Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

Содержание

Как правильно эксплуатировать аккумулятор зимой — Авто блог

Эксплуатация аккумулятора в зимний период

Зима есть опробованием не только для людей и всех живых организмов, но и для машин в целом и их составных частей в частности. О том, как верно хранить, эксплуатировать и заботиться за автомобильным аккумулятором, мы и поболтаем.

Что делать в случае если автомобиль не заводится?

В зимнюю пору года аккумуляторная батарея разряжает собственную емкость существенно стремительнее, чем в теплый сезон. Согласитесь, что заглохнуть посредине зимней дороги – событие из разряда малоприятных. Так как кроме того ждать приезда эвакуатора придется в холоде – машину так как не прогреешь.

Исходя из этого нужно не просто верно эксплуатировать аккумулятор, но и выполнять определенные правила его хранения зимой.

Аккумуляторная батарея при ее верной эксплуатации ни при каких обстоятельствах не подведет водителя кроме того в самые лютые морозы. Не всецело заряженная батарея может не подвести в летние месяцы, но сразу же покажет себя не с лучшей стороны зимний период.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем Исходя из этого нужно забрать за правило проверить, а при необходимости кроме того заменить аккумулятор при вхождении в осенне-зимний период эксплуатации автомобиля.

В семействе современных аккумуляторных батарей весьма не легко найти обслуживаемые, почему при показателе выдаваемого тока ниже нормативного замена аккумулятора перед зимний период – дело необходимое и неоспоримое.

Запах в автомобиле

Сейчас выбрать аккумулятор не образовывает особенного труда. Все зависит от денежных его предпочтений и возможностей автолюбителя той либо другой марке производителя аккумуляторная батарей. Некоторым отечественным автовладельцам характерна такая частая ошибка, как установка и покупка нового аккумулятора с заведомо большей мощностью, чем это предусмотрено в технических чертях автомобиля.

При таких условиях страдает как генератор автомобили, поскольку на его долю приходится повышенная нагрузка, так и фактически сам аккумулятор – установленный генератор не в состоянии всецело зарядить аккумуляторную батарею, благодаря чего срок ее работы существенно понижается.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем Перед установкой на автомобиль нового аккумулятора нужно проверить полярность клемм, чтобы не произошло проблеме.

Срок работы аккумуляторной батареи

На срок работы АКБ воздействуют эксплуатации и условия хранения. Не продлевают срок эксплуатации аккумулятора кратковременные поездки и частые запуски, в то время, когда аккумулятор лишь разряжается, не успевая забрать заряд. не меньше пагубны и неприятности в электрической проводке автомобиля, каковые напрямую отражаются на долговечности аккумулятора. Кроме того, казалось бы, такая мелочь, как не сильный крепление силовых кабелей к клеммам АКБ, значительно снижают ресурс батареи.

Нужные рекомендации автолюбителям

Зимой на аккумулятор нагрузка значительно возрастает. Мы включаем обогрев салона, значительно чаще, чем летом задействуем ближний свет, стеклоочистители. Помните о том, что кроме того лампочки стоп-сигналов загораются чаще, чем летом. Исходя из этого зимний период аккумулятор требует к себе более бережного обращения.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

Крайне важно знать и выполнять правила зимней эксплуатации аккумуляторной батареи.

Давайте разберемся, как избежать ускоренной разрядки аккумуляторная батарей зимний период. Точно многие из нас видели, как один автолюбитель требует «прикурить» у сотрудника, поскольку за ночь его батарея всецело разрядилась под действием низких температур, а кое-какие и сами бывали в роли прикуривающих. Дабы избежать аналогичного, следуем нескольким нехитрым правилам. Во-первых, контролируем уровень электролита, для чего из каждой банки особой грушей производим забор вещества.

Во-вторых, пристально осматриваем электролит на прозрачность: в случае если имеется осадок, то громадна возможность осыпания пластин в конкретной банке, что неизбежно приведет к замыканию пластин. Все зависит лишь от времени, в то время, когда замыкание случится. Если уровень электролита низкий, нужно добавить в банку дистиллированную воду. После этого контролируем напряжение и плотность электролита как в общем на батарее, так и раздельно на каждой банке.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

Если напряжение меньше нормативного, то нужно произвести подзарядку аккумулятора.

Порядок подзарядки АКБ

Разглядим, какой порядок подзарядки «сухого» аккумулятора. Все достаточно :электролит. Единственное условие – температура как электролита, так и наполняемого аккумулятора должна быть не ниже 10 градусов Цельсия. Все пробки на батарее должны быть открыты. Заполняем каждую банку или до особой отметки, или до отметки выше 1,5 см над пластиной. Затем разрешить аккумулятору отстояться 15–20 мин., легко покачать его из стороны в сторону и, при необходимости, доливаем электролит.

После этого хорошо закручиваем пробки – аккумулятор всецело готов к работе. Уже залитые аккумуляторная батареи в таковой процедуре, конечно, не нуждаются.

Что необходимо иметь в машине зимний период?

Сейчас давайте разглядим, как же верно хранить аккумулятор в условиях русском зимы. Кое-какие из отечественных автомобилистов (а таких наберется много) предпочитают не эксплуатировать собственный автомобиль зимний период.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем Разрешают себе такое по большей части те, у кого имеется возможность содержать автомобиль не под открытым небом, а хотя бы в неотапливаемом гараже.

Если вы именно из данной обоймы обладателей машин, то минимальное из того, что нужно сделать для сохранности аккумулятора, это снять обесточить одну из клемм батареи. А в совершенстве – всецело снять аккумулятор и отнести его к себе, где в теплом помещении он замечательно перезимует. Это относится к тому случаю, в то время, когда гараж не отапливается.

В случае если же автомобиль будет зимовать в теплом помещении, то таких мер предпринимать не следует.

Хранение акуумулятора зимний период

Но представим, что мы все-таки сняли аккумулятор с автомобиля. Для каждого типа аккумуляторная батарей существуют собственные особенные условия их хранения зимний период. К примеру, для сухозаряженных батарей главным есть их хранение в теплом и вентилируемом помещении – тогда никаких неприятностей с последующей эксплуатацией и хранением не появится.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем Единственное предостережение – отсутствие прямого действия солнечных лучей на аккумулятор.

Хранить заливной аккумулятор нужно лишь в вертикальном положении. По окончании того как аккумулятор сняли с автомобиля, его нужно очистить от грязи, остатков электролита. Пристально осмотрите батарею и при обнаружении недостаточного уровня электролита, долейте дистиллированную воду в те банки, где это нужно.

По окончании восстановления уровня электролита требуется подзарядить аккумулятор особым зарядным устройством.

Как верно хранить автомобиль

Если возможность проверки уровня зарядки аккумулятора до наступления устойчивого тепла отсутствует, возможно воспользоваться следующим нехитрым методом хранения батареи зимний период. По окончании того, как процедура подзарядки закончена (как как раз подзаряжать, обрисовано мало выше), сливаем электролит из аккумулятора. Промываем дистиллированной водой банки, причем нужно сделать это как минимум два раза, причем во второй раз вода обязана постоять в банках мин.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

15. Сейчас в безлюдный аккумулятор заливаем раствор борной кислоты. Затем сухой тряпкой протираем батарею и убираем до горячей поры года.

Данный метод гарантирует сохранность аккумулятора и исключает возможность его самопроизвольной разрядки. Перед тем как устанавливать аккумулятор по окончании зимней «спячки» на автомобиль, нужно слить борную кислоту, а залить раствор электролита. По окончании того как электролит отстоится (данный процесс занимает в среднем 45 мин.), измеряем его плотность.

И лишь затем устанавливаем аккумуляторную батарею на автомобиль.

Разглядим конкретно эксплуатацию аккумулятора в зимних условиях. Для долговечной и надежной работы аккумулятора нужно смотреть за параметрами:

— натяжение ремня генератора;

— соединение электрических проводников должно быть неизменно очищено от грязи, и прочным и надежным;

— плотность раствора электролита обязана пребывать в допустимых пределах. При понижения плотности нужно довести ее до отметки обрисованным выше методом.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

Не менее важно содержать в постоянной чистоте аккумуляторную батарею. Иногда создавать зачистку мелкозернистой наждачной бумагой клемм аккумулятора, а по окончании зачистки с целью улучшения токопроводности нанести на них узкий слой литола. Возможно дополнительно утеплить моторное отделение автомобиля, что разрешит расширить срок работы аккумулятора в зимний период.

Утепление осуществляется посредством особого материала, купить что возможно в любом автомагазине либо кроме того на рынке.

Замерзшее стекло

В холодную пору года от обладателя автомобиля требуется осуществлять контроль уровень зарядки аккумулятора с значительно более высокой периодичностью, чем летом. Связано это с тем, что плотность батареи зимний период имеет свойство к понижению значительно стремительнее, чем летом. По окончании запуска двигателя автомобиля, не включайте сходу совокупность обогрева либо же осветительные устройства – нужно дать раствору электролита некое время прогреться, дабы аккумулятор безболезненно воспринял дополнительную нагрузку, вызванную электроприборами.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

В обязательном порядке обращайте внимание при покупке нового аккумулятора для эксплуатации зимний период на эксплуатационные заводские чёрта батареи. Так, для жёстких климатических регионов нашей страны существуют особые аккумуляторная батареи с пометкой «арктик». Эти батареи снабжают надежную и стабильную работу кроме того при температурах внешней среды ниже «минус» 45–50 градусов Цельсия.

В случае если направляться несложным правилам хранения и эксплуатации аккумуляторных батарей в зимние месяцы года, то возможно обеспечит продолжительную и бесперебойную эксплуатацию аккумулятора на долгий отрезок времени. Не относитесь к собственной батарее халатно – это может дорого стоить вам как в прямом, так и в переносном смысле.

Создатель Сергей Василенков

Эксплуатация автомобильного аккумулятора зимний период

Темы которые будут Вам интересны:

ᐅ Как подготовить автомобильный аккумулятор к зиме — Основные правила

share.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем in Facebook share.in Telegram share.in Viber share.in Twitter

Содержание:

Тема зимнего использования АКБ (аккумуляторно-кислотных батарей) очень популярна среди автолюбителей. Дело в том, что любой аккумулятор чувствителен к колебаниям окружающей среды. Если оставить аккумулятор на морозе, он начнет быстро разряжаться. В какой-то момент может оказаться, что машина не заводится — владельцам авто приходится искать нестандартные способы зарядки АКБ и запуска транспортного средства. Иногда это приводит к выходу батареи из строя.

Если знать, как правильно подготовить аккумулятор к зиме, и познакомиться с его правильной эксплуатацией, можно облегчить себе жизнь. В этой статье мы расскажем о правилах подготовки АКБ к холодам и его хранении.

Подготовка аккумулятора к зиме

Чтобы в холодное время года с аккумулятором автомобиля не возникло никаких неприятностей, нужно заранее позаботиться о его состоянии. Есть несколько этапов подготовки батареи, которые включают в себя устранение неисправностей, восстановление плотности электролита и теплоизоляцию аккумулятора.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

Поиск и исправление неисправностей

Первое, что нужно знать: чтобы можно было эффективно использовать аккумулятор, вся электрическая система авто должна быть исправной. Самые важные части — проводка и генератор. Проверьте проводку на наличие повреждений, через которые электричество может утекать наружу. В условиях холода это может привести к полной разрядке АКБ и сокращению срока службы аккумулятора.

Клеммы батареи нужно почистить, убрав с них грязь, следы коррозии и окислы. После обработки мелкой наждачкой нужно покрыть клеммы литолом или консистентной смазкой, которая может проводить электроэнергию.

Осмотр генератора

Чтобы аккумулятор работал нормально, генератор должен выдавать 14,5 В, хотя минимальным значением считается 13,8 В. Если напряжение еще ниже, это с большой вероятностью приведет к тому, что батарея не сможет зарядиться. Еще один фактор, который ухудшает процесс зарядки — проскальзывание ремня на генераторе. Если на корпусе генератора есть следы перегрева, это говорит о скором выходе устройства из строя, что также отразится на аккумуляторе.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

Проверка плотности электролита

Несоответствие уровня плотности электролита в батарее норме повлияет на емкость и ресурс аккумулятора. По мнению специалистов, оптимальный показатель — 1,27 г/см3 (летом он может быть немного меньше). Если вы измерили плотность и обнаружили, что она слишком низкая, нужно долить электролит повышенной плотности. Если же показатели выше нормы, нужно разбавить электролит дистиллированной водой.

Теплоизоляция аккумулятора

Если температура окружающей среды может опускаться до очень низких температур, лучше заранее теплоизолировать батарею от холода. Нужно выбрать негорючий материал, который не проводит электричество — он не станет причиной замыкания или возгорания.

Хороший вариант — стеклоткань, уложенная в тонкие маты. Ею можно обернуть аккумулятор, сформировав дополнительный слой защиты от холода. Клеммы должны оставаться открытыми. Также существуют специальные готовые термочехлы для батарей (в том числе, с подогревом).Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

Советы по использованию АКБ зимой

Может случиться так, что у вас не получится поднять плотность электролита. В этом случае постарайтесь ограничить нагрузку на батарею. После запуска автомобиля не включайте приборы в первые 5 минут. Помните, что заряд аккумулятора начинается только тогда, когда машина уже на ходу.

Читайте также:  Зарядка автомобильного аккумулятора: делаем это правильно

Чем зарядить аккумулятор авто?

Наиболее простой и эффективный вариант — купить специальное зарядное устройство (ЗУ) с возможностью автоматической зарядки АКБ. Вам нужно будет всего лишь правильно подсоединить кабели устройства к клеммам батареи, а затем подключить батарею к электросети. Если зарядное устройство для зарядки аккумулятора авто качественное и современное, все остальное оно сделает само.

Как хранить аккумулятор зимой

Что делать, если вы не собираетесь пользоваться автомобилем зимой? Нужно создать правильные условия для хранения аккумулятора.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем Если это необслуживаемый АКБ, то ему подойдет хранение в гараже без какой-либо особой подготовки. А вот с обслуживаемыми все немного сложнее — их лучше снимать, чтобы хранить в тепле.

При хранении аккумулятора нужно соблюдать несколько правил:

  • Перед хранением нужно дозаправить АКБ электролитом и зарядить его.
  • Если храните батарею в жилом здании, лучше подготовить для нее проветриваемое помещение.
  • Температура воздуха должна быть не выше 25 °C. Не оставляйте батарею возле радиаторов отопления.
  • Нельзя хранить АКБ во влажной среде.

Наилучшее место для аккумуляторной батареи — отапливаемый гараж, закрытый балкон, лоджия, терраса или веранда.

Советы по хранению аккумулятора в зимний период

Если вы будете хранить батарею отдельно от автомобиля, придерживайтесь следующих советов:

  • Используйте при перезаправке готовый электролит или дистиллированную воду. Воду из-под крана использовать нельзя — она разрушит батарею.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем
  • Если в доме высокий уровень влажности, нужно обработать клеммы литолом. После этого их рекомендуется закрыть специальными колпачками или укутать в промасленную бумагу.
  • После того как установили АКБ в автомобиль, пусть авто полчаса поработает вхолостую. На протяжении одного дня постарайтесь минимально использовать электроприборы.
  • В случае потери батареей своих свойств, можно попробовать перезаправить ее и снова зарядить. Однако наилучший способ — профессиональная диагностика.
  • Осадок на дне банки, который появляется в результате разрушения электродов, говорит о необходимости заменить батарею.

Заключение

Соблюдая все эти правила и рекомендации, вы продлите термин эксплуатации своего авто и сохраните его работоспособность после зимы. Единственное условие — батарея должна изначально быть работоспособной. Чтобы убедиться в этом, стоит провести диагностику еще осенью.

Самый лучший способ подзарядки аккумулятора — зарядные устройства.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем Они автоматически регулируют ток заряда и уменьшают его по мере необходимости. Приобретя такое устройство, вы избавитесь от многих проблем, связанных с АКБ.

Аккумулятор и его обслуживание

Про стартерные аккумуляторы.

1. Техническое вступление

Назначение автомобильной аккумуляторной батареи понятно каждому мало-мальски сведущему в технических вопросах автолюбителю. С первой ее функцией — обеспечением запуска двигателя — мы сталкиваемся каждый день. Есть и вторая — реже применяемая, но от того не менее значимая — использование в качестве аварийного источника питания при выходе из строя генератора. Кроме того, на современных автомобилях с электроникой на борту аккумулятор выполняет роль сглаживателя пульсаций напряжения, выдаваемого генератором. Из этого следует, что следует крайне осторожно относиться к отключению аккумулятора на работающем двигателе. Карбюраторному двигателю ничего не будет, а вот как поведёт себя компьютер, управляющий современным двигателем — неизвестно.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем .. Можно загубить компьютер.

Все стартерные батареи, выпускаемые в настоящее время для автомобилей, являются свинцово-кислотными. В основу их работы заложен известный еще с 1858 г., и по сей день остающийся практически неизменным принцип двойной сульфатации.


Как наглядно видно из формулы, при разряде батареи (стрелка вправо) происходит взаимодействие активной массы положительных и отрицательных пластин с электролитом (серной кислотой), в результате чего образуется сульфат свинца, осаждающийся на поверхности электродов  и вода. В итоге плотность электролита падает. При зарядке батареи от внешнего источника происходят обратные электрохимические процессы (стрелка влево), что приводит к восстановлению на отрицательных электродах чистого свинца и на положительных — перекиси свинца. Одновременно с этим повышается плотность электролита.

Любая автомобильная батарея представляет из себя корпус — контейнер, разделенный на шесть изолированных ячеек — банок (см.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем рис.1).

Каждая банка является законченным источником питания напряжением порядка 2.1 В. В банке находится набор положительных и отрицательных пластин, отделенных друг от друга сепараторами. Как известно из школьного курса физики, две разнозаряженные пластины уже сами по себе являются источником постоянного напряжения, параллельное же их соединение увеличивает ток. Последовательное соединение шести банок и дает батарею с напряжением порядка 12.6 В. Любая из пластин, как положительная, так и отрицательная, есть ни что иное, как свинцовая решетка, заполненная активной массой. Активная масса имеет пористую структуру с тем, чтобы электролит заходил в как можно более глубокие слои и охватывал больший ее объем. Роль активной массы в отрицательных пластинах выполняет свинец, в положительных — перекись свинца.

Вес залитой АКБ ёмкостью 55 Ач составляет около 16 кг. Эта цифра складывается из массы электролита — 5кг (что соответствует 4,5 л), массы свинца и всех его соединений — 10 кг, а также 1 кг, приходящегося на долю бака и сепараторов.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем


2. Основные характеристики аккумуляторных батарей

 Зависимость ЭДС  ( грубо говоря напряжение на выводах аккумулятора) от плотности электролита выглядит так :

        р — приведенная к температуре 5°С плотность электролита , г/мл

2.1. Расход воды

Показатель, имеющий непосредственное отношение к степени обслуживаемости батареи. Определяется в лабораторных условиях. Батарея считается необслуживаемой, если она имеет очень низкий расход воды в эксплуатации. Необслуживаемые батареи не требуют доливки дистиллированной воды в течении года и более при условии исправной работы регулятора напряжения.

На расход воды прямое влияние оказывает процентное содержание сурьмы в свинцовых решетках пластин. Как известно, сурьма добавляется для придания пластинам достаточной механической прочности. Однако у каждой медали есть обратная сторона. Сурьма способствует расщеплению воды на кислород и водород, следствием чего является выкипание воды и снижение уровня электролита.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем

В батареях предыдущего поколения содержание сурьмы доходило до 10%, в современных этот показатель снижен до 1.5 %.

Панацею от этой беды фирмы видят в освоении т.н. кальциевой технологии — замене сурьмы  на кальций. Или заменяют сурьму на кальций только в положительных пластинах( т.н. гибридная технология). Кальций в решетке является веществом нейтральным по отношению к воде, не снижая при этом механической прочности решеток. А потому разложения воды не происходит и уровень электролита остается неизменным.

                                  Преимущества «кальциевых» АКБ — можно устанавливать в местах , не не требующих удобного доступа для обслуживания. Не требуется ( или очень мало требуется) доливать дистиллированную воду.

                                  Недостаток «кальциевых» АКБ — при глубоких разрядах происходит образование нерастворимых солей кальция и емкость АКБ  необратимо теряется. Отсюда следует: ни в коем случае не подвергать кальциевые АКБ контрольно-тренировочным циклам! Производители АКБ пытаются устранить этот недостаток добавлением в АКБ серебра и др.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем компонентов , результаты пока  не слишком обнадёживают.

2.2. Долговечность батареи

Средний срок службы современных АКБ при условии соблюдения правил эксплуатации — а это недопущение глубоких разрядов и перезарядов, в том числе по вине регулятора напряжения — составляет 4-5 лет.

Наиболее губительными для батарей являются глубокие разряды. Оставленные на ночь включенными световые приборы, либо другие потребители способны разрядить ее до плотности 1.12 — 1.15 г/см3, т.е. практически до воды, что приводит к главной беде аккумуляторов — сульфатации свинцовых пластин. Пластины покрываются белым налетом, который постепенно кристаллизуется, после чего батарею практически невозможно восстановить. Отсюда вытекает главный вывод — необходимо постоянно следить за состоянием батареи, периодически замерять плотность электролита. Особенно актуально это в зимнее время. Следует отметить, что сульфатация в определенных пределах — явление нормальное и присутствует всегда.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем (Вспомните — на основе теории двойной сульфатации построен принцип работы батарей). Но при малом разряде и последующей зарядке батарея легко восстанавливается до исходного состояния. Это возможно и при глубоком разряде батареи, но только в том случае, если следом сразу же последует заряд. Если же разряжать батарею длительное время, не давая ей «подпитки», то падение плотности ниже критического значения неизбежно приводит к образованию кристаллов сульфата свинца, не вступающих в реакцию ни при каких обстоятельствах. А это означает, что начался необратимый процесс сульфатации.

Опасен для батареи и перезаряд. Это происходит при неисправном регуляторе напряжения. При этом электролит начинает «кипеть» — происходит разложение воды на кислород и водород и понижение уровня электролита. Вот почему необходимо следить за зарядным напряжением. Естественно, это не составляет труда, если на панели приборов присутствует вольтметр. Если его нет? В этом случае  подключите тестер (в режиме вольтметра) между «+» и «массой» аккумуляторной батареи.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем Нормальный зарядный режим батареи обеспечивается в диапазоне 14,2±0.7В. В более древних авто напряжение в норме было порядка 14 В, в современных ближе к верхней границе 14,5…14,8 В. Если напряжение меньше — стоит проверить натяжение ремня, надежность контактных соединений цепей системы электроснабжения. Если же это не помогает — неисправность нужно искать в регуляторе напряжения. Также вина ложится на регулятор, если напряжение превышает 14.6…15 В.

В последнее время широкое распространение получили сепараторы карманного типа — т.н. конвертные сепараторы. Их название говорит за себя — в эти конверты помещают одноименно заряженные пластины. Таким образом,  осыпающаяся в процессе эксплуатации активная масса остается в конверте, тем самым предотвращается замыкание пластин.

2.3. Рекомендации по эксплуатации

Батарея, не эксплуатировавшаяся в течении длительного времени (4-5 мес.) нуждается в подзарядке. Связано это с тем, что батареям свойственно такое явление, как саморазряд.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем На графиках рис.2,3 показаны характеризующие саморазряд величины для различных батарей. В первом случае — это снижение плотности от времени хранения, во втором — падение напряжения.

Впрочем, зачастую подзарядки требует и находящаяся в эксплуатации батарея. Плотность полностью заряженной батареи составляет 1.27- 1.28 г/см3, напряжение — 12.7 В. О степени разряженности батареи судят по плотности электролита. Чем ниже плотность электролита, тем сильнее батарея разряжена. Уменьшение плотности на 0.01 г/см3 по сравнению с номинальной означает, что батарея разрядилась примерно на 6 — 8%. Используя график (см. рис.4) можно оценить зависимость степени разряженности батареи от плотности. Степень разряженности определяют по той банке, в которой плотность электролита минимальная. Всем известна аксиома, тем не менее позволим повторить ее еще раз — батарею, разряженную летом более, чем на 50%, а зимой более, чем на 25%, необходимо снять с автомобиля и зарядить.Плотность аккумулятора в зимний период: Батарейка на зиму — журнал За рулем При этом следует помнить, что пониженная плотность зимой более опасна, т.к. кроме всего прочего может привести к замерзанию электролита. Так, при плотности электролита 1.2 г/см3 температура его замерзания составляет около -20°С.

Также необходимо подзарядить батарею, если плотность в разных банках отличается более, чем на 0.02 г/см3. Оптимальной является зарядка батареи током, равным 0.05 от ее ёмкости. Для батареи с ёмкостью 55 Ач эта величина составляет 2.75 А. Чем меньше зарядный ток, тем глубже заряд. Однако не стоит впадать в крайность — при совсем низком токе батарея просто не «закипит», к тому же время зарядки будет несравнимо большим. Наоборот, при очень большом токе батарея «закипит» значительно быстрее, но при этом не успеет зарядиться на все 100%. Признаками окончания зарядки служит бурное выделение газа (т.н. «кипение») и неизменяющаяся на протяжении 1-2 часов плотность электролита.

Для ориентировочной оценки времени, требуемого на зарядку батареи, можно воспользоваться следующим алгоритмом.

Первоначально, используя график (рис.4) необходимо определить степень разряженности батареи, исходя из реальной плотности АКБ, замеренной ареометром. Далее по степени разряженности определяем потерянную ёмкость (или ёмкость, которую необходимо принять батарее).
Затем, выбрав величину зарядного тока, вычисляем ориентировочное время зарядки по формуле:

Тут следует отметить, что не вся энергия идет на повышение ёмкости. КПД процесса составляет 40-80%, остальное тратится на нагрев. Потому реальное время увеличивается примерно вдвое от расчетного (что и учитывается коэффициентом «2» в формуле).

Нужно сказать, что использование данного алгоритма оправдано лишь для облегчения процедуры, но ни в коей мере не избавляет от контроля за ходом зарядки. Процесс заряда, а особенно его окончание Вам необходимо контролировать самому, дабы не прозевать начало бурного кипения.

Другой вариант — использование для этих целей автоматических зарядных устройств, отличающихся по конструкции. Суть одна — по напряжению на выводах батареи, току в каждый момент времени и времени заряки зарядное устройство вычисляет и обеспечивает оптимальный для заряда ток.  При этом зарядное устройство перестает давать ток, если батарея полностью заряжена.

Для примера определим время зарядки батареи ёмкостью 55 Ач током в 5А, плотность которой составляет 1.25 г/см3. Как видно из графика, при данной плотности батарея разряжена на 25%, что означает потерю ёмкости на величину

Оптимальным же способом зарядки батареи, является ее заряд от бортовой сети автомобиля (естественно, при условии исправности последней). При данном способе, во первых, невозможен перезаряд, а во-вторых, происходит постоянное перемешивание электролита и наиболее полное его проникновение во внутренние слои активной массы.

Однако было бы ошибочным полагать, что заряд батареи начинается сразу же после пуска двигателя и продолжается все время, пока двигатель в работе. Исследования показывают, что батарея  принимает заряд в сильной зависимости от прогрева электролита .

Именно этим и опасен довольно распространенный  способ эксплуатации транспортных средств. Холодный запуск зимой с получасовым движением до работы, и затем редкие непродолжительные поездки на протяжении рабочего дня не дают прогреться электролиту и, следовательно, зарядиться Вашей батарее. Тем самым разряженность АКБ увеличивается изо дня в день и в итоге может привести к печальному результату.

Физические процессы, происходящие при пуске двигателя, отличаются от процессов при разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та ее часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы. Нормальный запуск двигателя при однократном вращении стартера в течении 10с забирает ёмкость 300А х 10с = 3000 Ас = 0.83 Ач, что составляет около 1.5% от ёмкости аккумулятора.

При медленном же разряде участвуют не только поверхностные слои активной массы, но и глубинные, потому и разряд происходит более глубокий. Однако это не означает, что стартерные режимы не так губительны для батареи — стартером точно также можно разрядить батарею до критической величины.

Каковы же признаки выхода из строя батареи? Батарея не заряжается, плотность низкая и не повышается в процессе заряда. Большой саморазряд — батарея зарядилась, но не держит заряд. Можно попытаться потренировать батарею, однако если произошло осыпание активной массы пластин, либо кристаллизация сульфата свинца, то это уже не исправить.

Вообще, освоить способ оценки степени возможной разрядки батареи от каких-либо действий (в том числе и осознанных) не составит большого труда. Необходимо усвоить несколько истин и запомнить несколько цифр.

Для ВАЗовских автомобилей эти цифры имеют следующие значения:

Модель автомобиля

2101-2106

2108-2109 , 1111

2110

ток отдачи на холостом ходу

16

24

35

ток отдачи на номинальных оборотах

42

55

80

Как видно из таблицы, на последних моделях автомобилей Волжского автозавода устанавливаются генераторы, имеющие характеристики тока отдачи, в два раза превосходящие по величине характеристики генераторов первых моделей.

И наконец примерное потребление энергии автомобильными потребителями:

Таким образом, оставленные включенными габариты за три часа «съедят» 4А х 3ч= 12 Ач ёмкости батареи, что соответствует разряду приблизительно на 20%. Это не страшно для одного раза. Однако повторив это ещё раз, Вы уже рискуете не завести свою машину, особенно, если дело происходит зимой, т.к. разряд составит порядка 40% (тем более, что к тому же зимой батареи, как правило, эксплуатируются более разряженными).

Аналогично можно прикинуть, что Вы имеете при продолжительной работе двигателя на холостом ходу. Как уже показано выше, ток отдачи генератора автомобиля ВАЗ-2108 на холостом ходу составляет 24А. Вычитаем из этой величины 2А, необходимые для обслуживания системы зажигания. Остается 22А. Используя таблицу 2, нетрудно прикинуть, что можно включать с тем, чтобы хоть немного досталось бы и аккумулятору.

Для владельцев иномарок с автоматической коробкой передач картина ещё более сложная. Обычно, стоя в пробке или на светофоре, Вы не переключаетесь на нейтраль, а давите ногой на тормоз. Это понижает обороты двигателя от стандартных 800-900 об./мин. до 600-700 об./мин., что, соответственно понизит ток, выдаваемый генератором, а стоп-сигналы добавят ещё пару ампер потребления тока. Да и обогрев заднего стекла у немцев, например, существенно мощнее чем у отечественных автомобилей.

Следует знать, что зимние условия эксплуатации автомобиля в принципе очень тяжелы для аккумуляторной батареи. Наверняка будут полезны следующие данные. Результаты  исследований говорят о том, что при эксплуатации автомобиля в очень тяжелых условиях (испытания по так называемому режиму «город-зима-ночь») аккумулятор получает порядка 1Ач в час. Следовательно, если, как в примере, приведенном выше, при запуске двигателя (зимой, при работе стартера 10 сек) расходуется 0,83 Ач энергии аккумулятора, то для восполнения этой энергии двигатель должен проработать 0,83*1=0,83 час=50 минут.

3. Терминологя

Аккумуляторная батарея — один из основных элементов электрооборудования автомобиля, поскольку она накапливает и хранит электроэнергию, обеспечивает запуск двигателя в различных климатических условиях, а также питает электроприборы при неработающем двигателе.

Автомобильные свинцово-кислотные 12-вольтовые АКБ состоят из 6-ти последовательно соединенных элементов (банок), объединенных в общий корпус. Из каждой банки осуществляется газоотвод, конструкции  могут существенно отличаться.

Электролит представляет собой раствор серной кислоты в дистиллированной воде (для средней полосы России плотностью 1.27-1.28 г/см3 при t=+20°С). Кипение электролита — бурное выделение газа при электролитическом разложении воды с выделением кислорода и водорода. Это происходит во время заряда батареи.

Саморазряд — самопроизвольное снижение ёмкости АКБ при бездействии. Скорость саморазряда зависит от материала пластин, химических примесей в электролите, его плотности, от чистоты верхней части корпуса батареи и продолжительности ее эксплуатации.

Напряжение полностью заряженной аккумуляторной батареи без нагрузки (ЭДС — электродвижущая сила) должно находиться в пределах 12.6-12.9 В. Напряжение в бортовой сети автомобиля при работающем двигателе несколько выше, чем на клеммах АКБ, и должно находиться в пределах 13,8-14,8 В (0,2 В от крайних значений). Значение напряжения ниже 13.8 В ведет к недозаряду батареи, а выше 14.4В — к перезаряду, что  пагубно сказывается на ее сроке службы.

Полярность аккумуляторной батареи — термин, определяющий расположение токосъемных выводов на ее корпусе. На зарубежных батареях полярность может быть прямой или обратной, т. е. ориентировка положительного и отрицательного выводов относительно корпуса может быть различной. По российскому стандарту (если смотреть со стороны выводов) отрицательный (-) должен располагаться справа, положительный (+) слева.

Емкость батареи — способность батареи принимать и отдавать энергию — измеряется в ампер-часах (Ач). Для оценки ёмкости батареи принята методика 20-ти часового разряда током 0.05С20 (т.е. током, равным 5% от номинальной ёмкости). Т.е., если ёмкость батареи 55Ач, то разряжая ее током 2.75 А, она полностью разрядится за 20 часов. Аналогично для батарей ёмкостью 60Ач полный 20-ти часовой разряд произойдет при чуть большем токе разряда — 3А.

Данная характеристика определяет возможность питать потребителей в экстремальной ситуации (при отказе генератора). Характеризуется объемом активной массы.

Значение тока холодного старта при -18°С (по DIN) — Величина тока, которую батарея способна отдать при пуске двигателя при температуре -18°С. Наиболее важная характеристика, напрямую сказывающаяся на пуске двигателя. Ведь при -20°С ток, потребляемый стартером, составляет порядка 300А. (Для пуска в летнее время горячего двигателя этот же показатель равен 100-120А.) Значение стартового тока определяется конструкцией батареи, пластин, сепараторов.  Чем ниже внутреннее сопротивление батареи, тем выше стартовый ток, тем надежнее пуск двигателя при низких температурах.

Резервная ёмкость — время, в течении которого батарея сможет обеспечить работу потребителей в аварийном режиме. Величина резервной ёмкости, выраженная в минутах, последнее время все чаще проставляется изготовителями батарей после значения тока холодного старта.

Корпус современных АКБ изготавливается из пластмассы, в большинстве случаев полупрозрачной, позволяющей контролировать уровень электролита.

Необслуживаемые батари. Сразу следует оговориться, что этот термин не должен пониматься буквально и восприниматься как руководство к бездействию. Это название говорит об улучшенных потребительских свойствах батареи. Необслуживаемые АКБ требуют долива воды не чаще одного раза в год при условии использования их на автомобилях с исправным электрооборудованием и среднегодовым пробегом 15-20 тыс. км. Встречаются конструкции, исключающие всякое вмешательство на всем протяжении срока службы, но они особенно критичны к состоянию автомобильного электрооборудования.

Большинство необслуживаемых батарей выпускаются заводами-изготовителями, залитыми электролитом. Так как эти батареи имеют значительно меньший саморазряд, они могут храниться от 6 месяцев до 1 года без подзаряда. Саморазряд новых необслуживаемых батарей за 12 месяцев может составить до 50% от номинальной ёмкости.

4. Маркировка АКБ

На современные аккумуляторные батареи наносится следующая маркировка:

Несмотря на то, что после ёмкости стоит значение 280А, цифра, интересующая нас и показывающая ток холодного старта по принятому у нас стандарту DIN равна 255А.

Обозначения основных характеристик на батареях различных производителей отличаются друг от друга. Большинство европейских производителей и значительная их часть в Азии руководствуются промышленным стандартом Германии DIN 43539 часть 2, который оговаривает два основных параметра: ёмкость батареи, измеряемую в ампер-часах (Ач) при +25°С, и ток стартерного разряда в амперах (А) при -18°С.

Батареи американских производителей испытываются по требованию американского стандарта SAE J537g, который включен в международный стандарт BCI и также вводит два основных параметра: резервную ёмкость, измеряемую в минутах при +27°С, и ток холодной прокрутки — в амперах при -18С. Стандарт SAE не предусматривает измерение ёмкости батареи в ампер-часах.

Первый рассматривает способность батареи к длительным разрядам меньшими токами, второй — разряд большими токами, но за меньший отрезок времени.

Пересчет значения тока стартерного разряда по европейскому стандарту DIN в ток холодной прокрутки по американскому стандарту SAE может производиться с помощью экспериментальных коэффициентов. Для батарей ёмкостью до 90Ач используется коэффициент 1.7, т. е. ISAE = 1.7 IDIN. Для батарей ёмкостью от 90 до 200 Ач используется коэффициент 1.6, т. е. ISAE = 1.6 IDIN.

В настоящее время в Европе наряду с немецким стандартом DIN введен новый единый стандарт En — 60095-1/93.

Кроме того, на необслуживаемых батареях проставляется соответствующая надпись. Чаще всего на русском, английском или немецком языке (либо на языке производителя, как например, на испанских батареях «Tudor»).

5. Выбор и покупка АКБ

Убедитесь, что выбираемая батарея соответствует конструктивным особенностям вашего автомобиля (ёмкость, место установки, способ крепления, полярность, форма и размер токосъемных выводов). Специализированные торговые фирмы имеют каталоги всего ассортимента, в которых систематизирована информация о модификациях и технических характеристиках.

Нецелесообразно на автомобиль с устаревшей системой электрооборудования устанавливать батарею, исключающую долив воды. Это приведет к сокращению ее срока службы или отказу.

Емкость батареи не должна существенно отличаться от указанной заводом-изготовителем автомобиля. Несоблюдение этого условия приводит к резкому сокращению службы как батареи так и стартера.

Очень неплохо знать рекомендуемую величну пускового тока стартера для Вашего автомобля. На многих  автомобилях устанавливаются стартеры с редуктором. Это позволяет существенно уменьшить величину пускового тока в первые моменты запуска, особенно в сильные морозы, а значит существенно продлить жизнь Вашего аккумулятора.

Внимательно изучите текст гарантийного талона. Обратите особое внимание на те разделы, где перечислены: случаи, исключающие гарантийное обслуживание; адреса гарантийных мастерских; условия эксплуатации.

Маркировка аккумулятора должна иметь ссылку на стандарт (DIN, SAE, En или другие). В маркировке по стандарту SAE не указывается значение ёмкости в ампер-часах (Ач). Указание ёмкости в Ач в стандарте SAE – косвенный признак подделки. Наиболее подвержены подделкам дорогие аккумуляторы известных фирм-изготовителей, поэтому приобретать их лучше в торговых фирмах, заслуживающих доверие.

Большинство фирм-изготовителей кодирует дату выпуска АКБ. Современные необслуживаемые батареи допускают достаточно длительное хранение без существенной потери своих потребительских свойств, поэтому дата изготовления менее актуальна. Предпочтительнее приобретать залитый качественным заводским электролитом аккумулятор. Он готов к работе, легко поддается проверке. Не залитый сухозаряженный аккумулятор требует дополнительного времени и затрат на подготовку к эксплуатации.

Не спешите отдать деньги! Вы вправе требовать проверки аккумулятора. Первым делом сдерите с него защитную упаковочную пленку, какой бы красивой она ни была, и убедитесь, что корпус не поврежден – такое случается довольно часто. Затем попросите продавца измерить плотность электролита – она не должна быть ниже номинальной более чем на 0,02 г/см3 и одинаковой во всех банках, что соответствует примерно 80-процентной заряженности батареи. Последнюю проверку следует провести с нагрузочной вилкой – ее вольтметр должен показать 12.5–12.9 В при отключенной нагрузке, а при включенной – не опускаться в течение 10 секунд ниже 11В.

В случае отклонения от этих значений, батарея может оказаться частично или полностью непригодной к эксплуатации.

Если вам отказывают в проверке аккумулятора, не могут подтвердить качество товара сертификатом, гарантийным талоном, то лучше отказаться от покупки.

6. Установка АКБ

Перед установкой батареи обязательно полностью удалите с нее полиэтиленовую пленку. Газоотводные отверстия должны быть открытыми. Обратите внимание на правильность подключения. Клеммы АКБ рекомендуется зачистить и после закрепления смазать вазелином. Это делается для предохранения контактов от попадания влаги и окисления места контактов. Особенно это касается силовых проводов с медными (а не свинцовыми) наконечниками.

Очень важно уделить внимание проводам. Клеммы необходимо зачистить не только со стороны аккумулятора, но и с другой стороны. Место, куда крепится массовый провод (-) надо тоже тщательно зачистить от краски, масла и прочей грязи. Контакт затянуть туго. Это же касается клеммы на стартёре. Невнимание к проводам и контактам может очень сильно «выйти боком» зимой на морозе.

Батарея должна стоять на своём месте жёстко. Болтание её в крепёжных элементах недопустимо. Дополнительная вибрация скажется на долговечности батареи. Замыкание и осыпание пластин в банках чаще всего происходят именно из-за вибрации.

Обратите внимание, что на многих автомобилях батарея стоит довольно близко к выпускному коллектору. То есть летом ей будет довольно жарко, а это для батареи очень плохо! На «правильных» машинах предусмотрена термоизоляция АКБ от двигателя.

7. Рекомендации по эксплуатации и обслуживанию

Условия эксплуатации оказывают существенное влияние на срок службы аккумуляторной батареи. Частые запуски двигателя и поездки на короткие расстояния, неисправности электрооборудования (стартер, генератор, реле-регулятор), дополнительные потребители электроэнергии, несвоевременное обслуживание, ненадежное крепление батареи способны сильно сократить срок ее службы.

При продолжительном движении по трассе батарея может перезаряжаться (кипеть) — в городе с малыми пробегами и «пробками» она, как правило, разряжается (см. выше).

Генератор (при холостых оборотах двигателя) зимой не обеспечивает работу большинства штатных потребителей, не говоря о дополнительных.  К включенным габаритным огням, ближнему свету фар, стоп-сигналам, указателям поворота, аудиоаппаратуре добавляются обогрев заднего стекла и вентилятор отопителя. Ежедневный недозаряд батареи постепенно уменьшает ее ёмкость, что в итоге приводит к невозможности запуска двигателя стартером.

Отказ аккумуляторной батареи может быть вызван и током утечки в электрооборудовании автомобиля. Это происходит, когда при отключении всех потребителей один или часть из них остается включенным в электрическую цепь (неисправны выключатель или реле). Виновником может быть и сигнализация. После глубокого разряда АКБ может не восстановить свою первоначальную номинальную ёмкость. Батарея не сможет нормально работать, если для запуска двигателя требуется продолжительное включение стартера (неисправны системы питания, зажигания).

7.1. Обслуживание АКБ в процессе эксплуатации сводится к проверке и приведению в соответствие с требованиями: уровня и плотности электролита; чистоты и надежности крепления электрических соединений батареи с корпусом автомобиля, параметров электрооборудования, крепления батареи. Необходимо также следить за правильным натяжением ремня генератора, очищать и смазывать выводы и клеммы, содержать батарею в чистоте. Протирайте верхнюю поверхность водным раствором питьевой соды. Доведение плотности электролита до требуемой производится путем заряда батареи от стационарного зарядного устройства.

Значение зарядного тока в амперах (А) не должно превышать 1/10 ёмкости батареи (упрощенно).

7.2. Продление жизни новой батарее

Коротко об этом сказать трудно. В первую очередь, следует залить электролит, точно соответствующий не только климатической зоне, но и сезону эксплуатации. Если батарея будет работать только в теплое время года, то плотность электролита может быть 1.20 г/см3, а если до -15°С — 1.24 г/см3 и т.д. Такая точность, безусловно, снизит скорость сульфатации пластин, следовательно, увеличит долговечность батареи.

На срок службы АКБ значительно влияет средняя степень заряженности, которая зависит от исправности реле-регулятора. Необходимо, чтобы эта величина поддерживалась не ниже 75%.

Во-первых, отрегулируйте двигатель так, чтобы он легко заводился с полоборота. Это предохранит АКБ от глубокого разряда. При пуске двигателя стартером через аккумуляторную батарею проходит ток в несколько сот Ампер, что не способствует ее долговечности. Поэтому, чем легче пуск двигателя, тем лучше для АКБ: она прослужит дольше.

Во-вторых, отрегулируйте при необходимости реле-регулятор, чтобы напряжение было в пределах 13.8…14.4В. (Для кальциевых батарей 14,1…14,6)  Это одно из важнейших условий.

 В-третьих, никогда не позволяйте снизиться уровню электролита в банках ниже требуемого.

Эти простые советы, продлят жизнь АКБ.

Кроме этого, специалисты советуют при наличии зарядного устройства при любой возможности (например, на ночь) ставить аккумуляторную батарею на подзарядку малым током — около 1…2А. Для этого можно АКБ не снимать с автомобиля. Только эта операция, если ее проделывать регулярно, не реже одного раза в месяц, увеличивает срок службы батареи по крайней мере на год.

7.3. Зарядка аккумулятора зарядным устройством

Ну а теперь как заряжать? Для этого служат выпрямители постоянного тока. Автолюбители их называют зарядными устройствами. Они бывают с ручной регулировкой или автоматические. Перед зарядкой необходимо открыть все газовые каналы: вывернуть пробки, снять крышки банок. При зарядке важны три параметра: напряжение, ток зарядки и время. Максимальное напряжение выпрямителя не должно быть слишком высокое, лучше, если оно регулируется. Когда аккумулятор частично процентов на 25 разряжен, то начальный ток заряда при включении выпрямителя может резко скакнуть вверх. Отрегулируйте его на номинал не выше 1/10 ёмкости аккумулятора или меньше, если вольтметр уже показывает напряжение близко к 14V. Т.е., если у Вас батарея имеет маркировку 55Ah — максимальный ток 5.5. Далее в процессе зарядки напряжение будет расти, а ток уменьшаться. Считается, если ток не уменьшается в течение последних 2-3 часов, то аккумулятор заряжен. Важно помнить, что нельзя вести заряд большим током более 25 часов. Электролит сильно нагреется и выкипит, пластины от нагрева может повести и они замкнут друг на друга. Обычно нормальное время полного заряда около 15 часов.

Иногда необходимо выровнять плотность небольшим током. Например, если плотность электролита в разных банках 1.23, 1.25. Включив выпрямитель, устанавливем ток зарядки порядка 2А. Иногда ниже, ориентируюсь по вольтметру: опять же не выше 14V. Время такой зарядки до двух суток. Особенно это необходимо делать после того, как аккумулятор разряжен в ноль бесплодными попытками завести двигатель. При чём, делать это надо сразу, пока не началась сульфатизация пластин.

Батареи, исключающие долив воды, должны заряжаться только устройствами с автоматическим поддержанием зарядного напряжения. Несоблюдение этого условия приведет к снижению их срока службы. Благо, сейчас зарядных устроиств продаётся множество типов. Среди них встречаются достаточно умные (например «Кулон»), позволяющие контролировать ток, напряжение заряда, время и суммарную ёмкость заряда. И стоят эти зарядные устройства совсем не дорого — примерно половину цены приличного аккумулятора.

Конкретные требования по режиму заряда, эксплуатации и обслуживанию должны быть изложены в инструкции или гарантийном талоне, прилагаемом к батареям.

Изготовители не предусматривают добавление в электролит стабилизирующих и улучшающих препаратов. Для доведения уровня электролита до нормы недопустимо использовать электролит! В аккумуляторную батарею доливают только дистиллированную воду. Не используйте воду сомнительного происхождения. При частом выкипании проверьте электрооборудование автомобиля.

Необходимо знать, что при сильном снижении уровня электролита внутри корпуса аккумулятора может образоваться опасная концентрация газовой смеси. Чтобы исключить вероятность взрыва, нельзя подносить к батарее открытое пламя (даже сигарету) и допускать искрение электроконтактов. Системы газоотвода некоторых современных батарей более взрывобезопасны. В средней полосе России АКБ не требуют корректировки плотности электролита при смене сезонов.

Перед зимней эксплуатацией автомобиля сделайте обслуживание не только аккумуляторной батареи (см. выше), но и систем, влияющих на запуск двигателя. Обязательно залейте моторное масло, соответствующее сезону. Для облегчения запуска двигателя в сильные морозы занесите батарею на несколько часов в теплое помещение.

Перед длительной зимней стоянкой также обслужите батарею, но не храните ее в теплом помещении, а оставьте на автомобиле со снятыми клеммами. Чем ниже температура, тем меньше скорость ее саморазряда.

Недопустимо оставлять на морозе разряженную батарею. Электролит низкой плотности замерзнет, и кристаллы льда приведут ее в негодность. Плотность электролита разряженного аккумулятора может снизиться до 1,09 г/см3, что приведет к его замерзанию уже при температуре -7°С. Для сравнения –электролит плотностью 1.28 г/см3 замерзает при t=-65°С.

Опрокидывание аккумуляторной батареи и слив электролита могут привести к замыканию пластин и выходу ее из строя.

Для борьбы с паразитными токами утечки заведите себе привычку вытирать корпус батареи насухо от всякой нечисти. Если совсем в лом, то хотя бы делайте чистый круг вокруг плюсовой клеммы, чтобы разорвать паразитные электрические связи. Ну, а если Вы любите свою машину, то разведите немного соды в воде и протрите всю поверхность корпуса батареи и вытрете ее насухо. Все тряпки, которые прикасались к аккумулятору выбросить! А за одно проверите крепление батареи, уровень электролита и его плотность. Времени это займёт минут 10-15, а сэкономить может часы и кучу нервов.

8. Особенности эксплуатации АКБ в зимний период

Перво-наперво замерим плотность электролита во всех банках без исключения. Норма 1.27-1.28 г/см3. У Вас далеко не так? Значит снимаем батарею и ставим на зарядку. И это однозначно! Ни в коем случае не пытаемся повысить плотность электролита добавлением концентрированной кислоты, какая бы низкая не была его плотность. Желаемого же результата — повышения ёмкости батареи при этом не произойдет.

Далее. Обязательно провести ревизию всех силовых проводов, клемм и контактов. Клеммы зачистить мелкой шкуркой. Контакты на АКБ тоже зачистить и затянуть. Можно затем смазать литолом, чтобы к контактам не попадала влага.. С другой стороны силовых проводов так же провести ревизию контактов.

8.1. Прикуривание от другого автомобиля

Для российских автовладельцев нормальная ситуация, когда сосед просит «прикурить» его аккумулятор. Для этой нехитрой процедуры помимо автомобиля с заряженным аккумулятором, необходимы ещё и правильные провода. Те провода, что продаются на рынках имеют просто ужасное качество. Мало одного того, чтобы эти провода были медными и достаточно большого сечения. Необходимы очень качественные «крокодилы», обеспечивающие большую площадь контакта и большое усилие зажима, и необходим хороший контакт между проводом и «крокодилом». Не забываем, что по этим проводам у нас потечёт около 200 ампер!

Чтобы не навредить сложным электронным системам вашей собственной машины, эта, казалось бы, элементарная процедура требует соблюдения строгой последовательности действий.

1. Соедините красный кабель с клеммой (+) на заряженном аккумуляторе.
2. Соедините другой конец красного кабеля с клеммой (+) на «севшем» аккумуляторе.
3. Соедините черный кабель с клеммой (-) на заряженном аккумуляторе.
4. Соедините другой конец черного кабеля с чистой точкой заземления на блоке двигателя или на шасси, главное — подальше от аккумулятора, карбюратора, топливных шлангов и т.п. В момент подсоединения будьте готовы к небольшой искре.
5. Следите, чтобы оба кабеля не касались движущихся деталей.
6. Запустите автомобиль с заряженным аккумулятором и дайте ему поработать не менее одной минуты.
7. Попробуйте запустить автомобиль с «севшим» аккумулятором. Если двигатель не заведется, подождите несколько минут и повторите попытку. Если же заведется, дайте ему поработать несколько минут в таком положении.
8. Выключите автомобиль с заряженным аккумулятором.
9. При отсоединении кабеля следуйте описанной выше процедуре в обратной последовательности.

9. Особенности эксплуатации АКБ в летний период

Не удивляйтесь, если однажды вам будет трудно или вообще не завести машину в жаркую погоду. Теплое время года — такое же испытание, как и холод. Тепло ускоряет химические процессы. Неисправности и дефекты электрической системы автомобиля или аккумулятора незамедлительно скажутся на состоянии батареи. Но, скорее всего, узнаете вы об этом в самый неподходящий момент. Например, ночью во время дождя, когда придется включить освещение, вентиляцию и стеклоочистители. Поэтому не расслабляйтесь. Лето — самый подходящий период для покупки нового аккумулятора.

Летом автомобилист не сразу заметит, что в аккумуляторе плотность электролита и его уровень в банках недостаточные. Но чем выше температура окружающей среды, тем активнее электрохимические процессы. В результате электролиза кислород вступает во взаимодействие с пластинами, а ставший свободным водород испаряется. Таким образом из электролита исчезает вода. Как только уровень раствора оказывается ниже уровня пластин, начинается сульфатация пластин (сульфат свинца растворяется в электролите, а затем оседает на поверхности пластин уже в виде крупных нерастворимых кристаллов и происходит изоляция пластин от электролита). Емкость батареи уменьшается. Электрохимические реакции останавливаются. Аккумулятор выходит из строя.

Имейте в виду, что во время длительного хранения аккумулятора происходит саморазряд (снижение ёмкости). Оставлять батарею в разряженном состоянии не рекомендуется: в этом случае вода испаряется и открываются пластины. А дальше все, как описано выше.

Саморазряд увеличивается от высокой температуры, грязи и электролита (воды) на крышке батареи. Еще одна причина возникновения паразитных токов — неодинаковая плотность электролита в разных банках и на разных уровнях. Это может произойти после доливки большого количества воды. Чтобы избежать неприятностей, зарядите аккумулятор или проедьте на машине, чтобы плотность раствора сравнялась.

Ускорение электролиза способствует уплотнению активной массы. Этой “болезнью” страдают отрицательные пластины, активная масса которых во время эксплуатации постепенно уплотняется, а ее пористость уменьшается. Доступ электролита внутрь отрицательных пластин затрудняется, что снижает ёмкость батареи. К тому же уплотнение активной массы может сопровождаться образованием трещин и отслаиванием.

Пластины коробятся при увеличении силы зарядного тока, при коротком замыкании, понижении уровня электролита, частом и продолжительном включении стартера, когда батарея нагружается разрядным током большой силы. Чаще короблению подвержены положительные пластины, при этом в их активной массе образуются трещины, и она (активная масса) начинает выпадать из решеток.

Причиной выпадения активной массы из решеток пластин может стать длительная перезарядка, плохое крепление пластин, вибрация и т.д. Осыпающийся активный слой в конце-концов замыкает пластины, сокращает мощность и срок службы. В современных аккумуляторах пластины помещаются в конверт-сепараторы; осадок выпадает, но короткого замыкания удается избежать.

Летом вентиляционные отверстия забиваются пылью. Чтобы батарея не лопнула и не взорвалась следите за чистотой аккумулятора. Пробки заливных отверстий должны быть плотно закрыты.

Во-первых, следите за уровнем электролита и регулярно доливайте дистиллированную воду. Во-вторых, не оставляйте батарею незаряженной. В-третьих, следите за чистотой корпуса. В-четвертых, следите за состоянием электрической системы автомобиля. Неисправный стартер и генератор совершенно незаметно “подготовят” батарею к зиме и с первыми морозами она откажет.

Если вы планируете заменить аккумулятор, лучше не ждать до осени. В сезон выбор значительно меньше, цены выше, а желающих больше. В любом случае потребуется помощь подготовленного продавца-консультанта. Летом он сможет больше уделить вам времени.

10. Вопросы безопасности

Помните, что опасность возгорания кислорода и водорода, выделяющихся во время зарядки (а также после ее завершения), вполне реальна.

Хотя большинство серьезных производителей оборудуют крышки аккумуляторов ограничителями пламени, призванными предотвратить его попадание внутрь аккумулятора, подобная вероятность по-прежнему сохраняется.

Помните также, что искра возникает не только при отсоединении клеммы. Статического электричества от синтетической одежды может оказаться достаточно, чтобы вызвать взрыв.

Взрыв аккумулятора можно сравнить по мощности с выстрелом из ружья 12-го калибра. Результат представляет собой жуткое зрелище, и происходит это чаще, чем вы можете себе представить. Например, в осторожной Америке в год бывает более десяти тысяч подобных случаев.

При том, что взрыв, вероятно, не будет смертельным, он может серьезно травмировать вас, особенно лицо, так как осколки пластика разлетаются во все стороны. Поэтому всегда следует быть в защитных очках.

Если вдруг позарез понадобилось отсоединить аккумулятор на машине с работающим мотором (лучше, конечно, не подвергать свой автомобиль таким испытаниям), прежде надо включить как можно больше потребителей электроэнергии: печку, фары, противотуманки, «дворники». Если этого не сделать, то может сгореть регулятор напряжения, а следом откажет электрооборудование и в том числе — системы управления двигателем. А для начала загляните в инструкции: позволяет ли она вообще производить такую операцию. Ведь на автомобилях некоторых марок, напичканных современной аппаратурой, любое отключение аккумулятора выводит из строя сложные электронные системы.

11. Хранение аккумуляторной батареи

Итак, при отсутствии возможности подзарядки во время хранения АКБ можно рекомендовать следующий способ. Электролит в аккумуляторе необходимо заменить 5-процентным раствором борной кислоты. Перед заменой электролита АКБ полностью заряжают, а затем сливают электролит в течение 15 минут. Затем ее сразу же промывают дважды дистиллированной водой, выдерживая воду по 20 минут. После промывки наливают раствор борной кислоты, заворачивают пробки с открытыми вентиляционными отверстиями, вытирают батарею и ставят на хранение. Саморазряд аккумуляторов с раствором борной кислоты практически отсутствует.

Хранить батарею надо при температуре не ниже 0°С, поскольку заливаемый 5-процентный раствор борной кислоты может замерзнуть. А для ввода такой батареи в действие из нее выливают раствор борной кислоты в течение 15…20 минут и сразу же заливают сернокислый электролит плотностью 1.38…1.40 г/см3 для нашей зоны. После 40-минутной пропитки пластин электролитом АКБ можно устанавливать на автомобиль, если плотность электролита не уменьшилась ниже 1.24…1.25 г/см3. Если она стала ниже, следует откорректировать плотность отбором слабого раствора и добавлением электролита плотностью 1.40 г/см

12. Приложения

12.2. Реанимация аккумулятора

 Имеем на руках убитый или почти убитый аккумулятор.
Нам понадобятся некоторые материалы и инструменты:

1) Свежий электролит(номинальной + желательно повышенной плотности)
2) Дистиллированная вода.
3) Измеритель плотности электролита(ареометр). Маленький!!! На большой вы не насосёте электролита со всего аккумулятора.
4) Зарядное устройство, способное обеспечить малые (0.05-0.4А) токи зарядки. Я использовал простейший самопал — блок питания от магнитофона, тестер в качестве ампер- и вольтметра плюс блок мощных резисторов для регулировки зарядного тока.
5) Десульфатирующая присадка к электролиту. Я использовал русскую присадку «Мечта», производство «НТК КУЛОН» г.С-Петербург, конверсионная).
6) Маленькая клизма (простите, надо!) и пипетка для наливных целей.

Для начала определимся с возможными неисправностями:

1) Засульфатированность пластин — ёмкость аккумулятора падает почти до нуля.
2) Разрушение угольных пластин — при зарядке электролит становится черным.
3) Замыкание пластин — электролит в одной из секций аккумулятора выкипает, секция греется. (Тяжелый случай, но иногда небезнадежный)
4) Перемёрзший аккумулятор — распухшие бока, электролит при заряде сразу вскипает (многочисленные замыкания пластин) — тут уж ничем не помочь, аминь, упокой Господь его душу!

Начнем с конца списка.(п.3) При замыкании пластин ни в коем случае не пытайтесь его заряжать! Начинаем промывку дистиллированной водой. Не бойтесь переворачивать и трясти аккумулятор, хуже уже не будет. Промывайте его до тех пор, пока не перестанет вымываться угольная крошка (надеюсь, этот момент наступит, иначе прекратите этот мазохизм). При промывке часто замыкание пластин устраняется, и мы переходим от пункта (3) к пункту (2). После промывки и вытряхивания всякого мусора из недр аккумулятора приступаем к пункту (1), а именно к устранению отложений солей на пластинах аккумулятора. Следуйте инструкциям к присадке. Мой опыт может отличаться от того, что вы прочтёте в инструкции. Далее я делаю так:

1) Заливаем аккумулятор электролитом номинальной плотности (1.28 г/см3).
2) Добавляем присадку, исходя из объёма аккумулятора (см. инструкцию)
3) Даём электролиту выдавить воздух из секций, а присадке — раствориться в течении 48 часов (!), при необходимости доливаем электролит до номинального уровня. Кстати, присадку можно растворить в электролите до заливки в аккумулятор, если, конечно, она хорошо растворяется.
4) Подключаем зарядное устройство(не забудьте снять пробки!). НО МЫ НЕ БУДЕМ ЕГО ЗАРЯЖАТЬ! НЕ СЕЙЧАС! Сначала мы будем гонять его по циклу «зарядка-разрядка», иначе «тренировка», то есть заряжать и разряжать его, пока не восстановится нормальная ёмкость. Выставляем ток зарядки в районе 0.1А и следим за напряжением на клеммах. Не давайте электролиту кипеть или нагреться! Если необходимо, уменьшите зарядный ток, пузырьки газа и перегрев разрушают аккумулятор! Заряжайте, пока напряжение на клеммах аккумулятора не достигнет 2.3 — 2.4В на каждую секцию, т.е. для 12-вольтового аккумулятора — 13.8-14.4 В.
5) Уменьшаем зарядный ток вдвое и продолжаем зарядку. Зарядку аккумулятора прекращаем, если в течении 2 часов плотность электролита и напряжение на клеммах остаются неизменными.
6) Доводим плотность до номинальной доливкой электролита повышенной плотности (1.4) или дистиллированной воды.
7) Разряжаем аккумулятор через лампочку током примерно в 0.5А до падения напряжения на клеммах до 1.7В на элемент. Для 12-вольтового аккумулятора эта величина составит 10.2В, для 6-вольтового 5.1 соответственно. Из имеющихся величин тока разряда и времени разряда вычисляем ёмкость нашего аккумулятора. Если она ниже номинальной (4 ампер-часа), то:
8) Повторяем цикл заряда с начала до тех пор, пока ёмкость аккумулятора не приблизится к номинальной.
9) Добавляем в электролит ещё немного присадки и закрываем отверстия аккумулятора. ВСЁ!!! Мы имеем на руках рабочий аккумулятор, который, исходя из моего опыта, иногда способен проработать дольше китайского!

Дальше обращаемся с аккумулятором, как положено.

12.4. Ещё несколько способов, основанных на использовании электрического тока.

Способ первый — простой. Электролит заменить дистиллированной водой и зарядить аккумулятор или батарею очень небольшим (примерно 0.01 ёмкости) током. При этом в банках степень сульфатации снижается и образуется электролит, который заменять не нужно. После двух часов зарядки ее прекращают на такое же время. А затем снова повторяют.

Доказано, что после одного-трех таких циклов степень сульфатации резко снижается.

Второй способ — это, по существу, вариант первого: заряд выполняется так называемым асинхронным током, т.е. через выпрямитель, который собран не по «мостовой» схеме, а в виде одного диода, параллельно которому подключен резистор сопротивлением на порядок больше прямого сопротивления диода. Некоторые современные зарядные устройства могут заряжать АКБ в таком режиме (режиме десульфатации).

Третий способ — способ химический, наиболее трудоемкий, но в безвыходном положении его  можно применить. Он включает следующие операции: заряд батареи в течение нескольких часов, слив электролита из банок, двух-трехкратная их промывка дистиллированной водой, заправка 2.5-процентным (25 г на 1 л) раствором питьевой соды и выдержка в течение 2…3 часов ( при этом сульфат свинца переходит в карбонат), слив раствора, заправка 2…3-процентным раствором поваренной соли, заряд батареи в течение 1ч ( карбонат свинца переходит в хлорид), слив раствора ( небольшая часть слаборастворимого хлорида свинца сливается, освобождая поры активной массы), промывка 4-процентным раствором питьевой соды, полный (из расчета 150-процентной ёмкости) заряд батареи, третья промывка банок, заправка их электролитом, полный (150-процентной ёмкости) заряд батареи. 

  Тест 16 АКБ 60 Аh обратной полярности За рулем 09/2008  http://www.zr.ru/a/16470

  Тест АКБ  габаритами 238х129х227    За рулем  10/2011 г.  http://www.zr.ru/a/368219/

АКБ: причины выхода из строя | Vincast.ru

Автомобильные аккумулятор ы требуют пусть не трепетного, но бережного отношения. Для них пагубны и сильный холод, и знойная жара. Но чаще всего их губит неправильная эксплуатация.

Причины выхода из строя автомобильного аккумулятора :

— Заряд автомобильного аккумулятора повышенным током. Последствия: перегрев электролита, коробление электродов, реже

— Разрушение сепараторов, осыпание активной массы и т. п.

— Систематический перезаряд автомобильного аккумулятора из-за неисправности системы «зарядки» автомобиля. Последствия: снижается уровень электролита, повышается его плотность, что ведет к сульфатации электродов.

— Перегрев автомобильного аккумулятора. В летнюю жару, если температура электролита превышает +35оС, процессы износа электродов активизируются.

— Загрязнение электролита. Автомобильный аккумулятор необходимо протирать чистой тряпкой. Если грязь попадет в электролит, то аккумулятор обречен.

— Долив недистиллированной воды. Электроды очень быстро теряют работоспособность, и автомобильный аккумулятор выходит из строя.

— Использование неспециализированного электролита из технической серной кислоты.

— Короткое замыкание. Оно может моментально вывести автомобильный аккумулятор из строя.

— Пониженное напряжение бортовой сети. Автомобильный аккумулятор систематически разряжается, плотность электролита снижена. Снижение емкости из-за низкой температуры, особенно в зимний период. Если вовремя не подзарядить автомобильный аккумулятор, он потеряет работоспособность. Поэтому даже необслуживаемые АКБ желательно эпизодически подзаряжать стационарной установкой.

— Замораживание автомобильного аккумулятора в сильные морозы ведет к снижению плотности электролита ниже допустимых значений. Корпус может дать трещину и электролит вытечет. Обычно такое случается, если доливают дистиллированную воду после постановки ма шины на стоянку, из-за чего она не смешивается с электролитом, или оставляют глубоко разряженную АКБ на морозе после безуспешных попыток пуска двигателя .

— Использование мощного неспециализированного пускового устройства для запуска холодного двигателя. Автомобильный аккумулятор может «взорваться» из-за вскипания электролита и избытка выделяемых газов.

— Глубокий разряд стартер ными токами. При затрудненном пуске, когда стартер перестает «проворачиваться», автомобильный аккумулятор разряжается до такой степени, что начинают коробиться и осыпаться пластины.

— Повышенная плотность электролита из-за снижения его уровня (по разным причинам). Если не доливать дистиллированную воду, аккумулятор выйдет из строя.

Как правильно обслуживать автомобильный аккумулятор.

Название «необслуживаемый» не отменяет ряда контрольных операций: проверка крепежа; затяжка наконечников на клеммах, своевременная их очистка от окислов; очистка корпуса от грязи; проверка вентиляционных каналов для удаление газа, образующегося в процессе работы автомобильного аккумулятора.

Заряжать автомобильный аккумулятор необходимо от источника постоянного тока. При этом устройство, предназначенное для заряда одной 12-вольтовой батареи, должно обеспечить возможность увеличения зарядного напряжения до 16,0—16,5 В, иначе зарядить необслуживаемую АКБ полностью (до 100%) не удастся.

Если уровень электролита доводить до нормы путем долива электролита, а не дистиллированной воды, автомобильный аккумулятор очень быстро выйдет из строя. Если совсем ничего не доливать, ресурс также существенно снизится.

Источник:

www.autovipclub.ru

Температурный эффект и термическое воздействие в литий-ионных аккумуляторах: обзор

https://doi.org/10.1016/j.pnsc.2018.11.002Получить права и содержание

Abstract

Литий-ионные аккумуляторы с высокой плотностью энергии (до до 705 Вт / л) и удельной мощности (до 10 000 Вт / л), демонстрируют высокую производительность и отличные рабочие характеристики. Литий-ионные батареи, являющиеся перезаряжаемыми батареями, служат источниками энергии в различных системах. Температура, как критический фактор, значительно влияет на производительность литий-ионных батарей, а также ограничивает применение литий-ионных батарей.Более того, разные температурные условия приводят к разным побочным эффектам. Точное измерение температуры внутри литий-ионных батарей и понимание температурных эффектов важны для правильного обращения с батареями. В этом обзоре мы обсуждаем влияние температуры на литий-ионные батареи как при низких, так и при высоких температурах. В обзоре также обсуждаются современные подходы к мониторингу внутренней температуры литий-ионных аккумуляторов с помощью как контактных, так и бесконтактных процессов.

Графический реферат

Литий-ионные батареи (LIB) с высокой плотностью энергии и удельной мощностью демонстрируют хорошие характеристики во многих различных областях. Однако производительность LIB все еще ограничивается влиянием температуры. Приемлемый температурный диапазон для LIB обычно составляет от -20 ° C до 60 ° C. Как низкие, так и высокие температуры, которые находятся за пределами этого региона, приведут к ухудшению рабочих характеристик и необратимым повреждениям, таким как нанесение литиевого покрытия и тепловой разгон.Таким образом, понимание влияния температуры и точное измерение температуры внутри литий-ионных батарей важны для правильного обращения с ними. Современные достижения в мониторинге температуры внутри LIB можно разделить на контактное и бесконтактное измерение. В этом обзоре дается обзор последних достижений как в понимании температурных эффектов, так и в мониторинге температуры, а также обсуждаются проблемы и возможные будущие направления в достижении оптимальной производительности батарей.

  1. Загрузить: Загрузить изображение в высоком разрешении (200KB)
  2. Загрузить: Загрузить полноразмерное изображение

Ключевые слова

Литий-ионный аккумулятор

Влияние температуры

Внутренняя температура

Управление батареями

Управление температурой

Рекомендуемые статьиЦитирующие статьи (0)

© 2018 Китайское общество исследования материалов. Опубликовано Elsevier B.V.

Рекомендуемые статьи

Цитирующие статьи

Произошла ошибка при настройке вашего пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файлах cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Быстрая зарядка литий-ионных аккумуляторов при любых температурах

Значимость

Беспокойство о запасе хода является ключевой причиной того, что потребители неохотно выбирают электромобили.Чтобы быть действительно конкурентоспособными с бензиновыми автомобилями, электромобили должны позволять водителям быстро перезаряжаться в любом месте в любую погоду, например, заправлять бензиновые автомобили. Однако ни один из современных электромобилей не поддерживает быструю зарядку при низких или даже низких температурах из-за риска литиевого покрытия, образования металлического лития, которое резко сокращает срок службы батареи и даже создает угрозу безопасности. Здесь мы представляем подход, который обеспечивает быструю зарядку литий-ионных аккумуляторов за 15 минут при любых температурах (даже при -50 ° C), сохраняя при этом значительный срок службы (4500 циклов, что эквивалентно> 12 лет и> 280000 миль электромобиля). срок службы), что делает электромобили действительно независимыми от погодных условий.

Аннотация

Быстрая зарядка является ключевым фактором массового внедрения электромобилей (EV). Ни один из современных электромобилей не выдерживает быстрой зарядки при низких или даже низких температурах из-за риска литиевого покрытия. Попытки включить быструю зарядку затрудняются из-за компромиссного характера литий-ионной батареи: улучшение возможности быстрой низкотемпературной зарядки обычно приносит в жертву долговечность элементов. Здесь мы представляем управляемую структуру ячеек, чтобы устранить этот компромисс и обеспечить быструю зарядку без литиевого покрытия (LPF).Кроме того, элемент LPF дает начало единой практике зарядки независимо от температуры окружающей среды, предлагая платформу для разработки материалов для аккумуляторов без температурных ограничений. Мы демонстрируем элемент LPF емкостью 9,5 Ач 170 Вт · ч / кг, который можно зарядить до 80% за 15 минут даже при -50 ° C (за пределами рабочего предела элемента). Кроме того, элемент LPF выдерживает 4500 циклов зарядки 3,5 ° C при 0 ° C с потерей емкости <20%, что в 90 раз увеличивает срок службы по сравнению с обычным элементом базовой линии и эквивалентен> 12 лет и> 280000 миль Срок службы электромобиля в таких экстремальных условиях использования, т.е.е., 3,5-C или 15-минутная быстрая зарядка при отрицательных температурах.

Электромобили (электромобили) имеют большие перспективы в решении проблем изменения климата и энергетической безопасности (1). Автопроизводители выстраиваются в очередь, чтобы наводнить рынок серией новых электромобилей. Несмотря на быстрое падение стоимости литий-ионных аккумуляторов (LiB) на 80% за последние 7 лет (2), рынок электромобилей по-прежнему составляет лишь около 1% годовых продаж легковых автомобилей. Беспокойство о запасе хода, страх, что у электромобиля может закончиться заряд во время поездки с водителем, который остался в затруднительном положении, долгое время считался ключевой причиной, по которой потребители неохотно выбирают электромобили.Это беспокойство усугубляется тем фактом, что подзарядка электромобилей обычно занимает гораздо больше времени, чем заправка автомобилей с двигателем внутреннего сгорания (ICEV). Исследования показали, что годовой пробег электромобилей увеличился более чем на 25% в районах, где водители имеют доступ к станциям быстрой зарядки, даже в тех случаях, когда быстрая зарядка использовалась для от 1 до 5% от общего числа случаев зарядки (3).

По всему миру идет захватывающая гонка за увеличение количества и мощности станций быстрой зарядки. BMW, Daimler, Ford и Volkswagen в прошлом году создали совместное предприятие (4), чтобы к 2020 году развернуть 400 «сверхбыстрых» зарядных станций по всей Европе с мощностью зарядки до 350 кВт, что позволяет заряжать электромобиль с пробегом 200 миль. (е.г., Chevy Bolt с батареей на 60 кВтч) за ∼10 мин. Honda также объявила о планах выпустить к 2022 году электромобили, способные к быстрой 15-минутной зарядке. Совсем недавно Министерство энергетики США объявило о финансировании проектов по разработке технологий сверхбыстрой зарядки (5), направленных на дальнейшее увеличение мощности зарядки до 400 кВт.

Критическим препятствием для быстрой зарядки является температура. Чтобы быть действительно конкурентоспособными с ICEV, быстрая зарядка электромобилей не должна зависеть от региона и погодных условий, так же, как заправка бензинового автомобиля.Зимой на половине территории США средняя температура ниже 0 ° C, как показано на рис. 1 A (6). Однако ни один из современных электромобилей не поддерживает быструю зарядку при низких температурах. Nissan Leaf, например, можно зарядить до 80% за 30 минут (заряд ~ 2 ° C) при комнатной температуре, но для зарядки того же количества энергии при низких температурах потребуется> 90 минут (заряд + . В суровых условиях большая поляризация анода может подтолкнуть потенциал графита ниже порога для литиевого покрытия (8, 9).

Рис. 1.

LPF Быстрая зарядка независимо от температуры окружающей среды. ( A ) Средняя зимняя температура в США. Половина из них <0 ° C, а 47 состояний <10 ° C. ( B ) Литературные данные о сроке службы при различных температурах, нормированные на срок службы при 25 ° C. Элемент LPF позволяет сместить парадигму от экспоненциальной линии обычных литий-ионных элементов к верхней горизонтальной линии.( C E ) Схематическое изображение структуры управляемого элемента для быстрой зарядки LPF. Ячейка ( C ) первоначально при температуре замерзания ( D ) проходит этап быстрого внутреннего нагрева, чтобы поднять ее температуру выше порогового значения (T LPF ), которое устраняет литиевое покрытие до того, как ( E ) становилось заряжен. Используется конструкция самонагревающейся батареи, которая имеет тонкую никелевую фольгу внутри элемента (подробности см. В приложении SI , рис. S4).Эта структура ячейки позволяет интеллектуально управлять разделением тока между никелевой фольгой (нагрев) и материалами электродов (зарядка) в зависимости от температуры ячейки (T , ячейка ). ( D ) Если ячейка T LPF , переключатель замыкается, чтобы направить весь ток в никелевую фольгу для быстрого нагрева (~ 1 ° C / с) без проникновения в материалы анода (без покрытия). ( E ) Как только элемент T > T LPF , переключатель размыкается, и весь ток уходит в электродные материалы для быстрой зарядки без литиевого покрытия.

Основным признаком литиевого покрытия является резкая потеря емкости в дополнение к угрозам безопасности. Действительно, недавние данные показали, что срок службы LiB значительно снижается с температурой. Коммерческий 16-Ач графит / LiNi 1/3 Mn 1/3 Co 1/3 O 2 элементы в европейском проекте Mat4Bat потеряли 75% емкости за 50 циклов при 1-C заряда при 5 ° C (10), хотя одни и те же клетки могут выдержать 4000 циклов при 25 ° C. Schimpe et al. (11) циклически повторяли идентичные элементы графит / LiFePO 4 при разных температурах.Ячейки при 25 ° C потеряли 8% емкости за 2800 эквивалентных полных циклов (EFC). При такой же потере емкости срок службы элементов сокращается до 1800 EFC при 15 ° C, 1400 EFC при 10 ° C и 350 EFC при 0 ° C. На рис. 1 B обобщены некоторые недавние данные (11⇓⇓⇓ – 15) в литературе о сроке службы при различных температурах, нормированные на соответствующий срок службы при 25 ° C. Можно отметить явное экспоненциальное падение жизненного цикла с температурой в соответствии с законом Аррениуса, предложенным Waldmann et al. (12). Даже при низкой температуре 10 ° C срок службы элементов составляет лишь половину от срока службы при 25 ° C.Стоит отметить, что в 47 из 50 штатов США зимой средняя температура ниже 10 ° C (рис. 1 A ). Даже при ежегодном усреднении ( SI Приложение , рис. S1) 23 состояния имеют температуру ниже 10 ° C. Таким образом, даже когда станции быстрой зарядки становятся повсеместными, потребители все еще не могут быстро заправлять свои электромобили в течение большей части года из-за низких температур окружающей среды.

По сути, на литиевое покрытие влияют скорость ионной проводимости и диффузии в электролите, диффузия лития в частицах графита и кинетика реакции на графитовых поверхностях.Все ключевые параметры, управляющие этими процессами, подчиняются закону Аррениуса и существенно падают с температурой ( SI Приложение , рис. S2). Таким образом, подключаемый гибридный элемент EV (PHEV), который может выдерживать заряд 4 ° C без литиевого покрытия при 25 ° C, может допускать заряд только 1,5 ° C при 10 ° C и C / 1,5 при 0 ° C для предотвращения литиевое покрытие ( SI Приложение , рис. S3), которое объясняет длительное время перезарядки современных электромобилей при низких температурах. Для повышения способности к быстрой зарядке исследования в литературе были сосредоточены на улучшении анодных материалов, таких как покрытие графита нанослоем аморфного кремния (16, 17), и разработке новых материалов, таких как титанат лития (18, 19) и графеновые шары (20), и по разработке новых электролитов (21, 22) и добавок (23).LiBs, однако, хорошо известны своей компромиссной природой между ключевыми параметрами (24). Улучшение одного свойства без ущерба для другого всегда нетривиально. Например, электролит с превосходными характеристиками при низких температурах довольно часто нестабилен при высоких температурах (23, 24). Точно так же уменьшение размера частиц и / или увеличение площади поверхности активных материалов Брунауэра – Эммета – Теллера (БЭТ) способствует быстрой зарядке, но при этом страдает срок службы батареи и безопасность. Чрезвычайно сложно, если вообще возможно, разработать материалы с высокой скоростью зарядки, сохраняя при этом долговечность и безопасность в широком диапазоне температур.

Здесь мы делаем попытку освободить науку об аккумуляторах от компромиссов. В частности, мы представляем структуру ячеек, которой можно активно управлять для достижения быстрой зарядки без литиевого покрытия (LPF) при любых температурах окружающей среды, что позволяет изменить парадигму соотношения между сроком службы и температурой (рис. 1 B ), с корреляция Аррениуса обычных LiB с горизонтальной линией, нечувствительной к температуре. Мы выбрали пакетные ячейки емкостью 9,5 Ач с графитовым анодом, LiNi 0.6 Mn 0,2 ​​ Co 0,2 ​​ O 2 (NMC622) катод и плотность энергии на уровне ячейки 170 Втч / кг для демонстрации. Со структурой элемента LPF элемент выдержал 4500 циклов (2806 EFC) зарядки 3,5-C при 0 ° C до достижения 20% потери емкости, что означает, что даже если электромобиль заряжается один раз в день в этих суровых условиях, Элемент LPF имеет срок службы 12,5 лет и может обеспечить дальность действия> 280 000 миль (при условии, что 1 EFC ≈ 100 миль). Это уже выходит за рамки гарантии большинства ICEV.Для сравнения, обычный LiB-элемент с идентичными материалами батареи в тех же условиях тестирования (заряд 3,5 ° C при 0 ° C) потерял 20% емкости всего за 50 циклов и 23 EFC.

Кроме того, в этой работе подчеркивается концепция унифицированной практики зарядки, независимой от температуры окружающей среды. Для электромобилей профили разряда батареи зависят от поведения водителей, но протоколы зарядки определяются производителями. Сегодняшние электромобили должны снижать скорость зарядки при понижении температуры из-за опасений по поводу литиевого покрытия.С помощью элемента LPF зарядка при любой температуре окружающей среды превращается в зарядку при оптимальной температуре всего за десятки секунд. Как показано здесь, элемент LPF может быть заряжен до 80% состояния заряда (SOC) за 15 минут даже при температуре окружающей среды -50 ° C. Более того, кривая зарядного напряжения при -50 ° C почти такая же, как и при 25 ° C. Эта унифицированная практика зарядки может значительно упростить управление аккумулятором и продлить срок его службы.

Кроме того, ячейка LPF предлагает платформу для материаловедов.Постоянной проблемой при исследовании материалов для аккумуляторов является поиск материалов, которые могут поддерживать хорошие характеристики в широком диапазоне температур. Поскольку температурные ограничения снимаются с ячейками LPF, исследователям нужно только оптимизировать характеристики материала около одной температуры.

Результаты и обсуждение

Контролируемая структура ячеек для быстрой зарядки LPF.

Ключевая идея быстрой зарядки LPF состоит в том, чтобы заряжать элемент всегда выше температуры, которая может препятствовать образованию литиевого покрытия, далее именуемой температурой LPF (T LPF ).Как показано на рис. 1 C E , этап быстрого внутреннего нагрева (рис. 1 D ) добавляется перед этапом зарядки (рис. 1 E ), чтобы гарантировать, что аккумулятор заряжен при температура выше T LPF .

Быстрый нагрев необходим для быстрой зарядки LPF, так как общее время зарядки, включая нагрев, ограничено от 10 до 15 минут. Обычные методы нагрева батареи с использованием внешних нагревательных устройств или систем терморегулирования ограничены внутренним конфликтом между скоростью нагрева и однородностью (т.е.е., высокая скорость нагрева приводит к неоднородной температуре и локализованному перегреву вблизи поверхности ячейки), как подробно описано в ссылке. 25; таким образом, их скорость нагрева ограничена ~ 1 ° C / мин (26), что означает, что нагрев от -20 ° C до 20 ° C уже займет> 40 мин. Добавляя время на зарядку, он уже не в категории быстрой зарядки. В этой работе мы используем самонагревающуюся структуру LiB (27), которая имеет тонкую никелевую (Ni) фольгу, встроенную в ячейку, которая может создавать огромный и равномерный нагрев, как показано в приложении SI , рис.S4. Фольга Ni является неотъемлемым компонентом отдельной ячейки вместе с электродами и электролитом. Он служит внутренним нагревательным элементом, а также внутренним датчиком температуры, поскольку его электрическое сопротивление линейно зависит от температуры ( SI Приложение , рис. S5). Кроме того, введение никелевой фольги добавляет только 0,5% веса и 0,04% стоимости по сравнению с обычным одиночным элементом LiB.

Стратегия управления, основанная на структуре самонагревающейся батареи, разработана в этой работе, как показано на рис.1 C E . Ключом к этой стратегии является интеллектуальное разделение входного тока между никелевой фольгой (нагрев) и материалами электродов (зарядка) в зависимости от температуры элемента (T cell ). Если T элемент LPF (Рис. 1 D ), постоянное напряжение, близкое к напряжению холостого хода элемента (OCV), применяется вместе с замыканием переключателя между положительной клеммой и клеммой активации. Поскольку напряжение элемента ≈ OCV, весь ток от источника заряда направляется к никелевой фольге, чтобы генерировать огромное внутреннее тепло, не проникая в материалы анода (без литиевого покрытия).Как только элемент T > T LPF (рис. 1 E ), переключатель открывается для перехода из режима нагрева в режим зарядки, при этом ток подается на материалы электродов без какого-либо риска литиевого покрытия.

Мы выбрали 9,5-Ач графитовые ячейки / пакет NMC622 для демонстрации быстрой зарядки LPF. Элементы имеют емкость 1,85 мАч / см 2 и плотность энергии на уровне элементов 170 Втч / кг. Выбор скорости заряда и T LPF основан на результатах моделирования потенциала осаждения Li (LDP) в приложении SI , рис.S3 с использованием откалиброванной модели LiB. В общем, T LPF должен иметь минимальную температуру, при которой можно избежать литиевого покрытия при данной скорости заряда. Хотя более высокая температура всегда благоприятна для устранения литиевого покрытия, она также может ускорить рост межфазной границы твердого электролита (SEI). В этой работе скорость заряда 3,5 C и T LPF ∼25 ° C выбраны на основе SI Приложение , рис. S3 C .

На рис.2 показан общий процесс быстрой зарядки LPF 9.Элемент емкостью 5 Ач при экстремальной температуре −40 ° C. Перед испытанием полностью разряженный элемент выдерживали в климатической камере при -40 ° C на> 12 часов. Чтобы гарантировать, что элемент не был заряжен (без литиевого покрытия) на этапе нагрева, при включении переключателя было приложено напряжение 3,15 В, что немного ниже, чем OCV (∼3,2 В) (см. Рис. 1 D ). ). Таким образом, весь входной ток проходил через никелевые фольги (рис. 2 E ) автоматически, не затрагивая материалы батареи.Поскольку напряжение ячейки было установлено на 50 мВ ниже, чем OCV, ячейка слегка разряжалась на этапе нагрева, которая постепенно увеличивалась до ~ 0,2 ° C к концу, когда ячейка стала нагретой (рис. 2 F ). Тем не менее, общая разрядная емкость на этапе нагрева составляет только 6,85 × 10 -3 Ач или 0,072% емкости элемента и, следовательно, несущественна. Благодаря сильному току, протекающему через Ni-фольгу, ячейка быстро нагревается (рис. 2 C ).Когда температура поверхности достигала 20 ° C, выключатель открывался для завершения этапа нагрева, а затем ячейка отдыхала 10 с для релаксации внутреннего температурного градиента. Как показано на рис. 2 G , температура Ni-фольги, самая высокая температура внутри ячейки, была <45 ° C во время нагрева и быстро падала и достигала температуры поверхности около 27 ° C после 10-секундного периода покоя. Это означает, что быстрый нагрев не вызывает никаких опасений по поводу безопасности. После этого ячейка переключилась в режим заряда с использованием протокола постоянного тока постоянного напряжения (CCCV) при токе 3.5 C ограничено напряжением отсечки 4,2 В до достижения 80% SOC. Весь процесс занял 894,8 с (14,9 мин), включая 61,6 с нагрева и 10 с термической релаксации.

Рис. 2.

Быстрая 15-минутная зарядка при −40 ° C. ( A D ) Эволюция ( A ) напряжения элемента, ( B ) разделение тока между никелевой (Ni) фольгой и элементом, ( C ) температура поверхности и ( D ) SOC . Первоначально ячейка была при 0% SOC и -40 ° C, с OCV ~ 3.2 В. Весь процесс зарядки был разделен на этап быстрого внутреннего нагрева, за которым следовала 10-секундная пауза, а затем зарядка CCCV (3,5 ° C, 4,2 В) до достижения 80% SOC. ( E и F ) Интеллектуальное управление разделением тока между никелевой фольгой и материалами электродов в процессе нагрева. ( E ) Весь входной ток проходит в никелевые фольги, а ( F ) незначительный ток проходит в материалы анода (без покрытия) на этапе нагрева. ( G ) Эволюция температуры поверхности и температуры Ni-фольги во время стадий нагрева и релаксации.

Для сравнения идентичную базовую ячейку заряжали без этапа быстрого нагрева с использованием того же протокола CCCV при -40 ° C ( SI, приложение , рис. S6). Из-за чрезвычайно медленной электрохимической кинетики и транспорта электролита и, следовательно, высокого внутреннего сопротивления, напряжение элемента достигло предела 4,2 В сразу после зарядки ( SI Приложение , рис. S6 A ), а пусковой ток составлял всего ∼0,2 C. ( SI Приложение , рис. S6 B ).Зарядный ток медленно восстанавливался при медленном повышении температуры ( SI Приложение , рис. S6, C ) из-за ограниченной скорости тепловыделения. Максимальный зарядный ток составлял всего 0,85 C, и потребовалось 115 минут, чтобы достичь 80% SOC, что в 7,7 раза больше, чем у элемента LPF.

Как правило, при очень низких температурах можно разработать батарею, которая разряжает разумный процент емкости; однако зарядить аккумулятор с разумной скоростью практически невозможно.Это происходит из-за асимметричной электрохимической кинетики заряда по сравнению с разрядкой, преобладающей в электрохимии. С другой стороны, приложения обычно требуют более высокой скорости зарядки для экономии времени. Представленный здесь способ нагрева-заряда с помощью самонагревающейся конструкции батареи позволяет разделить процессы заряда и разряда за счет быстрой модуляции внутренней температуры; таким образом, он способен преодолевать более слабую электрохимическую кинетику зарядки, чем разряд, для широкого набора электрохимических ячеек накопления энергии.

Унифицированная кривая зарядки, не зависящая от температуры окружающей среды.

На рис. 3 сравнивается зарядка элемента LPF на 9,5 Ач при различных температурах окружающей среды (−50 ° C, −40 ° C, −20 ° C и 0 ° C). Протокол испытаний был одинаковым для всех случаев: ( и ) полная разрядка при 25 ° C, а затем охлаждение до температуры испытания; ( II ) быстрое нагревание путем приложения постоянного напряжения 3,15 В до тех пор, пока температура поверхности не станет> 20 ° C; ( iii ) 10-секундное расслабление; и ( iv ) зарядка CCCV (3.5 C, 4,2 В) до 80% SOC. Видно, что кривые напряжения практически одинаковы во всех случаях, несмотря на огромную разницу в температуре окружающей среды (рис. 3 A ). Нагрев ячейки с -50 до 20 ° C (∼1 ° C / с) занял 69 с, а от 0 ° C до 20 ° C (0,66 ° C / с) — 30,2 с. Более быстрый нагрев при более низкой температуре окружающей среды выиграл от снижения сопротивления фольги Ni с повышением температуры ( SI Приложение , рис. S5), что привело к более высокому току нагрева при более низкой температуре (рис. 3 C ).Даже в случае -50 ° C этап нагрева составлял только 7,6% времени всего процесса. Общее время зарядки элемента до 80% SOC было одинаковым во всех четырех случаях (рис. 3 B , 905,7 с при –50 ° C и 863,2 с при 0 ° C, разница ∼5%). Таким образом, жесткие ограничения температуры окружающей среды на время зарядки, как и во всех современных электромобилях, полностью снимаются с помощью элемента LPF.

Рис. 3.

Единая практика зарядки вне зависимости от температуры окружающей среды. ( A ) Кривые напряжения элемента LPF при различных температурах окружающей среды.Во всех испытаниях элемент прошел этап быстрого нагрева при 3,15 В до достижения температуры поверхности> 20 ° C, выдерживался в течение 10 с, а затем заряжался постоянным током 3,5 ° C с последующим постоянным напряжением 4,2 В. до достижения 80% SOC. ( B ) Сводка времени нагрева и общего времени, демонстрирующая, что ограничения температуры окружающей среды на время зарядки устранены. ( C и D ) Эволюция ( C ) тока через никелевую фольгу и ( D ) температуры поверхности ячейки на этапе быстрого нагрева.

Температура поверхности и фольги Ni достигла ∼27 ° C после 10-секундной термической релаксации ( SI Приложение , рис. S7) во всех четырех случаях, что указывает на то, что начальная точка зарядки аналогична. Таким образом, кривые напряжения при последующей зарядке CCCV были очень похожими ( SI, приложение , рис. S8, A ). Немного более высокое напряжение при более низкой температуре окружающей среды было приписано большему перепаду температуры во время зарядки ( SI Приложение , рис. S8, B ) из-за сильного охлаждения в климатической камере.При улучшении теплоизоляции и управления можно ожидать, что кривая зарядки станет унифицированной и независимой от температуры окружающей среды. Унифицированная кривая заряда может значительно упростить систему управления батареями и повысить точность оценки состояния батареи (SOC, состояние здоровья и т. Д.) И, следовательно, чрезвычайно полезна для электромобилей.

Следует отметить, что современные электромобили, в принципе, также могут быть нагреты до> T LPF перед зарядкой, используя системы терморегулирования вне отдельных элементов; однако изначально низкая скорость внешнего нагрева (<1 ° C / мин) не позволяет решить проблему быстрой зарядки.Кроме того, поскольку автомобильные элементы становятся все больше и толще для снижения стоимости производства, скорость внешнего нагрева должна быть дополнительно снижена, чтобы избежать локального перегрева на поверхности элемента (25). Наш метод вставки никелевой фольги обеспечивает быстрый и равномерный внутренний нагрев независимо от размера ячейки (равномерность нагрева может быть гарантирована добавлением нескольких никелевых фольг). Этот метод также может быть применен к ячейкам другой геометрии. Например, фольга Ni может образовывать оболочку, обернутую вокруг первой половины цилиндрического рулона с желе перед намоткой второй половины, таким образом помещая ее прямо в середину рулона с желе для цилиндрической ячейки.Несколько примеров конструкций из никелевой фольги для различных типов и форм-факторов ячеек можно найти в ссылке. 28. Кроме того, поток тока внутри элемента между нагревательным элементом и материалами батареи активно регулируется, обеспечивая плавное переключение между режимом быстрого нагрева и режимом зарядки в зависимости от температуры элемента. Даже в экстремальном случае -50 ° C, когда электролит уже перестает работать, элемент LPF по-прежнему заряжается до 80% SOC за 15 минут, как и при комнатной температуре, что еще раз демонстрирует свой потенциал сделать электромобили действительно региональными и погодными. -независимый.

Замечательный срок службы за счет отсутствия литиевого покрытия.

Мы также демонстрируем устранение литиевого покрытия в элементе LPF. Зарядка ячейки LPF при 0 ° C сравнивается с двумя стандартными ячейками базовой линии с идентичными материалами и электродами, которые были заряжены по тому же протоколу CCCV (3,5 ° C, 4,2 В) до 80% SOC без этапа нагрева. Одна базовая ячейка была протестирована при 0 ° C, а другая — при 25 ° C. Как показано на рис. 4 A , кривая напряжения ячейки LPF при 0 ° C после этапа быстрого нагрева почти перекрывалась с кривой напряжения базовой ячейки при 25 ° C, с очень небольшой разницей из-за разницы в температуре. (Инжир.4 B ). Однако базовая ячейка при 0 ° C имеет гораздо более высокое напряжение, чем две другие ячейки из-за ее высокого внутреннего сопротивления. Все три ячейки были оставлены в разомкнутой цепи после зарядки до 80% SOC, и кривые напряжения во время релаксации сравниваются на рис. 4 C . Четкое плато напряжения наблюдается на кривой релаксации базовой ячейки при 0 ° C, что приводит к локальному пику на кривой дифференциального напряжения (рис. 4 D ). Плато напряжения и пик дифференциального напряжения указывают на появление металлического лития, и, таким образом, являются четким доказательством того, что покрытие литием произошло в 3.5-C зарядка базового элемента при 0 ° C. В двух других случаях напряжение элемента быстро падает до относительно стабильного значения, что указывает на отсутствие литиевого покрытия во время зарядки.

Рис. 4.

Замечательный срок службы элемента LPF. Сравнение базовых ячеек при 0 ° C и 25 ° C с ячейкой LPF при 0 ° C с точки зрения напряжения ( A, ) и ( B ) температуры поверхности во время зарядки и ( C, ) напряжения и ( D ) производная от напряжения во время релаксации ячейки после зарядки.Все элементы были заряжены током 3,5 ° C, ограниченным 4,2 В, пока они не достигли 80% SOC. Плато напряжения в C и локальный пик дифференциального напряжения в D базовой ячейки при 0 ° C указывают на удаление металлического лития. ( E ) Сохранение емкости в зависимости от количества циклов для элемента LPF и цикла базовой ячейки с зарядкой 3,5 ° C при температуре окружающей среды 0 ° C.

Отсутствие литиевого покрытия значительно увеличило срок службы при низких температурах. Велоспорт-тесты проводились с 3.Зарядка 5-C до 4,2 В с последующим 2-минутным перерывом и затем разряд 1-C до 2,7 В. Для элемента LPF этап быстрого нагрева при постоянном напряжении 3,4 В выполнялся в начале каждого цикла и завершался. при Т ячейка > 20 ° С с последующей 10-секундной релаксацией. Ячейки полностью охлаждались до 0 ° C после этапа разряда перед началом следующего цикла. Изменения напряжения и температуры во время цикла приведены в приложении SI , рис. S9 (один цикл) и в приложении SI , рис.S10 (10 циклов). Пропускная способность каждого цикла указана в приложении SI , рис. S11. Циклические испытания периодически приостанавливались для калибровки емкости элемента с эталонным тестом производительности (RPT) при 25 ° C ( SI, приложение , рис. S12). Измеренная разрядная емкость C / 3 в RPT была нанесена на график зависимости от номера цикла на рис. 4 E как для базовой линии, так и для ячеек LPF. Базовая ячейка потеряла 20% емкости всего за 50 циклов, тогда как ячейка LPF выдержала 4500 циклов при том же сохранении емкости, что составляет 90-кратное увеличение срока службы.Даже если водители электромобилей выполняют быструю зарядку один раз в день, 4500 циклов означают 12,5 года работы. При преобразовании в EFC (т. Е. Общая емкость, разряженная во время цикла, деленная на номинальную емкость 9,5 Ач), было получено 2806 EFC при сохранении емкости 80%, что в 122 раза больше по сравнению с базовой ячейкой (23 EFC). Предполагая 100-мильный запас хода на EFC (например, BMW i3), 2806 EFC указывают на срок службы> 280 000 миль, что намного превышает гарантии современных ICEV.

Две вышеуказанные ячейки на рис.4 E далее сравнивают с дополнительными базовыми клетками, один цикл прошел при 10 ° C, а другой — при 22 ° C. Эти две базовые ячейки изначально были при 20% SOC и заряжались и разряжались фиксированным объемом, равным 60% SOC свежих элементов в каждом цикле, с CCCV (3 C, 4,2 В) зарядом и 1-C разрядом. Поскольку протоколы циклирования несколько отличаются, сохранение емкости этих ячеек показано в зависимости от EFC на рис. 5 A . Отметим, что элемент с зарядкой 3-C при 10 ° C продержался всего 317 EFC при сохранении 80% емкости.Более того, элемент LPF при 0 ° C имеет даже более длительный срок службы, чем элемент базового уровня при 22 ° C. Причина двоякая. Во-первых, поскольку литиевое покрытие исключается, доминирующим механизмом старения является рост SEI, который зависит в первую очередь от температуры. Как показано в приложении SI , рис. S10 B , на участках разряда и охлаждения элемента LPF температура ниже 22 ° C. Средняя температура ячейки LPF в 10 циклах, показанных в SI Приложение , рис. S10 B , составляет 11,6 ° C, что намного ниже средней температуры базовой ячейки (~ 28 ° C).Таким образом, рост SEI в клетке LPF в целом был медленнее, чем в базовой клетке. Во-вторых, базовая ячейка заряжалась фиксированным значением емкости в каждом цикле, что равнялось 60% SOC свежей ячейки, но становилось больше, чем 60% SOC по мере разрушения ячейки. Таким образом, базовый элемент был заряжен до более высокого SOC, чем элемент LPF (заряжен до 4,2 В, без постоянного напряжения) на поздней стадии цикла. Более высокий SOC также приведет к более быстрому росту SEI.

Рис. 5.

Смена парадигмы влияния температуры окружающей среды на старение клеток.( A ) Сравнение срока службы элемента LPF при зарядке 3,5 ° C при 0 ° C с одинаковыми базовыми элементами при разных температурах. ( B ) Скорость старения в зависимости от обратной температуры четырех ячеек в A . Скорость старения определяется как отношение потери мощности (в процентах) к EFC в конце срока службы и отображается в логарифмической шкале. ( C ) Скорость старения HE ячеек следующего поколения (с толстым электродом) в литературе. Оптимальная температура зарядки HE EV ячеек сдвигается с ∼25 ° C для существующих PHEV ячеек до ∼40 ° C до 50 ° C.

Рис. 5 B дополнительно сравнивает скорость старения в вышеупомянутых четырех случаях, которая определяется как отношение потери емкости (в процентах) к EFC в конце срока службы и отображается в логарифмической шкале в зависимости от обратной температуры. Для базовых ячеек логарифм скорости старения в зависимости от 1 / T может быть описан линейной линией, подтверждающей, что скорость старения обычных LiB соответствует закону Аррениуса (12). Энергия активации оценивается в -1,37 эВ, что находится в пределах диапазона, указанного в литературе (29).Отметим, что скорость старения ячейки LPF при 0 ° C снизилась на два порядка по сравнению с базовой базовой ячейкой и стала близкой к скорости старения базовой ячейки при комнатной температуре, что указывает на сдвиг парадигмы в соотношении между скорость старения и температура окружающей среды.

LPF Быстрая зарядка высокоэнергетических элементов при повышенной температуре.

Для будущих электромобилей дальнего действия требуется плотность энергии на уровне системы не менее 225 Втч / кг, что требует плотности энергии на уровне элементов> 300 Втч / кг (30).Типичный подход к увеличению плотности энергии на уровне ячейки — увеличение площади поверхности (и толщины) электродов. Однако элементы с более толстыми анодами более склонны к нанесению литиевого покрытия из-за большего сопротивления переносу электролита. Недавняя работа (30) показала, что ячейка-пакет из графита / NMC622 с поверхностной нагрузкой 3,3 мАч / см 2 , ∼1,8 × ячейки PHEV в этой работе, потеряла 22,5% емкости за 52 цикла заряда 1,5-C при 30 ° С. После демонтажа старого элемента было обнаружено большое количество металлического лития, что указывает на то, что покрытие литием может быть серьезной проблемой в элементах с высокой энергией (HE) даже при комнатной температуре.

Возможный подход к устранению литиевого покрытия в элементах HE заключается в дальнейшем повышении температуры зарядки. Как показано в приложении SI , рис. S2, увеличение с 25 ° C до 45 ° C увеличивает кинетику интеркаляции лития на 5,6 раза, коэффициент диффузии лития в графите на 2,4 раза и проводимость электролита на 1,4 раза, и, следовательно, может способствовать снижению содержания лития. покрытие. SI Приложение , рис. S13 показывает прогнозируемый моделью LDP ячейки HE, имеющей 1,65-кратную емкость площади и толщину ячейки PHEV в этой работе.Отметим, что максимальный ток заряда при 25 ° C без литиевого покрытия падает с 4 C для элемента PHEV ( SI, приложение , рис. S3, C ) до ∼1,5 C для элемента HE ( SI, приложение , рис. .S13 A ) из-за увеличенной толщины электрода. Если заряжать элемент при 45 ° C, максимальная скорость заряда элемента HE может быть увеличена до 3 C. Действительно, недавние исследования показали, что элементы с толстыми электродами имеют более длительный срок службы при 40-45 ° C, чем при температуре от 40 ° C до 45 ° C. комнатная температура.Группа Йоссена (31) сообщила, что ячейка графит / LiCoO 2 с анодом толщиной 77 мкм (1,6 × настоящей работы) потеряла 30% емкости за 250 циклов с зарядкой 1 ° C при 25 ° C, но потеряла только Емкость 5% после 400 циклов при 40 ° C. Аналогичным образом группа Винтера (32) обнаружила, что срок службы элемента из графита / NMC532 с анодом толщиной 77 мкм увеличился с 400 циклов при 20 ° C до 1100 циклов при 45 ° C при сохранении емкости 70%. Совсем недавно исследователи из Samsung (20) разработали элемент HE с возможностью зарядки 5 ° C при 60 ° C.

Рис. 5 C сравнивает скорость старения вышеупомянутых клеток HE с клетками PHEV в этой работе. Также добавляется скорость старения ячейки PHEV при 45 ° C. Как сообщается в литературе (33), старение клеток является комбинированным эффектом роста SEI и литиевого покрытия. Для элемента PHEV 25 ° C достаточно высока, чтобы предотвратить образование литиевого покрытия при скорости заряда 3,5 ° C ( SI Приложение , рис. S3). Дальнейшее повышение до 45 ° C сократило срок службы до 613 EFC при сохранении емкости 80% из-за более быстрого роста SEI.Для клеток HE, однако, полезно работать при температуре от ~ 40 ° C до 45 ° C из-за уменьшения литиевого покрытия, которое превосходит негативные последствия более быстрого роста SEI. Следовательно, работа при более высоких температурах может быть многообещающим подходом для увеличения срока службы клеток HE. В этом отношении нагревание было бы важным шагом для зарядки аккумуляторных батарей. Учитывая изначально низкую скорость внешнего нагрева, нынешний элемент LPF имеет большие перспективы для электромобилей следующего поколения, поскольку он может практически мгновенно модулировать внутреннюю температуру элемента по запросу.

В широком смысле научное достоинство описанного здесь элемента LPF состоит в том, что он предлагает общее решение для разделения кинетики заряда и разряда в науке об аккумуляторах и для ускорения зарядки аккумулятора без необходимости использования новых материалов или химического состава. Он также предлагает платформу для материаловедов для разработки более совершенных материалов для аккумуляторов без учета температуры. Что касается приложений, настоящая работа надолго устраняет давние ограничения температуры окружающей среды на зарядку аккумулятора, позволяя использовать широкий спектр новой электроники и устройств, таких как всепогодные смартфоны, наружные роботы, дроны и микроспутники, работающие на больших высотах, а также новые приложения, такие как спасение машин, застрявших в снегу, и исследования в космосе и Арктике.

Методы и материалы

Пакеты для LPF емкостью 9,5 Ач были изготовлены с использованием NMC622 в качестве катода, графита в качестве анода и 1 M LiPF 6 , растворенного в этиленкарбонате (EC) / этилметилкарбонате (EMC) (3: 7). по массе) + 2 мас.% виниленкарбоната (ВК) в качестве электролита. Элементы имеют емкость 1,85 мАч / см 2 и плотность энергии на уровне элементов 170 Втч / кг. Каждая ячейка LPF имеет два куска никелевой фольги, встроенных внутрь, как показано в приложении SI , рис.S4. Каждая Ni-фольга толщиной 30 мкм и сопротивлением 80,2 мОм при 25 ° C покрыта тонким (28 мкм) полиэтилентерефталатом для электрической изоляции и зажата между двумя односторонними анодными слоями. Две трехслойные сборки уложены друг на друга внутри ячейки и соединены параллельно, при этом одна сборка расположена на 1/4 толщины ячейки, а другая — на 3/4 толщины ячейки от верхней поверхности ячейки. Более подробную информацию о материалах, изготовлении, структуре и испытаниях ячеек можно найти в SI Приложение , Методы и материалы .

