027730 00000 п. 0000028049 00000 п. 0000028137 00000 п. 0000040980 00000 п. 0000041206 00000 п. 0000041485 00000 п. 0000044154 00000 п. 0000044973 00000 п. 0000045115 00000 п. 0000045501 00000 п. 0000045922 00000 п. 0000046487 00000 п. 0000062840 00000 п. 0000118385 00000 п. 0000118457 00000 н. 0000118533 00000 н. 0000118621 00000 н. 0000118677 00000 н. 0000118792 00000 н. 0000118848 00000 н. 0000118981 00000 п. 0000119037 00000 н. 0000119166 00000 н. 0000119222 00000 н. 0000119400 00000 н. 0000119456 00000 н. 0000119588 00000 н. 0000119788 00000 н. 0000119969 00000 н. 0000120025 00000 н. 0000120235 00000 н. 0000120441 00000 н. 0000120588 00000 н. 0000120643 00000 н. 0000120759 00000 н. 0000120883 00000 н. 0000121036 00000 н. 0000121091 00000 н. 0000121278 00000 н. 0000121333 00000 н. 0000121437 00000 н. 0000121533 00000 н. 0000121662 00000 н. 0000121717 00000 н. 0000121848 00000 н. 0000121903 00000 н. 0000122012 00000 н 0000122067 00000 н. 0000122166 00000 н. 0000122221 00000 н. 0000122366 00000 н. 0000122421 00000 н. 0000122532 00000 н. 0000122587 00000 н. 0000122642 00000 н. 0000122749 00000 н. 0000122804 00000 н. 0000122859 00000 н. 0000122915 00000 н. 0000123058 00000 н. 0000123113 00000 п. 0000123262 00000 н. 0000123317 00000 н. 0000123372 00000 н. 0000123428 00000 н. 0000123588 00000 н. 0000123700 00000 н. 0000123756 00000 н. 0000123812 00000 н. 0000123868 00000 н. 0000124004 00000 н. 0000124144 00000 н. 0000124200 00000 н. 0000124363 00000 н. 0000124419 00000 н. 0000124552 00000 н. 0000124608 00000 н. 0000124664 00000 н. 0000124720 00000 н. 0000124868 00000 н. 0000125036 00000 н. 0000125092 00000 н. 0000125148 00000 н. 0000125204 00000 н. 0000002436 00000 н. трейлер ] / Назад 2154064 >> startxref 0 %% EOF 453 0 объект > поток hUSSW ޓ i @ b ‘\ h %% P

    Полив свинцово-кислотной батареи: основы

    Нет ничего лучше в жаркий день, чем выпить прохладный глоток воды.Он освежает и омолаживает, а также помогает вашему телу работать. Эта освежающая вода так же важна для вашей свинцово-кислотной батареи. Уровни жидкости в ваших батареях чрезвычайно важны, и для поддержания их на безопасном уровне может потребоваться регулярный полив батареи. Чрезмерный полив и полив под водой могут повредить аккумулятор. Чтобы свинцовый аккумулятор работал на максимальном уровне, следуйте этим рекомендациям по поливу.

    Первый — Начните с безопасности

    Для начала обязательно используйте средства индивидуальной защиты, такие как защитные очки и перчатки, при работе с аккумуляторами.Кроме того, очень важно понимать, что некоторые батареи требуют регулярного полива, в то время как другие батареи не требуют обслуживания. Обязательно найдите информацию на этикетке аккумулятора, которая указывает, можно ли открыть аккумулятор и отремонтировать. В зависимости от типа батареи, которую вы используете, предупреждающие надписи на батарее должны направлять вас «НЕ ОТКРЫВАТЬ» батарею или «ЗАДЕРЖИВАЙТЕ ВЕНТИЛЯЦИОННЫЕ КОЛПАЧКИ ​​ПОСЛЕ ПОЛИВА». Обязательно следуйте инструкциям на этикетке с предупреждением.

    Когда добавлять воду

    Обычные батареи содержат жидкий «электролит», который представляет собой смесь серной кислоты и воды. Пластины свинцовой батареи содержат активный материал, который следует постоянно омывать электролитами, пока во время зарядки выделяются газообразный кислород и водород.

    Хотя аккумулятор следует заряжать только после полной зарядки, перед зарядкой следует проверять уровень воды. Перед зарядкой убедитесь, что воды достаточно, чтобы покрыть открытые пластины.После зарядки добавьте достаточно воды, чтобы довести уровень до дна вентиляционного отверстия, примерно на ниже верха элемента.

    Важно отметить, что владельцы аккумуляторов никогда не должны добавлять в аккумулятор серную кислоту. При нормальной работе батареи потребляют только воду, а не серную кислоту. Когда уровень электролита в вашей батарее низкий, наполнение батареи водой сохранит батарею здоровой и безопасной для использования.

    Не над водой

    Во время зарядки аккумулятора плотность раствора электролита увеличивается.Если перед зарядкой было добавлено слишком много воды, уровень электролита увеличится, что приведет к переполнению аккумулятора и повреждению аккумулятора. Кроме того, чрезмерное увлажнение аккумулятора может привести к дополнительному разбавлению электролита, что приведет к снижению производительности аккумулятора.

    Частота

    Как часто вы добавляете воду в аккумулятор, зависит от того, как часто вы его используете. Аккумулятор для гольф-кара, который используется только по выходным, может потребовать полива только один раз в месяц.Вилочный погрузчик, который используется весь день, каждый день, может нуждаться в поливе аккумулятора каждую неделю. В жаркую погоду увеличивается потребность в поливе. Очень важно регулярно проверять уровень жидкости в аккумуляторе — лучше всего это делать после того, как аккумулятор зарядится.

    Избегайте водопроводной воды

    При заправке аккумулятора обычная вода из-под крана не подойдет.

    Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *