Как делается чип тюнинг. Взгляд изнутри
Вы задумывались как делается чип тюнинг? Как считывается прошивка, заливается, редактируется? Почему цена на чип так отличается в зависимости от модели и года? Давайте разбираться по порядку.
Что такое чип тюнинг и для чего он нужен мы уже писали, теперь же поговорим о том, как он делается, и почему надо доверять профессионалам.
Нужно иметь большой опыт в диагностике, понимать как работает мотор и другие узлы и агрегаты, чтобы не навредить. Да мы можем отключить какие-то части (например ЕГР, катализатор), но это не влияет на работу и ресурс мотора, а замена этих узлов зачастую очень дорого. Кроме этого нужно иметь большое количество оборудования, чтобы была возможность прошить любое авто, а так же восстановить, в случае если что-то пошло не так.
В самом начале обязательно делается диагностика, так как на неисправном авто тюнинг не будет виден, да и мотору можно сделать еще хуже. Да и бывает, что люди хотят «починить» авто прошивкой, но нужно ремонтировать авто, а не чиповать!
Нет компрессии в 1 цилиндре
Способов программирования ЭБУ немало, давайте разберем некоторые из них.
Прошивка по OBD.Такой способ программирования применяется на большинстве бензиновых и многих дизельных авто. Например, прошить киа рио, хендэ солярис, исузу, почти все китайские авто делаются через диагностический разъем. Причем получается как записать тюнингованную прошивку, так и считать ее перед этим из блока. Например, дизельный спортейдж, мерседес, свежие дизельные ВАГИ по ОБД можно только записать прошивку, а считать нельзя! Нужно доверять такую работу профи, так как в случае ошибки будет очень сложно восстановить.
Прошивка через разъем ЭБУ, без разбора.Таким способом делаются как правило авто марки ВАЗ, почти все, а также некоторые иномарки, например Mitsubishi Lancer X 1.5. Нет ничего сложного в этом способе Используются специальные программно-аппаратные комплексы, например Combiloader, которые делают такие блоки на ура.Прошивка с разбором.
BSL. Этот способ применяется на большинстве иномарок, например Ауди, БМВ, Фольксваген и тд. Сложный способ, нужно доверять профессионалам, так как нужно вскрывать блок управления, и только это уже нужно делать аккуратно, дальше подпаивает от 1 до 4 проводов к определенным точкам, чтобы перевести процессор в режим программирования и это дает нам возможность как считать, так и записать прошивку. ЭБУ с процессором Infineon Tricore делаются таким способом.
BDM. Так же как и предыдущий способ, делается с разбором, применяется в ЭБУ с процессором Motorolla. Блок вскрывается, через специальный адаптер с иголочками к плате ЭБУ подключается программатор и это позволяет получить прошивку из ЭБУ а потом так же записать ее обратно. Неправильное вскрытие может вывести из строя ЭБУ!
JTAG. (AUD) Сложный способ. Требует особой внимательности и опыта. Используется в основном на процессорах Denso, в основном на Японских марках, например Suzuki, Mitsubishi, требует подпайки до 20! проводов. Порой требуется припаять провода к ножкам процессора, размером менее миллиметра. Позволяет слить и записать прошивку.
Внешний программатор. Один из самых сложных способов. Требует большого опыта, мастерства и знаний от мастера. Используется в основном на старых авто, например Peugeot 607 2.2мотор и блок Магнетти марелли. Выпаивается специальным феном микросхема памяти, ставится в спец программатор, это позволяет считать и записать прошивку в память микросхемы.
Это самые распространённые способы, и каждый из них по-своему сложен. Кроме того с каждым годом производители делают все более сложные защиты от тюнинга (TPROT, GPT), это тоже вкладывает свои сложности и соответственно цена выше. Цена на чип тюнинг зависит от многих факторов: тут и способ программирования, и работа калибровщика (об этом поговорим еще), и стоимость оборудования – все в целом. Поэтому, например, на Ладу или бензиновую иномарку объемом до 2 литров можно сделать относительно дешево, то например, БМВ F серии совсем другая история. Кроме того, качество самого тюнинга имеет свою цену, 2 разные прошивки от разных калибровщиков может стоить сильно по-разному и цена у них будет соответствующая.
Как разрабатываются и производятся процессоры: изготовление чипа / Хабр
Это третья статья из серии о проектировании ЦП. В первой статье мы рассмотрели архитектуру компьютера и объяснили его работу на высоком уровне. Во второй статье говорилось о проектировании и реализации некоторых компонентов чипа. В третьей части мы узнаем, как архитектурные проекты и электрические схемы становятся физическими чипами.
Как превратить кучу песка в современный процессор? Давайте разберёмся.
Часть 1: Основы архитектуры компьютеров (архитектуры наборов команд, кэширование, конвейеры, hyperthreading)
Часть 2: Процесс проектирования ЦП (электрические схемы, транзисторы, логические элементы, синхронизация)
Часть 3: Компонование и физическое производство чипа (VLSI и изготовление кремния)
Часть 4: Современные тенденции и важные будущие направления в архитектуре компьютеров (море ускорителей, трёхмерное интегрирование, FPGA, Near Memory Computing)
Как говорилось ранее, процессоры и вся другая цифровая логика составлены из транзисторов. Транзистор — это переключатель с электрическим управлением, который может включаться и отключаться подачей или отключением напряжения на затворе. Мы сказали, что существует два вида транзисторов: nMOS-устройства пропускают ток, когда затвор включён, а pMOS-устройства пропускают ток при выключенном затворе. Базовая структура процессора — это транзисторы, созданные из кремния. Кремний — это полупроводник, потому что он занимает промежуточное положение — не проводит ток полностью, но и не является изолятором.
Чтобы превратить кремниевую пластину в практическую электрическую схему добавлением транзисторов, производственные инженеры используют процесс под названием «легирование«. Легирование — это процесс добавления в базовый субстрат кремния тщательно выбранных примесей для изменения его проводимости. Цель заключается в том, чтобы изменить поведение электронов так, чтобы мы могли ими управлять. Существует два вида транзисторов, а значит, и два основных вида легирования.
Процесс изготовления пластины до размещения чипов в корпусе.
Если мы добавим точно контролируемое количество элементов-доноров электронов, например, мышьяка, сурьмы или фосфора, то можем создать область n-типа. Поскольку область пластины, на которую нанесены эти элементы, теперь имеет избыток электронов, она становится отрицательно заряженной. Отсюда взялось название типа (n — negative) и буква «n» в nMOS. Добавляя на кремний такие элементы-акцепторы электронов, как бор, индий или галлий, мы можем создавать область p-типа, заряженную положительно. Отсюда взялась буква «p» в p-типе и pMOS (p — positive). Конкретные процессы добавления этих примесей к кремнию называются
Теперь, когда мы можем управлять электропроводимостью отдельных частей кремниевой пластины, можно скомбинировать свойства нескольких областей для создания транзисторов. Транзисторы, используемые в интегральных схемах и называющиеся MOSFET (Metal Oxide Semiconductor Field Effect Transistors, МОП-структуры, структуры «металл-оксид-проводник»), имеют четыре соединения. Контролируемый нами ток течёт между истоком (Source) и стоком (Drain). В n-канальном устройстве ток обычно входит в сток и выходит из истока, а в p-канальном устройстве он обычно течёт из истока и выходит из стока. Затвор (Gate) — это переключатель, используемый для включения и отключения транзистора. Наконец, у устройства есть тело транзистора (Body), которое не относится к процессору, поэтому мы не будем его рассматривать.
Физическая структура инвертора в кремнии. Области разных цветов имеют разные свойства проводимости. Заметьте, как разные кремниевые компоненты соответствуют схеме справа
Технические подробности работы транзисторов и взаимодействия отдельных областей — это содержание целого курса колледжа, поэтому мы коснёмся только основ. Хорошая аналогия их работы — это разводной мост над рекой. Автомобили — электроны в транзисторе — хотят перетечь с одной стороны реки на другую, это исток и сток транзистора. Возьмём для примера nMOS-устройство: когда затвор не заряжен, разводной мост поднят и электроны не могут течь по каналу. Когда мы опускаем мост, то образуем дорогу над рекой и автомобили могут свободно перемещаться. То же самое происходит в транзисторе. Зарядка затвора образует канал между истоком и стоком, позволяющий току течь.
Для точного контроля над расположением на кремнии разных областей p и n производители, например Intel и TSMC используют процесс под названием фотолитография. Это чрезвычайно сложный многоэтапный процесс и компании тратят миллиарды долларов на его усовершенствование для того, чтобы создавать более мелкие, быстрые и энергоэффективные транзисторы. Представьте сверхточный принтер, который можно использовать для рисования на кремнии паттернов для каждой области.
Процесс изготовления транзисторов на чипе начинается с чистой кремниевой пластины (подложки). Она нагревается в печи для создания на поверхности пластины тонкого слоя диоксида кремния. Затем на диоксид кремния наносится светочувствительный фоторезистивный полимер. Освещая полимер светом определённых частот, мы можем обнажать полимер в тех областях, где хотим выполнять легирование.
Пластина протравливается плавиковой кислотой для растворения диоксида кремния в местах, где был удалён полимер. Затем фоторезист убирается, оставляя только находящийся под ним оксидный слой. Теперь на пластину можно нанести легирующие ионы, которые имплантируются только в местах, где отсутствует оксид.
Этот процесс маскирования, формирования и легирования повторяется десятки раз для медленного построения каждого уровня элементов в полупроводнике. После завершения базового уровня кремния поверх можно создать металлические соединения, соединяющие разные транзисторы. Чуть позже мы подробнее поговорим об этих соединениях и слоях металлизации.
Разумеется, производители чипов не выполняют процесс создания транзисторов под одному. При проектировании нового чипа они генерируют маски для каждого этапа процесса изготовления.
После изготовления пластины она разрезается на отдельные кристаллы, которые помещаются
в корпуса. Каждая пластина может содержать сотни или даже больше чипов. Обычно чем более мощный производится чип, тем больше будет кристалл, и тем меньше чипов производитель может получить с каждой пластины.
Можно подумать, что нам просто стоит производить огромные супермощные чипы с сотнями ядер, но это невозможно. В настоящее время самым серьёзным фактором, мешающим создавать всё более крупные чипы, являются дефекты в процессе производства. Современные чипы содержат миллиарды транзисторов и если хотя бы одна часть одного транзистора сломана, то может быть выброшен весь чип. При увеличении размера процессоров вероятность неисправности чипа повышается.
Продуктивность процессов изготовления своих чипов компании тщательно скрывают, но её можно примерно оценить в 70-90%. Компании обычно изготавливают чипы с запасом, потому что знают, что некоторые части не будут работать. Например, Intel может спроектировать 8-ядерный чип, но продавать его только как 6-ядерный, потому что рассчитывает, что одно или два ядра могут быть сломаны. Чипы с необычно низким количеством дефектов обычно откладываются для продажи по более высокой цене. Этот процесс называется binning.
Один из самых серьёзных маркетинговых параметров, связанных с изготовлением чипов — это размер элементов. Например, Intel осваивает 10-нанометровый процесс, AMD использует для некоторых GPU 7-нанометровый, а TSMC начала работу над 5-нанометровым процессом. Но что означают все эти числа? Традиционно размером элемента называется минимальное расстояние между стоком и истоком транзистора. В процессе развития технологий мы научились уменьшать транзисторы, чтобы на одном чипе их помещалось всё больше. При уменьшении транзисторов они также становятся всё быстрее и быстрее.
Глядя на эти числа, важно помнить, что некоторые компании могут основывать размер техпроцесса не на стандартном расстоянии, а на других величинах. Это значит, что процессы с разным размером у различных компаний могут на самом деле приводить к созданию транзисторов одинакового размера. С другой стороны, не все транзисторы в отдельном техпроцессе имеют одинаковый размер. Проектировщики могут решить ради компромиссов сделать некоторые транзисторы крупнее других. Мелкий транзистор будет быстрее, потому на зарядку и разрядку его затвора требуется меньше времени. Однако мелкие транзисторы могут управлять только очень малым количеством выходов. Если какой-то кусок логики будет управлять чем-то, требующим много мощности, например, контактом вывода, то его придётся сделать намного больше. Такие транзисторы вывода могут быть на порядки величин больше, чем транзисторы внутренней логики.
Снимок кристалла современного процессора AMD Zen. Эта конструкция состоит из нескольких миллиардов транзисторов.
Однако проектирование и изготовление транзисторов — это только половина чипа. Нам необходимы проводники, чтобы соединить всё согласно схеме. Эти соединения создаются при помощи слоёв металлизации поверх транзисторов. Представьте многоуровневую дорожную развязку с въездами, выездами и кучей пересекающихся дорог. Именно это и происходит внутри чипа, только в гораздо меньшем масштабе. У разных процессоров разное количество металлических связующих слоёв над транзисторами. Транзисторы уменьшаются, и для маршрутизации всех сигналов требуется всё больше слоёв металлизации. Сообщается, что в будущем 5-нанометровом техпроцессе TMSC будет использоваться 15 слоёв. Представьте 15-уровневую вертикальную автомобильную развязку — это даст вам представление о том, насколько сложна маршрутизация внутри чипа.
На показанном ниже изображении с микроскопа показана решётка, образованная семью слоями металлизации. Каждый слой плоский и при поднимании вверх слои становятся больше, чтобы способствовать снижению сопротивления. Между слоями есть крошечные металлические цилиндрики, называемые перемычками, которые используются для перехода на более высокий уровень. Обычно каждый слой меняет направление относительно слоя под ним, чтобы снизить нежелательные ёмкостные сопротивления. Нечётные слои металлизации могут использоваться для создания горизонтальных соединений, а чётные — для вертикальных соединений.
Можно понять, что управление всеми этими сигналами и слоями металлизации очень быстро становится невероятно сложным. Чтобы способствовать решению этой проблемы, применяются компьютерные программы, автоматически располагающие и соединяющие транзисторы. В зависимости от сложности конструкции программы даже могут транслировать функции высокоуровневого кода на C вниз до физических расположений каждого проводника и транзистора. Обычно разработчики чипов позволяют компьютерам генерировать основную часть конструкции автоматически, а затем изучают и вручную оптимизируют отдельные критически важные части.
Когда компании хотят создать новый чип, они начинают процесс проектирования со стандартных ячеек, предоставляемых компанией-изготовителем чипов. Например, Intel или TSMC предоставляют проектировщикам такие базовые части, как логические элементы или ячейки памяти. Проектировщики могут комбинировать эти стандартные ячейки в любой чип, который хотят произвести. Затем они отправляют на фабрику — место, где необработанный кремний превращается в рабочие чипы — электрические схемы транзисторов чипа и слоёв металлизации. Эти схемы превращаются в маски, которые используются в описанном выше процессе изготовления. Далее мы посмотрим, как может выглядеть процесс проектирования чрезвычайно простого чипа.
Первой мы видим схему инвертора, который является стандартной ячейкой. Заштрихованный зелёный прямоугольник наверху — это pMOS-транзистор, а прозрачный зелёный прямоугольник внизу — nMOS-транзистор. Вертикальный красный проводник — это поликремниевый затвор, синие области — это металлизация 1, а сиреневые области — металлизация 2. Вход A входит слева, а выход Y выходит справа. Соединения питания и заземления выполнены сверху и снизу на металлизации 2.
Скомбинировав несколько логических элементов, мы получили простой 1-битный арифметический модуль. Эта конструкция может складывать, вычитать и выполнять логические операции с двумя 1-битными входами. Идущие вверх заштрихованные синие проводники это слои металлизации 3. Немного более крупные квадраты на концах проводников — это перемычки, соединяющие два слоя.
Наконец, объединив вместе множество ячеек и примерно 2 000 транзисторов, мы получили простой 4-битный процессор с 8 байтами ОЗУ на четырёх слоях металлизации. Увидев, насколько он сложен, можно только представлять, как трудно проектировать 64-битный процессор с мегабайтами кэша, несколькими ядрами и 20 с лишним этапами конвейера. Учитывая то, что у современных высокопроизводительных ЦП есть до 5-10 миллиардов транзисторов и дюжина слоёв металлизации, не будет преувеличением сказать, что они буквально в миллионы раз сложнее нашего примера.
Это даёт нам понять, почему новый процессор является таким дорогостоящим куском технологий и почему AMD и Intel так долго выпускают новые продукты. Для того, чтобы новый чип прошёл путь от чертёжной доски до рынка, обычно требуется 3-5 лет. Это значит, что самые быстрые современные чипы созданы на технологиях, которым уже несколько лет, и что мы ещё много лет не увидим чипов с современным уровнем технологий изготовления.
В четвёртой и последней статье серии мы вернёмся к физической сфере и рассмотрим современные тенденции в отрасли. Что разрабатывают исследователи, чтобы сделать следующее поколении компьютеров ещё быстрее?
Изготовление микросхем | Компьютерный мир
Практическое руководство
Гэри Антес
Компьютерный мир |
В мире мало вещей столь же простых, как песок, и, возможно, таких сложных, как компьютерные чипы. Тем не менее, простой элемент кремний в песке является отправной точкой для создания интегральных схем, которые сегодня питают все, от суперкомпьютеров до сотовых телефонов и микроволновых печей.
Превращение песка в крошечные устройства с миллионами компонентов — выдающийся научный и инженерный подвиг, который казался невозможным, когда в 1947 году в Bell Labs был изобретен транзистор.
Подробнее
Computerworld
QuickStudies
Кремний — природный полупроводник. При некоторых условиях он проводит электричество; под другими он действует как изолятор. Электрические свойства кремния могут быть изменены добавлением примесей — процесс, называемый легированием. Эти характеристики делают его идеальным материалом для изготовления транзисторов — простых устройств, усиливающих электрические сигналы. Транзисторы также могут действовать как переключатели — устройства включения/выключения, используемые в комбинации для представления логических операторов «и», «или» и «не».
Сегодня производится несколько типов микросхем. Микропроцессоры — это логические микросхемы, которые выполняют вычисления внутри большинства коммерческих компьютеров. Чипы памяти хранят информацию. Процессоры цифровых сигналов преобразуют аналоговые и цифровые сигналы (QuickLink: a2270). Интегральные схемы для конкретных приложений — это специализированные микросхемы, используемые в таких вещах, как автомобили и бытовая техника.
Процесс
Чипы производятся на многомиллиардных заводах, называемых фабриками. Фабрики плавят и очищают песок для производства 9Слитки монокристаллического кремния чистотой 9,9999%. Пилы нарезают слитки на пластины толщиной примерно с монетку и диаметром в несколько дюймов. Пластины очищаются и полируются, и каждая из них используется для создания нескольких чипов. Эти и последующие шаги выполняются в среде «чистой комнаты», где принимаются всесторонние меры предосторожности для предотвращения загрязнения пылью и другими посторонними веществами.
Непроводящий слой диоксида кремния выращивается или осаждается на поверхности кремниевой пластины, и этот слой покрывается светочувствительным химическим веществом, называемым фоторезистом.
Фоторезист подвергается воздействию ультрафиолетового света, проходящего через узорчатую пластину или «маску», которая затвердевает на участках, подвергающихся воздействию света. Неэкспонированные области затем вытравливаются горячими газами, чтобы обнажить основу из диоксида кремния внизу. Основание и слой кремния под ним дополнительно травятся на разную глубину.
Затем фоторезист, затвердевший в процессе фотолитографии, удаляется, оставляя на чипе трехмерный ландшафт, который повторяет схему схемы, воплощенную в маске. Электропроводность некоторых частей чипа также можно изменить, легируя их химическими веществами под воздействием тепла и давления. Фотолитографию с использованием разных масок с последующим дополнительным травлением и легированием можно повторять сотни раз для одного и того же чипа, создавая на каждом этапе более сложную интегральную схему.
Чтобы создать проводящие пути между компонентами, выгравированными на чипе, весь чип покрывается тонким слоем металла — обычно алюминия — и снова используется процесс литографии и травления, чтобы удалить все, кроме тонких проводящих путей. Иногда укладывают несколько слоев проводников, разделенных стеклянными изоляторами.
Каждый чип на пластине проверяется на правильную работу, а затем отделяется от других чипов на пластине с помощью пилы. Хорошие микросхемы помещаются во вспомогательные пакеты, которые позволяют вставлять их в печатные платы, а плохие микросхемы маркируются и выбрасываются.
См. также Computerworld QuickStudies
Связанный:
- Компьютеры и периферийные устройства
Copyright © 2002 IDG Communications, Inc.
Чат-бот Bing с искусственным интеллектом пришел работать на меня. Я должен был уволить его.
Как производятся компьютерные чипы?
© НИМЕДИА / Shutterstock.com
Ключевые пункты:
- Наиболее распространенными полупроводниковыми материалами, используемыми для производства компьютерных микросхем, являются диоксид кремния (или песок), германий и арсенид галлия.
- Одним из этапов процесса изготовления компьютерного чипа является фотолитография, при которой светочувствительный материал используется для переноса рисунка на подложку.
- Рисунок, сформированный в процессе травления, называется «маской», и именно он придает чипу форму и функциональность.
Компьютерные чипы, также известные как кремниевые микрочипы, представляют собой невероятно маленькие электронные устройства, используемые для хранения и обработки информации. Они контролируют все, от электроприборов до оргтехники, цифровых камер и медицинского оборудования. Они берут всю эту информацию, будь то простое цифровое изображение или целый фильм, и превращают ее в полезный продукт. Каждый раз, когда вы нажимаете «Отправить» или «Ввод» на своем компьютере, вы используете новейшие технологии микрочипов для обработки и отправки ваших данных через Интернет или ваше офисное здание. Но откуда берутся эти чипы? Как они сделаны? Эта статья проведет вас через каждый шаг, связанный с процессом создания этих основных продуктов, которые держат нас на связи и ежедневно информируют.
Какие химические вещества используются при изготовлении компьютерных микросхем?
Компьютерный чип, также известный как интегральная схема, состоит из полупроводникового материала. Наиболее распространенным типом полупроводникового материала является кремний. Диоксид кремния, или песок (основной материал в компьютерных чипах). Другие материалы, используемые при изготовлении компьютерных микросхем, включают германий и арсенид галлия. Эти материалы используются, потому что они обладают особыми свойствами, которые делают их пригодными для изготовления транзисторов. Когда вы включаете транзистор, прикладывая напряжение к его электроду затвора, вы заставляете электроны течь от электрода истока к электроду стока.
Изолятор препятствует протеканию тока до тех пор, пока транзистор не будет открыт. После включения транзистор действует как проводник, позволяя течь току. Если на электрод затвора не подается напряжение, ток не будет течь. Одним из важных моментов в этом процессе является то, что электрод затвора отключает ток только после того, как он достигает стока. Он не останавливает ток на полпути через устройство.
Другим ключевым элементом является то, что эти операции выполняются очень быстро, обычно с периодами, измеряемыми в наносекундах (миллиардных долях секунды). На одном куске кремниевой пластины можно создавать схемы, содержащие сотни тысяч транзисторов!
Как делают компьютерные чипы? Пошаговое руководство
Компьютерные микросхемы изготавливаются в процессе, называемом производством полупроводников. Полупроводники — это материалы, проводящие электричество, и их можно разделить на два основных типа: кремний (используемый для компьютерных микросхем) и германий. Вот обзор процесса.
Шаг 1: Начните с песка
Промытый кварцевый песок перед поставкой. Кварцевый песок используется для производства кремния электронного класса, который используется в производстве микрочипов.©Nimit Ketkham/Shutterstock.com
Процесс изготовления компьютерного чипа начинается с особого вида песка, называемого кварцевым песком, который состоит из диоксида кремния. Основной компонент производства полупроводников, кремний, должен быть чистым, чтобы его можно было использовать в производственном процессе.
Этап 2: Очистка для получения слитка кремния
Слиток кремния представляет собой цилиндрический кусок чрезвычайно чистого кремния, выращенный в контролируемой среде. Кремний электронного класса чистоты 99,9999%, производится путем ряда процедур очистки и фильтрации. Затем он разрезается на прямоугольные пластины, которые в конечном итоге станут компьютерными чипами. Размер и форма пластины зависят от конечного использования. Острые края сглажены и сделаны идеально ровными, чтобы электрические сигналы могли беспрепятственно проходить по его поверхности.
Этап 3: Нарезка пластин
На следующем этапе круглый слиток кремния нарезается на пластины. Производители чипов сначала разрезают кремниевые пластины до нужного размера, чтобы сделать компьютерный чип. Затем пластины полируются и очищаются перед дальнейшей обработкой. После того, как они нарезаны, они подвергаются ряду процессов, в ходе которых на поверхность штампа добавляются слои различных материалов. Эти слои служат разным целям, например, создают электрические пути или изолируют разные области чипа.
Этап 4: Фотолитография
Затем на пластину наносится тонкий слой фоторезиста. В фотолитографии светочувствительный материал используется для переноса рисунка на подложку. Первым шагом является покрытие подложки светочувствительным материалом, называемым фоторезистом. Затем пластина подвергается воздействию света с помощью маски, содержащей желаемый рисунок. Затем открытые области фоторезиста проявляются, что создает отверстия в резисте, соответствующие желаемому рисунку. Затем пластина протравливается, что переносит рисунок на нижележащую подложку.
Этап 5: Ионы и легирование
Легирование — это процесс бомбардировки кремниевой пластины ионами для изменения ее проводимости после того, как экспонированный фоторезист был стерт. После смывания остатков фоторезиста выявляется рисунок импактного и неповрежденного материала.
Этап 6: Травление
Тонкий слой кремния удаляется с поверхности путем нанесения реактивных химикатов. Они применяются с разной скоростью в зависимости от того, насколько глубоко вы хотите, чтобы они вошли в поверхность. Если вы хотите удалить большое количество материала, применяйте химикаты в течение более длительного времени, чтобы они были как можно более сильными. Таким образом, многократно вытравливая и перерисовывая изображения, инженеры могут создавать сложные шаблоны для различных компонентов, таких как микросхемы памяти и процессоры.
Рисунок, сформированный в процессе травления, называется «маской», и именно он придает чипу его форму и функциональность. Маска изготовлена из фоторезистов — материалов, которые можно химически модифицировать для создания рисунка на поверхности.
Компьютерные микросхемы производятся в условиях «чистой комнаты» с соблюдением всех мер предосторожности во избежание загрязнения.
©Gorodenkoff/Shutterstock.com
Шаг 7: гальваническое покрытие
Почти готовый транзистор покрывается изолирующим слоем, и в нем вырезаются три отверстия. Затем производители наносят ионы меди на поверхность транзистора, используя процедуру, называемую гальванопокрытием, чтобы создать слой меди поверх изолятора. После удаления лишней меди в отверстиях изоляционного слоя остается только три отложения меди.
Шаг 8: Многоуровневые межсоединения
Компьютерные чипы, на которых работают наши устройства, состоят из множества слоев межсоединений, каждый толщиной всего в несколько атомов. Межблочные соединения изготавливаются из металлических проводов, которые соединяют различные типы электрических компонентов. Каждый провод имеет определенную функцию, предназначенную для совместимости друг с другом, чтобы они могли общаться друг с другом. Теперь, когда все транзисторы взаимосвязаны, чип может выполнять операции, подобные процессору.
Шаг 9: Тестирование и разрезание кубика
Вафля разрезается на небольшие квадраты, называемые штампом. Каждый кристалл содержит миллионы транзисторов. Затем штампы тестируются и нарезаются на отдельные чипы. Затем чипы упаковываются и отправляются производителям компьютеров.
Шаг 10: Упаковка
В упаковку кристаллов входит подложка и теплораспределитель, и они принимают узнаваемую форму процессора для настольных ПК. Тепло передается от кремния теплораспределителем к расположенному над ним радиатору. После этого процессоры тестируются с точки зрения энергопотребления, максимальной частоты и других показателей производительности.
Далее…
- 5 лучших рождественских огней на солнечных батареях Приближается Рождество, и вы хотите украсить свои залы огнями… с ограниченным бюджетом. Вот как это сделать в солнечном стиле.
- Изучите историю Fairchild Semiconductor Мы расскажем об истории и вкладе Fairchild Semiconductor в технологии.
- 10 лучших фильмов о космосе Вы любитель научной фантастики? Тогда ознакомьтесь с нашей подборкой лучших когда-либо снятых космических фильмов!
Как производятся компьютерные чипы? FAQs (часто задаваемые вопросы)
Как делают микросхемы для компьютеров?
Микрочипы создаются путем наслоения взаимосвязанных рисунков на кремниевой пластине. От проектирования до массового производства, процесс производства микрочипа включает в себя сотни операций и может занимать до четырех месяцев.
Что заставляет работать компьютерные чипы?
Транзисторы функционируют как крошечные электрические переключатели на микросхеме, которые могут включать и выключать ток. На кремниевой пластине формируется многослойная решетка из соединенных форм, создающая узор микроскопических переключателей.
Из чего большей частью состоят компьютерные микросхемы?
Кремний и металл — два основных компонента каждого компьютерного чипа. Процессор состоит из множества транзисторов, находящихся на каждом чипе. На одном чипе могут быть десятки миллионов транзисторов.
Как компьютерные чипы хранят данные?
Каждый двоичный бит данных хранится на полупроводниковой микросхеме памяти в ячейке памяти, небольшой схеме, состоящей из одного или нескольких транзисторов. Ячейки памяти на поверхности чипа расположены прямоугольными массивами.