Благодарности

Финансовая поддержка Департамента охраны окружающей среды Пенсильвании; EC Power, LLC; и Министерство энергетики США присуждено награду DE-EE0006425. Мы также благодарны EC Power за предложение программного обеспечения AutoLion, которое было приобретено Gamma Technologies.

Сноски

  • Вклад авторов: X.-G.Y., G.Z., and C.-Y.W. спланированное исследование; X.-G.Y., G.Z. и S.G. проводили исследования; X.-G.Y. и С.-Y.W. проанализированные данные; и X.-G.Y. и C.-Y.W. написал газету.

  • Авторы заявляют об отсутствии конфликта интересов.

  • Эта статья представляет собой прямое представление PNAS.

  • Эта статья содержит вспомогательную информацию на сайте www.pnas.org/lookup/suppl/doi:10.1073/pnas.1807115115/-/DCSupplemental.

% PDF-1.7 % 507 0 объект > эндобдж xref 507 96 0000000016 00000 н. 0000003262 00000 н. 0000003573 00000 н. 0000003702 00000 н. 0000003779 00000 п. 0000003801 00000 п. 0000003875 00000 н. 0000003907 00000 н. 0000003993 00000 н. 0000004568 00000 н. 0000004737 00000 н. 0000004893 00000 н. 0000005053 00000 н. 0000005168 00000 п. 0000005281 00000 п. 0000005439 00000 н. 0000005572 00000 н. 0000005707 00000 н. 0000005840 00000 н. 0000006608 00000 п. 0000006956 00000 п. 0000007128 00000 н. 0000007186 00000 н. 0000007264 00000 н. 0000007844 00000 н. 0000008626 00000 н. 0000009013 00000 н. 0000009457 00000 н. 0000009675 00000 н. 0000009883 00000 н. 0000010687 00000 п. 0000010873 00000 п. 0000011178 00000 п. 0000011397 00000 п. 0000011964 00000 п. 0000012049 00000 п. 0000012940 00000 п. 0000013806 00000 п. 0000014258 00000 п. 0000014682 00000 п. 0000014751 00000 п. 0000015043 00000 п. 0000015246 00000 п. 0000015542 00000 п. 0000015911 00000 п. 0000016704 00000 п. 0000017493 00000 п. 0000017987 00000 п. 0000018049 00000 п. 0000018183 00000 п. 0000018210 00000 п. 0000019014 00000 п. 0000019526 00000 п. 0000019596 00000 п. 0000020309 00000 п. 0000025992 00000 п. 0000026318 00000 п. 0000026581 00000 п. 0000026851 00000 п. 0000030331 00000 п. 0000034592 00000 п. y 퀧 SaS6! W = г YSolJ * Y? Gkj] thIWOo]: j {VOXɭzFRg͜m [Qvb «zt / wɝ: OMTk6 ‘= v + tYϏ {= wb Ⰺ_ VdJϵYO> ~ nXZu + b @ n / # k2ZƖ, e% g _4uJm / z9% {ϢS / _yojW7bnwi /

Выбор

батарей для электромобилей вызывает вопросы о будущем спросе на кобальт

Недавнее возрождение использования безкобальтовых аккумуляторов, особенно на китайском рынке аккумуляторов, подняло вопросы о будущем спроса на кобальт в секторе электромобилей (EV).

Использование кобальта в литий-ионных батареях всегда вызывало озабоченность из-за его высокой стоимости, а также использования детского труда в «кустарной добыче полезных ископаемых» в Демократической Республике Конго (ДРК), где производится 60% мирового производства кобальта. производится.

Тем не менее, участники рынка полагают, что кобальт останется ключевым фактором в грядущем бума электромобилей — несмотря на то, что Tesla объявила о планах полностью избавиться от кобальта в ближайшем будущем.

Возобновление энтузиазма в отношении катодов на основе литий-железо-фосфатного (LFP) катода стало проявляться в Китае во второй половине прошлого года после того, как местное правительство сократило субсидии на электромобили наполовину по сравнению со своей предыдущей политикой.

Предел 25 000 юаней на единицу для автомобилей с запасом хода более 400 км, сохраненный в этом году, не считался достаточным для покрытия затрат на производство существующих катодов с высоким содержанием никеля, которые выше, чем затраты на катоды LFP.

Усовершенствования технологий, которые увеличили удельную энергию LFP, что означает увеличение дальности движения, в этом году еще больше укрепили старую технологию. В некоторых случаях это новое поколение катодов LFP достигало уровней плотности энергии, аналогичных тем, которые используют химические соединения с высоким содержанием никеля.

Например, китайский автопроизводитель BYD

заявил, что его новая модель Han с питанием от LFP будет иметь запас хода 605 км. Так называемая батарея LFP Blade от BYD дала лучшие результаты за счет модернизации конструкции ячеек и блоков. Новый подход «элемент-батарея» позволял составлять 60% упаковки из батарей по сравнению с 40% в предыдущих технологиях.

Tesla также развивает свой выбор аккумуляторов. Американский производитель электромобилей всегда использовал катоды из никель-кобальт-алюминия (NCA), но использовал катоды LFP без кобальта, поставляемые CATL для стандартной линейки Model 3, произведенные на недавно открывшемся заводе в Шанхае.Автомобиль имеет запас хода 468 км.

На мероприятии «День батареи» в сентябре генеральный директор Tesla Илон Маск заявил, что компания намерена полностью отказаться от кобальта в ближайшем будущем. Производитель электромобилей планирует построить собственный катодный завод, но, по словам Маска, основное внимание будет уделено химическим продуктам, богатым никелем, но на этот раз без кобальта.

NCM остается предпочтением Европы

Несмотря на эти успешные примеры на китайском рынке, вероятно, потребуется некоторое время, чтобы LFP начал быстро развиваться в других регионах.

В мае Volkswagen приобрел долю в китайском поставщике аккумуляторов Gotion-High Tech, одном из крупнейших поставщиков аккумуляторов LFP в стране. Однако Volkswagen сообщил Platts по электронной почте, что в настоящее время не планирует использовать LFP в своих автомобилях, хотя компания «проверяет эту технологию и ее возможности».

Другой немецкий автопроизводитель, BMW, недавно расширил свой завод по производству аккумуляторов в Тиекси, Китай, но, как сообщается, начал производить никель-кобальт-марганцевые (NCM) аккумуляторы для модели iX3.Основная цель компании на данный момент — увеличить запас хода, но снижение затрат будет приоритетом в будущем, сообщила BMW Platts по электронной почте.

«В этом конфликте целей между диапазоном и стоимостью более важно, чем когда-либо, полностью проникнуть во все исполнительные механизмы, начиная с сырья, химии ячеек, конструкции ячеек и модулей, и оптимизировать все их взаимодействия», — заявила BMW, не отклоняя никаких специфический вид катодной химии.

Некоторые западные участники рынка все еще утверждают, что в будущем LFP следует ограничить китайскими городскими автомобилями малой дальности, а также системами хранения энергии.По словам источников, большая часть инвестиций по-прежнему направляется в технологию NCM, которая сохранит актуальность кобальта.

Даже Tesla, несмотря на обязательство полностью отказаться от кобальта и использовать LFP в своем стандартном модельном ряду Model 3 китайского производства, по-прежнему использует NCM 811 (8 частей никеля, по 1 части кобальта и марганца), поставляемый LG Chem, в модели. 3 версия Long Range произведена в Шанхае.

Более того, американский производитель электромобилей недавно подписал долгосрочное соглашение с Glencore на поставку до 6000 тонн кобальта в год.BMW также подписала долгосрочное соглашение с Managem на поставку кобальта на сумму более 100 миллионов долларов, опираясь на еще одно долгосрочное обязательство с Glencore по кобальту от Мурина Мурина.

Пандемия коронавируса вызвала сокращение поставок сырого кобальта. Источники на рынке заявили, что значительный денежный поток в секторе, вероятно, поможет поднять цены на кобальт в оставшейся части этого года, хотя спрос на кобальт для электромобилей должен оставаться слабым.

В отчете от окт.23 января S&P Global Market Intelligence ожидало продолжения восстановления притока кобальтового сырья в Китай, но снижения цен.

Продолжение подъема китайской стрелы LFP

Если предположить, что продажи электромобилей в Китае достигнут 1 миллиона единиц в 2020 году, объем загрузки для аккумуляторов LFP и NMC может составить 21,37 ГВт и 31,18 ГВт соответственно в этом году, что составляет 40% и 59% от общего объема, — сказал Мо Кэ, основатель китайской компании. Исследовательская компания RealLi, оценка в отчете.

Спрос на батареи LFP в Китае в этом году значительно вырастет.Многие производители электромобилей предпочли использовать батареи LFP из-за преимущества более низких производственных затрат, а это означает, что использование LFP будет продолжать расти в ближайшие месяцы.

По оценкам китайского исследователя ICCSINO, производство материалов LFP в Китае достигнет 130 000 тонн в 2020 году и вырастет до 190 000 тонн в 2021 году по сравнению с примерно 100 000 тонн в 2019 году.

Согласно отдельным данным, опубликованным Китайским альянсом по инновациям в индустрии автомобильных аккумуляторов, мощность аккумуляторной батареи

в Китае за январь-август составила 37,1 ГВтч, что на 34% меньше, чем годом ранее.Производство аккумуляторов LFP снизилось на 17% в годовом исчислении и составило 14,5 ГВтч от общего объема, в то время как производство аккумуляторов NMC упало на 38% в годовом исчислении, составив оставшиеся 22,4 ГВтч.

Производство аккумуляторов LFP составило 39% от общего объема в январе-августе по сравнению с почти 29% за тот же период прошлого года.

Однако в долгосрочной перспективе аккумулятор NMC останется доминирующим на рынке легковых электромобилей. По словам Мо Кэ, соотношение потребления LFP на рынке электромобилей в ближайшие годы снизится и упадет примерно до 20% в 2025 году.

Предотвращение выброса кислорода ведет к созданию более безопасных литий-ионных батарей с высокой плотностью энергии

Выделение кислорода из материалов аккумуляторной батареи может привести к тепловому разгоне. Кредит: Такаши Накамура

.

Исследовательская группа представила свежие идеи о выделении кислорода в литий-ионных батареях, проложив путь к более прочным и безопасным батареям с высокой плотностью энергии.

Батареи нового поколения, позволяющие накапливать больше энергии, имеют решающее значение, если общество хочет достичь Целей устойчивого развития ООН и добиться углеродной нейтральности.Однако чем выше плотность энергии, тем выше вероятность теплового разгона — перегрева батарей, который иногда может привести к взрыву батареи.

Кислород, выделяющийся из активного материала катода, является триггером теплового разгона, но наших знаний об этом процессе недостаточно.

Исследователи из Университета Тохоку и Японского научно-исследовательского института синхротронного излучения (JASRI) исследовали поведение выделения кислорода и соответствующие структурные изменения катодного материала литий-ионных батарей LiNi 1/3 Co 1/3 Mn 1/3 О 2 (NCM111).NCM111 выступал в качестве модельного материала батареи на основе оксида посредством кулонометрического титрования и дифракции рентгеновских лучей.

Исследователи обнаружили, что NCM111 допускает выделение 5 мол.% Кислорода без разложения, и что высвобождение кислорода вызывает структурное разупорядочение, обмен Li и Ni.

Когда кислород выделяется, он восстанавливает переходные металлы (Ni, Co и Mn в NCM111), уменьшая их способность сохранять сбалансированный заряд в материалах.

Чтобы оценить это, исследовательская группа использовала мягкую рентгеновскую абсорбционную спектроскопию на BL27SU SPring-8 — крупномасштабной установке синхротронного излучения, управляемой JASRI, в Японии.

Они наблюдали селективное восстановление Ni 3+ в NCM111 на начальной стадии выделения кислорода. После завершения восстановления Ni Co 3+ уменьшилось, а Mn 4+ оставалось неизменным в течение 5 мол.% Выделения кислорода.

«Поведение при восстановлении убедительно свидетельствует о том, что высоковалентный NI (Ni 3+ ) значительно увеличивает выделение кислорода», — сказал Такаши Накамура, соавтор статьи.

Чтобы проверить эту гипотезу, Накамура и его коллеги подготовили модифицированный NCM111, содержащий больше Ni 3+ , чем исходный NCM111.К своему удивлению, они обнаружили, что NCM111 выделяет гораздо более тяжелый кислород, чем ожидалось.

На основании этого исследовательская группа предположила, что переходные металлы с высокой валентностью дестабилизируют кислород решетки в материалах батарей на основе оксидов.

«Наши открытия будут способствовать дальнейшему развитию высокоплотных и надежных батарей следующего поколения, состоящих из оксидов переходных металлов», — сказал Накамура.

Ссылка: «Решеточная кислородная нестабильность в интеркаляционных катодах на основе оксидов: пример слоистого LiNi 1/3 Co 1/3 Mn 1/3 O 2 » Сюэян Хоу, Кенто Охта, Юта Кимура, Юсуке Таменори, Кадзуки Цурута, Кодзи Амезава и Такаши Накамура, 23 июня 2021 г., Advanced Energy Materials .
DOI: 10.1002 / aenm.202101005

Финансирование: Грант на научные исследования (JP18K05288? JP19H05814) Программа исследований для лаборатории CORE «Динамического альянса для открытых инноваций, объединяющего человека, окружающую среду и материалы» в «Сетевом объединенном исследовательском центре материалов и устройств».

Прорыв

расширяет диапазон рабочих температур литий-ионных аккумуляторов

Следующее важное событие в области аккумуляторных технологий, несомненно, связано с твердотельной технологией. Даже Джон Гуденаф — отец литий-ионных батарей — исследует их.Но похоже, что обычный литий-ионный аккумулятор также подойдет для решения того, что зависит от ученых из PNNL (Тихоокеанской северо-западной национальной лаборатории). Им удалось увеличить диапазон рабочих температур этих батарей, которые теперь хорошо работают от -40 ºF до 140 ºF (от -40 ºC до 60 ºC).

В чем заключалась магия, спросите вы? Добавки в электролит. На самом деле их много.

Электролит — это элемент, который позволяет электродам реагировать друг с другом. В зависимости от температуры он может быть более или менее эффективным, отсюда и преимущество электромобилей с терморегулятором батареи.

Исследователи из PNNL объединили несколько добавок, которые позволяют батареям хорошо работать при температурах, при которых они обычно не работают.

Например, холодная погода — известный враг электромобилей. Комбинация присадок позволила «улучшить характеристики разряда при -40 ºC (-40 ºF)».

Поскольку электромобили по-прежнему не очень популярны в пустынных районах, люди не знают, что экстремальные жары также не влияют на их производительность.Комбинация присадок помогает в этом, обеспечивая «улучшенную стабильность при езде на велосипеде при 60 ºC (140 ºF)».

Комбинация нескольких добавок действует, образуя «высокопроводящие, однородные и компактные пассивирующие пленки» вокруг анода и катода.

Добавки, которые были объединены, чтобы создать такое чудо для литий-ионных аккумуляторов, описаны в исследовании, опубликованном ACS — Applied Materials and Interfaces .

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *