Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

Содержание

Турбодизель – Автомобили – Коммерсантъ

&nbspТурбодизель

Часть вторая

       В первой части статьи мы говорили о системах наддува двигателей внутреннего сгорания. Сейчас речь пойдет о дизельных двигателях.
       Если не слишком искушенному в технике человеку задать вопрос, чем дизельный двигатель отличается от бензинового, то ответы, скорее всего, будут такими: работает на солярке, обходится без свечей зажигания, больше шумит и при этом развивает меньшую мощность. Все это правильно, но…
       При слове «дизель» у человека с воображением обычно возникает картинка: весь в грязных потеках грубый механизм на мощной станине, который изрыгает клубы черного дыма и своим ревом заглушает все в радиусе нескольких десятков метров. Если уточнить, что речь идет о двигателе автомобиля, картинка получается не такой страшной, но не более привлекательной: по-прежнему нечто грязное, пахнет, гремит, в мороз не заведешь, машина тупая — за полчаса не разгонишься.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ
..
       Да, когда-то все так и было. Но с тех пор утекло немало солярки. Дизели сегодня прочно завоевали себе место не только на грузовиках, но и на легковых автомобилях, от самых массовых до вполне респектабельных. Все шире применяются дизели с турбонаддувом, автомобили с такими двигателями по основным параметрам не уступают машинам с привычными бензиновыми моторами.
       В таблице 1 в качестве примера приведены основные характеристики Volkswagen Passat GT TDI с 4-цилиндровым турбодизелем. Таким же двигателем комплектуются, кстати, и вполне престижные Audi A4 1.9 TDI и A6 1.9 TDI. Из таблицы видно, что единственное, в чем автомобиль с дизелем явно уступает, — это время разгона. 13,9 сек. до сотни все-таки многовато. Но бывают машины и пошустрее.
       Перед тем как рассматривать системы наддува дизельных двигателей, есть смысл остановиться на основных особенностях самих дизелей — для большинства наших автовладельцев они пока не слишком знакомы.
       
Дизель
       Этот тип двигателя получил свое название по имени немецкого инженера Рудольфа Дизеля, построившего в 1897 году первый мотор с самовоспламенением топлива.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Конструктивно дизель очень похож на привычный бензиновый двигатель: те же цилиндры, поршни, распредвал, клапаны. Но имеется и ряд отличий, из которых главное, можно даже сказать принципиальное, заключается в том, что воспламенение топлива в дизеле производится не искрой от свечи зажигания, а за счет высокой температуры, которой достигает воздух в результате сжатия его поршнем в цилиндре.
       Второй важный момент — способ подачи топлива. В бензиновом двигателе рабочим телом является смесь бензина с воздухом. Смесь готовится заранее (в карбюраторе) или непосредственно в момент ее подачи в цилиндры (в системах впрыска) — главное то, что топливо подается вместе с воздухом, а поджигается и сгорает относительно гомогенная топливо-воздушная смесь.
       В дизельном двигателе подача топлива и воздуха происходит раздельно. Вначале в цилиндр всасывается воздух, затем он сжимается, и только после этого впрыскивается топливо, поэтому говорить о гомогенной топливо-воздушной смеси не приходится.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Впрыск производится в конце такта сжатия, топливо и воздух фактически не смешиваются друг с другом, горение происходит на фронте впрыскиваемой в сжатый воздух струи топлива (рис. 1).
       Самовоспламенение топлива сопровождается резким, скачкообразным повышением давления в цилиндре — этим объясняется обычно шумная, жесткая работа дизельного двигателя. В низкооборотных дизелях с большим рабочим объемом, которые используются на грузовиках, этот недостаток проявляется в меньшей степени, и с ним мирятся. В дизелях легковых автомобилей от него пытаются избавиться применением форкамеры, или предкамеры, — небольшого отсека камеры сгорания, в который впрыскивается топливо. Там оно воспламеняется, частично перемешивается с воздухом, после чего горящая смесь распространяется по основному объему цилиндра.
       Этот способ несколько уменьшает жесткость работы двигателя, но снижает его тепловую эффективность и топливную экономичность, поэтому в современных дизелях легковых автомобилей от форкамеры отказываются.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Примером может служить 2,5-литровый дизель с турбонаддувом, который в 1990 г. был применен на Audi 100. Двигатель с прямым впрыском, 5-цилиндровый, 120 л. с. и 265 Нм (2250 об./мин.). Расход топлива 5,7 л/100 км. Для более плавного воспламенения топлива использованы двухступенчатый впрыск и сложная электронная схема управления.
       Более свежий пример — 1,9-литровый атмосферный дизель с непосредственным впрыском мощностью 64 л. с., который Volkswagen собирается показать на Женевском салоне в этом году на Golf SDI. Отказ от форкамеры позволил на 12% улучшить и так неплохую экономичность двигателя: расход топлива составляет 4,9 л/100 км. Автомобиль Golf SDI с этим дизелем развивает скорость 156 км/час и разгоняется до сотни за 17,6 сек. (11,2 сек. до 80 км/час). Этот же дизель в турбированном варианте развивает мощность уже 90 л. с., потребляет 5,2 л/100 км и разгоняет Golf Cabrio TDI до 100 км/час за 13,3 сек. (8,8 сек. до 80 км/час). Максимальная скорость — 172 км/час.
       Очевидное отличие дизельных двигателей от бензиновых — используемое топливо.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Дизельное топливо, в просторечии солярка или ДТ, — тяжелая керосино-газойлевая фракция нефти C10 — C14 (у бензинов C6 — C8). Характерной особенностью дизелей является наличие твердых частиц в отработавших газах. Из-за гетерогенности процесса горения на поверхности отдельных частиц топлива всегда наблюдается некоторый недостаток кислорода, в результате чего вместо их окисления происходит частичное термическое разложение с образованием твердых продуктов — сажи. Для хорошего сжигания дизельного топлива требуется значительное, даже избыточное количество воздуха.
       Ну и наконец, еще одна особенность — степень сжатия у дизеля в 2 раза выше, чем у бензинового двигателя. Высокая, не менее 14, степень сжатия необходима для того, чтобы температура воздуха в цилиндре поднялась до величины, достаточной для воспламенения топлива. Обычно в дизелях степень сжатия составляет 21-22 и ограничивается лишь прочностными характеристиками двигателя.
       Стоит отметить, что устройства для подачи топлива в дизельных двигателях значительно сложнее, чем в бензиновых.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Их сложность определяется прежде всего тем, что приходится впрыскивать очень маленькие, всего несколько миллиграмм, порции топлива в среду с высоким давлением. Эти порции должны быть очень точно отмерены — именно количеством подаваемого топлива управляется работа дизеля. Для этого нужны быстродействующие и точные форсунки. Высокая степень сжатия дизеля требует применения соответствующих топливных насосов — давление в сопле форсунки должно достигать нескольких сотен бар. Все это усложняет и ощутимо удорожает систему подачи топлива и, соответственно, сам дизельный двигатель.
       Надо еще учесть, что почти все дизели до сих пор оснащаются механическими устройствами впрыска, ненамного отличающимися от тех, которые Bosch GmbH начала выпускать в 1927 году. Они уже почти изжили себя и скоро будут вытесняться гораздо более сложными устройствами с электронным управлением, индивидуальными для каждого цилиндра топливными насосами, совмещенными с форсунками, различными датчиками. Понятно, что стоимость таких систем тоже будет расти.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

       К числу недостатков дизелей обычно относят большую шумность, более высокую стоимость и, главное, меньшую, при том же рабочем объеме, мощность.
       С шумностью пытаются справиться совершенствованием конструкции дизеля, изменением элементов его подвески, поговаривают даже о том, что двигатель можно капсулировать звукопоглощающим материалом. Стоимость — понятие относительное: заплатив за автомобиль больше при покупке, можно сэкономить на эксплуатации — это надо подсчитывать в каждом конкретном случае. А что касается мощности, то способ ее повышения известен — наддув.
       
Турбодизель
       Применение наддува в дизельном двигателе преследует ту же основную цель, что и в бензиновом — увеличить количество топлива, сжигаемого в единицу времени. Устройство и работу различных типов нагнетателей воздуха мы рассматривали в первой части статьи. Все они могут быть применены и на дизельном двигателе. Из графика, приведенного на рис. 2, следует, что механический нагнетатель Comprex обеспечивает наибольшее увеличение крутящего момента двигателя, особенно на низких, около 2000 об.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ
/мин., частотах вращения, но общая характеристика при этом получается слишком острой. Нагнетатель Roots придает 1,2-литровому дизелю практически такую же характеристику крутящего момента, как у 1,6-литрового атмосферного бензинового двигателя. Характеристика, которую обеспечивает турбокомпрессор, занимает промежуточное положение: она достаточно плоская, а на средних (2000-4000 об./мин.) частотах вращения крутящий момент даже больше, чем с нагнетателем Roots.
       Механические нагнетатели сложнее и дороже, кроме того, благодаря некоторым особенностям работы дизеля к нему легче всего удается приспособить именно турбокомпрессор.
       Во-первых, как уже указывалось, подача воздуха в дизеле не связана с подачей топлива и не требует тонкой регулировки — чем больше воздуха, тем лучше. Во-вторых, диапазон рабочих оборотов — от холостых до максимальных — у дизеля меньше, соответственно, проще осуществляется управление турбокомпрессором, с этим вполне справляется обычный перепускной клапан в турбине.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ
Кроме того, благодаря высокой степени сжатия давление отработавших газов дизеля в 1,5-2,5 раза выше — это делает эффективней работу турбины на низких оборотах.
       Все это объясняет, почему практически все, по крайней мере европейские, производители для наддува дизельных двигателей применяют именно турбокомпрессор. Исключением является, пожалуй, только японская Mazda, которая на модели 626 Wagon предлагает 4-цилиндровый дизель с нагнетателем Comprex, характеристики которого не особенно впечатляют: при объеме 1998 см куб. мощность и крутящий момент, соответственно, 75 л. с. (4000 об./мин.) и 169 Нм (2000 об./мин.).
       Есть и другие факторы, облегчающие применение наддува на дизелях. В отличие от бензиновых двигателей, где из-за опасности детонации степень сжатия при турбировании приходится уменьшать примерно на 20%, дизели к детонации не склонны, поэтому при применении наддува степень сжатия приходится снижать незначительно, всего на несколько процентов, а иногда можно обойтись и без этого.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ
       
Эксплуатация: плюсы и минусы
       К числу несомненных достоинств дизельных двигателей, как атмосферных, так и турбированных, относятся меньший, чем в бензиновых, расход топлива (примерно на 30%), нетребовательность к качеству топлива и экологическая чистота выхлопа. Дизельное топливо к тому же на 20-30% дешевле, хотя это сильно зависит от страны или региона.
       Меньшая мощность дизелей с успехом компенсируется, как мы видели, применением наддува. На рис. 2 видно, что 1,2-литровый турбодизель по мощностным характеристикам эквивалентен 1,6-литровому атмосферному бензиновому двигателю.
       В целом дизельный двигатель долговечен — его ресурс обычно на 20-30% больше, чем у бензинового. При турбировании ресурс, естественно, уменьшается, но не так сильно, как у бензинового, всего лишь на 10-20%. Иногда, как бы странно это ни звучало, турбирование может даже увеличить ресурс, например, при постоянной эксплуатации автомобиля в высокогорных районах, где атмосферному дизелю не хватает воздуха — наддув оптимизирует сгорание и позволяет избавиться от жесткой работы двигателя, снижая тем самым ударные нагрузки на его узлы и детали.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ
       Благодаря простоте схемы управления турбокомпрессором повышается надежность и снижаются расходы на обслуживание.
       В эксплуатации дизельных автомобилей есть некоторые особенности — неважно, турбирован их двигатель или нет. Главная из них — зимний запуск. По традиции многие считают, что дизель на морозе не запустишь. Это не так — если автомобиль рассчитан на эксплуатацию при низких температурах. Двигатель, например, Peugeot 405 при использовании соответствующего масла, зимней солярки и встроенных свечей накаливания для подогрева зоны впрыска пускается при температуре -32°С — доказано практикой. А вот в инструкции по эксплуатации Chevrolet Suburban с 6,5-литровым турбодизелем, который тоже оснащен свечами накаливания, уже при -18°С предлагается пользоваться электрическим нагревателем блока цилиндров с внешним, из розетки, питанием.
       Еще одна проблема, на которую иногда жалуются, — это загрязнение форсунок от плохой солярки. Но эта же проблема возникает и в бензиновых двигателях с системами впрыска топлива.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Решить ее позволяет периодическая, строго по инструкции или даже чаще, замена топливного фильтра. Заодно это продлит и срок службы плунжерных пар.
       И наконец, стоимость. Как уже говорилось, дизель дороже. Но по сравнению со стоимостью самого двигателя стоимость турбокомпрессора относительно невелика, поэтому турбирование дизеля, значительно улучшая потребительские качества автомобиля, лишь ненамного увеличивает его цену.
       В таблице 2 приведены некоторые характеристики автомобиля Peugeot 306 XT, оснащенного разными двигателями — двумя бензиновыми с впрыском и турбодизелем примерно такой же мощности. Сравнение характеристик показывает, что турбодизельный вариант ни в чем не уступает бензиновым. Действительно, турбодизельная версия стоит дороже на $1000. Но подсчитано, что на ее эксплуатации, например, в Германии в год при пробеге 20 тыс. км экономится DM900. Для России годовая экономия только на топливе составила бы $250-300. С учетом долговечности дизельного двигателя и меньших расходов на его эксплуатацию первоначальные дополнительные затраты окупятся за 2-3 года.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ
       Некоторые могут возразить, что через такой срок автомобиль уже пора менять. Наверное, это правильно. Но не всем по карману. Да и покупать дизельный или турбодизельный автомобиль будут не любители острой спортивной езды, у которых машина все равно долго не живет, а те, кто предпочитает экономичность и надежность, пусть даже и несколько медлительную.
       
Виталий Струговщиков
       
Таблица 1.
       Характеристики Volkswagen Passat GT TDI
       


Двигатель турбодизель
Рабочий объем (см куб.) 1898
Мощность (л. с.) 90 (4000 об./мин.)
Крутящий момент (Нм) 202 (1900 об.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ /мин.)
Вес (кг) 1343
Максимальная скорость (км/ч) 178
Разгон от 0 до 100 км/час с 13,9
переключением передач (сек.)
Разгон от 60 до 100 км/ч на 11,6
4-й передаче (сек.)
Расход топлива (л/100 км) 5,0-8,8
Уровень шума в салоне при 100 км/ч (дБ) 67
Цена в Германии (DM) 43600
       
       
Таблица 2.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ
       Характеристики Peugeot 306 XT
       
Модель Peugeot 306 XT 1.6i Peugeot 306 XT 1.8i Peugeot 306 XTDT
Двигатель бензиновый с бензиновый с турбодизель
впрыском впрыском
Рабочий объем (см куб.) 1587 1762 1905
Степень сжатия 9,6 9,25 21,8
Мощность (л.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ с.) 88 (5600 об./мин.) 101 (6000 об./мин.) 92 (4000 об./мин.)
Крутящий момент (Нм) 135 (3000 об./мин.) 153 (3050 об./мин.) 196 (2250 об./мин.)
Полная масса (кг) 1570 1590 1630
Разгон от 0 до 100 км/ч 12,9 12,3 12,4
(сек.)
Максимальная скорость 180 185 180
(км/ч)
Расход топлива по 9,0 10,4 7,5
городскому циклу
(л/100 км)
Каталожная цена (шв.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ 22950 23500 24950
франки)
       
       
       

Как правильно эксплуатировать турбодизельный двигатель

Прогресс уже давно не стоит на месте: прежние тихоходные, но шумные дизельные моторы стали работать тише, а мощи, и, соответственно, динамики у них прибавилось. Причем, заметный прорыв в этом направлении случился тогда, когда на дизельные силовые установки начали устанавливать турбонаддув. Сегодня множество автомобилей, оснащенных дизельными двигателями, имеют в конструкции турбину. Однако не все владельцы машин с такими агрегатами знают, как правильно эксплуатировать турбодизельный двигатель так, чтобы он прослужил как можно дольше. Мы подготовили восемь простых советов, которые помогут нынешним или потенциальным владельцам машин с подобными агрегатами не допускать просчетов в эксплуатации турбины.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

На фото: Турбодизельный двигатель 2.1 Mercedes

Совет №1. Держите уровень масла под контролем.

Всем двигателям вообще, а рассматриваемому нами турбированному дизельному мотору в частности, не рекомендуется масляное голодание. Ведь масло в таком агрегате играет особую роль, смазывая подшипники скольжения и качения турбокомпрессора. Когда уровень моторного масла падает, подшипники не получают нужного количества смазки, что приводит к их скорому износу и выходу из строя.

Поэтому рекомендуем как можно чаще проверять уровень масла в картере двигателя и при обнаружении дефицита смазки, немедленно доливать нужно количество. Кроме того, необходимо выяснить причину, по которой в системе падает уровень масла (это может быть загрязнение либо не герметичность масляной системы, выход из строя масляного насоса и прочее) и незамедлительно ее устранить.

Совет №2. Используйте только качественное моторное масло.

Раз уж приобрели автомобиль с турбодизельным двигателем, не скупитесь на заправку его качественным и рекомендованным производителем моторным маслом.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Тут как в известной поговорке: сэкономите на рыбке, получите плохую юшку. Выше мы уже указали, какую роль играет моторное масло для турбины, поэтому заливать в двигатель абы какое масло – значит, заранее обрекать турбокомпрессор силовой установки своей машины на медленную смерть. Важно помнить: масла, рекомендованные для турбированных агрегатов, отличны по составу от обычных масел ввиду того, что при работе в турбине они подвержены воздействию куда больших температур и нагрузок, чем в атмосферном моторе. Еще один немаловажный аспект: крайне не рекомендуется смешивать разные по коэффициенту вязкости масла, например, доливать в двигатель масло 5w-30, если там уже было залито 10w-40.

Поэтому советуем: заливайте масло одного коэффициента вязкости и желательно одной и той же марки.

Совет №3. Следите за качеством дизельного топлива.

Турбина дизельного двигателя чувствительна не только к качеству моторного масла, но и к качеству топлива, которым вы «кормите» свой автомобиль.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ При использовании горючего низкого качества вероятно засорение топливной системы двигателя, что, в свою очередь, сказывается на потере мощности двигателя, из-за чего турбина, чтобы восполнить этот пробел в оборотах, вынуждена работать на пределе мощности. А это может привести к сокращению срока ее эксплуатации.

Поэтому рекомендуем по возможности заправляться только на проверенных АЗС. Если не уверены в качестве горючего, его лучше дополнительно отфильтровать.

Совет №4. Избегайте перегазовок в момент запуска турбированного двигателя.

Следовать этому совету нужно, прежде всего, тем владельцам машин, у которых не установлена система запуска/остановки двигателя Start&Stop. Дело в том, что при запуске двигателя масляные каналы еще не заполнены моторным маслом, при нажатии на педаль акселератора вы даете нагрузку на турбину, которая вращается практически без масла, вследствие чего быстро изнашиваются ее узлы (бронзо-графитовые подшипники скольжения и качения), что в конечном итоге приводит к выходу из строя турбокомпрессора.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

Поэтому настоятельно рекомендуем подавать газ плавно, и некоторое время (в течение 5 минут максимум) после запуска дать двигателю поработать на холостых оборотах, а затем начать движение на низких оборотах, постепенно увеличивая нагрузку. Оговоримся, что это важно для двигателей, не оснащенных системой Start&Stop.

Совет №5. Держите при езде средние обороты.

Турбина двигателя – это агрегат, постоянно работающий при высоких нагрузках, поэтому ездить на автомобиле с таким агрегатом длительное время на низких оборотах нельзя. Вообще же рекомендуется несколько раз в неделю давать турбине мотора поработать на предельно высоких оборотах: таким образом, вы активируете процесс очистки системы наддува турбокомпрессора, что в дальнейшем поможет продлить срок эксплуатации агрегата. Важно избегать «перекручивания» турбины, то есть длительной езды на высоких оборотах. При этом ротор турбокомпрессора испытывает повышенные нагрузки, что приводит к дисбалансу в его работе и, как следствие, выходу из строя его узлов.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

Поэтому при езде на автомобиле с подобным типом мотора лучше всего придерживаться средних оборотов.

Совет №6. Не глушите двигатель сразу после остановки автомобиля.

Этот совет особенно важен для автолюбителей, чьи турбодизельные моторы не оснащены системой Start&Stop. Дело в том, что при незамедлительной остановке двигателя крыльчатки турбины еще продолжают вращаться, но масла, которые смазывает их, уже недостаточно, что приводит к перегреву узлов турбокомпрессора (ротора и подшипников). А это, в свою очередь, ведет к повышенному износу указанных частей турбины.

Поэтому после остановки дайте поработать двигателю на холостых оборотах короткое (не более 5 минут) время. За это время турбина охладится и ее можно деактивировать.

Совет №7. Избегайте длительной работы мотора на холостых оборотах.

Для турбированного двигателя работа на холостых оборотах в течение 20-30 минут – смерти подобна. Дело в том, что при таком режиме работы двигателя может произойти закоксовка (проще говоря, засорение) турбины, а именно маслоотводящей трубки, привода изменения геометрии турбины.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Также при длительной работе на холостых оборотах возможен подсос моторного масла в цилиндры двигателя, что может привести к выходу из строя компонентов цилиндропоршневой группы.

Если вы все же держите мотор длительное время на холостом ходу, то советуем вам держать частоту вращения коленвала на 1200-1600 об./мин.

Совет №8. Вовремя проводите техническое обслуживание автомобиля.

Придерживайтесь рекомендованных производителем сроков замены моторного масла и фильтров, как масляного, так и воздушного. Помните, что для турбированного двигателя сроки прохождения ТО, как правило, короче, чем для атмосферного, так как турбина работает при более высоких нагрузках, чем обычный дизельный агрегат, и, следовательно, чаще нуждается в свежем масле и фильтрах.

Следование этим простым советам избавит владельцев автомобилей от дорогостоящего ремонта турбины.

Особенности двигателя TDI в автомобилях Volkswagen

Двигатель TDI — это повышенная мощность при низком объеме вредных выбросов.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Под аббревиатурой TDI (Turbo Diesel Injection) понимается дизельный силовой агрегат, который обладает повышенным крутящим моментом, незначительными топливными затратами и высокой мощностью. Какими же еще положительными сторонами и спецификой отличается подобный мотор?

Единственная модель Volkswagen, которая комплектуется TDI — полноприводный внедорожник Toaureg. Этот тип двигателя не самый популярный на автомобилях Volkswagen, в отличии от TSI. На Passat В8, Passat СС, Tiguan устанавливают сейчас (2016 года) только двигатели типа TSI. На  Golf и Jetta кроме TSI устанавливают также MPI-двигатели.

Каждый современный мотор с турбонагнетателем, а также прямым впрыском в транспортных средствах «Volkswagen» помечают как TDI. Важной отличительной чертой для каждого такого мотора считается то, что топливный впрыск, который производится под повышенным давлением вместе с изменяющейся турбинной геометрией, дозволяет осуществлять сжигание предельно эффективно.

Во время применения технологии прямого топливного впрыска удается достичь уровня КПД максимум 45 процентов.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ В результате происходит преобразование значительной доли возможной топливной энергии в кинетическую, то есть в моторную мощность. Хотя для этого нужно, чтобы почти полностью и эффективно сгорало топливо. Достигается это с помощью особенной конфигурации камеры сгорания.

Главные положительные стороны TDI

Двигательное устройство TDI отличает экономное расходование. Важнейшими его положительными сторонами считаются:

  • незначительное топливное потребление;
  • небольшой объем выбросов вредоносных веществ;
  • надобность лишь изредка проводить автосервисные работы и техобслуживание.

Непосредственно во время низких оборотов получается в значительной мере увеличить мощность до предельной вращательной частоты. Происходит улучшение показателей разгона, а заодно качества рабочей динамики. Повышенный крутящий момент заодно обеспечивает предельное удобство от вождения автомобиля, который оснащен двигательным устройством TDI.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

Прямой либо предварительный топливный впрыск?

Двигатели с прямым топливным впрыском осуществляют довольно жесткое топливное сжигание. В итоге при охлажденном запуске, как правило, появляется отличительный гул. Во избежание этого дизельное топливо впрыскивается предварительно.

Перед главным циклом непосредственно в камеру сгорания происходит топливная подача в малом объеме. Давление в камере повышается не немедленно, а понемногу, поэтому сгорание становится «мягким».

Уменьшение вредоносных выбросов

После того, как топливо предварительно впрыскано, происходит постинжекционный процесс, приводящий к уменьшению выброса вредоносных веществ. Минимизируются азотные оксиды в выхлопе за счет того, что в камеру сгорания попадает немного топлива исходя от оборотов. Когда смешиваются воздух, который поглощается, а заодно выхлопные газы, в камере уменьшается температурный режим, поэтому происходит сокращение объема азотных оксидов.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

Двигательный турбонагнетатель

В моторах TDI используется турбонагнетатель с изменяющейся геометрией, что дозволяет осуществлять сжимание воздуха, который поглощается. За счет этого увеличивается объем поглощаемого воздуха в камере. В итоге мощность мотора повышается при прежней объемности и на таких же оборотах.

Две турбины формируют устройство турбонагнетателя. Находящаяся в выпускном тракте турбина, начинает вращаться от исходящей массы выхлопных газов. Она начинает двигать компрессорное колесо, которое осуществляет сжатие воздуха непосредственно на впуске. Воздух, нагреваемый во время сжатия, подвергается охлаждению и затем поступает в камеру. Так как при снижении температурного режима объем воздуха также уменьшается, то и в камере его оказывается больше.

Изменение турбинной геометрии

Система VTG сегодня довольно успешно употребляется в моторах TDI. Во время малых оборотов и незначительном газовом объеме блок контроля меняет местоположение механических устремляющих лопастей, при которых происходит сужение диаметра.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Это способствует ускорению газового потока и усилению давления. При повышении оборотов мотора происходит усиление выхлопного давления, поэтому блок контроля наоборот повышает трубопроводный диаметр. Подобные нагнетатели способствуют приданию дополнительной мощности мотору, уменьшая объем выбросов и увеличивая приемистость.


Моторное масло для дизельных двигателей с турбонаддувом


Двигатели с наддувом любят за высокую мощность при небольшом рабочем объёме, за высокие динамические показатели, равномерную тягу на средних и высоких оборотах, дизельные моторы с наддувом ещё и более экономичны по сравнению с бензиновыми. Турбодизель — это самое распространённое применение турбины. Если бензиновый мотор с наддувом применяют только в дорогих автомобилях, то турбодизель прочно прописался и среди коммерческого транспорта, и среди недорогих легковушек. Однако турбодизель требует повышенного внимания и строгого соблюдения регламента замены масла.

Содержание:

  1. Почему турбодизелю надо особое масло
  2. Особенности эксплуатации турбодизелей
  3. Допуски моторных масел
  4. Марки масел для турбодизеля

Почему турбодизелю надо особое масло

Поскольку дизельный двигатель отличается по режиму работы от бензинового в принципе, то и масло для него должно быть особенное.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Моторное масло для дизельных двигателей с турбонаддувом выбирается ещё тщательнее, поскольку турбина очень требовательна к качеству смазки. Заводские рекомендации говорят о замене фильтров и масла на турбодизелях не позднее 5 тысяч пробега, но иногда приходится менять их чаще.

На регламент замены может сильно влиять температурный режим работы двигателя, это в первую очередь касается подбора масла для дизельных тракторов и грузовиков. Масло меняют чаще в тех случаях, когда мотор эксплуатируется в пыльных условиях и на песчаном грунте. Есть и совершенно противоположные показания, к примеру, при кратковременной эксплуатации машины и при частой езде на короткие дистанции, а также при частом пуске на морозе. Следовательно, при выборе смазки необходимо учитывать как особенности двигателя, так и особенности эксплуатации турбодизеля.

Особенности эксплуатации турбодизелей

Турбодизель требует особенных марок масел из-за особенного режима работы, обусловленного наличием турбины.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Как известно, она нагнетает давление во впускном тракте, что способствует лучшему наполнению топливо-воздушной смесью камеры сгорания, а это приводит к более полному сгоранию солярки и более эффективной отдаче мотора в целом. КПД турбодизеля выше, чем у атмосферного мотора примерно на 23-25%, но вместе с тем, высокая мощность увеличивает и нагрузку на цилиндро-порщневую группу, кривошипно-шатунный и газораспределительный механизмы. Температура работы турбодизельной поршневой на порядок выше, чем у обычного мотора, что также требует от масла повышенной вязкости и высокой обволакивающей способности.

Кроме того, в турбодизелях последних поколений с сажевым фильтром требования к качеству масла возрастают ещё больше, поскольку забитый фильтр необходимо заменять, а цены на него немалые. Тем не менее, существует возможность «прожигания» фильтра. Для этого, после сообщения бортового компьютера о забитом фильтре, необходимо нагрузить двигатель на 3-3,5 тысячах оборотов в течение 15-20 минут, как правило, после этой процедуры ошибка в компьютере исчезает, но на ресурс фильтра также сильно влияет своевременность замены масла.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

Допуски моторных масел

Конструкция самой турбины также требует особых сортов масел, поскольку и она работает при температуре около тысячи градусов, а угловые скорости лопастей ротора могут достигать скорости звука. Как следствие, масло быстрее окисляется, контактируя с выхлопными газами и находясь под влиянием высочайших температур и нагрузок. Для этого в обычное полусинтетическое или синтетическое моторное масло добавляют пакет присадок, противостоящих быстрому окислению и потере смазывающих свойств. Поэтому практически для каждого мотора производитель устанавливает допуски, уровень вязкости и наличе определённых присадок. Все это прописано в сертификатах качества, которые обозначаются на упаковке в зависимости от рынка сбыта:

  • API — стандарт масел для США;

  • АСЕА — так обозначается европейский стандарт качества;

  • ILSAC — это азиатская классификация масел.

Марки масел для турбодизеля

В принципе, подбор масла для турбодизеля уже сделал за нас производитель автомобиля, указав в сервисной книжке параметры, которые должны быть на этикетке, а иногда он указывает не только индекс и марку, но и конкретный бренд.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ К примеру, компания Рено настаивает на маслах от Elf, но это не значит, что только такую смазку можно лить в мотор. Достаточно подобрать масло по вязкости в зависимости от времени года и температуры воздуха и использовать допуски производителя по региональным стандартам. Допустимые марки масел для турбодизеля по стандарту США и для Европы мы привели в таблице ниже.

Каждое из этих масел вполне подойдёт для дизельного мотора с наддувом, остаётся подобрать только вязкость и предпочитаемый бренд. Единственное, что стоит при этом учесть — масла для турбодизеля выпуска после 90-го года не должны быть ниже СЕ по допускам API, или В2 по допускам ACEA. Подбирайте масла правильно и чистого всем выхлопа!

Читайте также:


С какой целью дизель оборудуют турбокомпрессором

Когда появились первые турбированные двигатели, они были прерогативой дорогих, преимущественно спортивных автомобилей.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Но случилось это достаточно давно, а потому сегодня двигатели с турбонаддувом можно встретить все чаще и чаще. Такой тип двигателя сегодня можно встретить и в грузовых авто, и в легковом транспорте, и в специальной технике. Одним словом, везде, где можно и хотелось бы увеличить КПД автомобиля и его фактическую мощность, рассказывают специалисты turboday.com.ua.

Прежде всего, турбина — это элемент питания, который способен увеличивать мощность двигателя на 30, а то и 50%. При этом, двигатель не только не начинает потреблять больше топливных ресурсов, но при определенных обстоятельствах, становится даже более экономичным.

В чем сила турбокомпрессора?

Своим уникальным возможностям по увеличению мощности двигателя турбины обязаны отработавшим газам, которые поступают под давлением и обеспечивают работу всей системы. Важную роль при этом играет качество рабочей смеси, которое напрямую зависит от содержания в ней атмосферного воздуха. Если оно достаточное, то дизельное топливо сгорает тщательно и обеспечивает дополнительную мощность.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Напротив, если воздуха не хватает, то это может привести к повышенной дымности газов, снижению КПД и мощности, а также к перегреву мотора.

Еще один немаловажный фактор — это количество и качество масла в турбированном двигателе. Как недостаточное, так и избыточное количество масла — это проблема для турбины, вызывающая не только снижение мощности, но и приводящая к различным поломкам. Чтобы увеличить срок эксплуатации турбированного двигателя, производители рекомендуют своевременно осуществлять замену машинного масла и использовать те его марки, которые подходят именно вашему автомобилю или другой технике с турбонаддувом.

Сфера применения турбированных дизельных двигателей

Как мы уже упоминали, сегодня турбина — это не привилегия, а «производственная необходимость». Многие современные «агрегаты» работают в режиме повышенных нагрузок, а в таких условиях без турбонаддува просто не обойтись. Именно по этой причине турбированные дизельные двигатели сегодня можно встретить:

  • в легковых и грузовых авто;
  • в морском транспорте;
  • в сельхозтехнике;
  • в железнодорожном транспорте;
  • в автобусах;
  • в строительных машинах и т.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ д.
  • Можно утверждать, что турбокомпрессор можно поставить на любой вид двигателя, будь то дизельный, газовый или бензиновый. В любом случае, его использование значительно увеличивает мощность мотора, КПД и производительность. Это выгодно, прежде всего, для тех водителей, которые используют автотранспорт и прочую технику для нужд своего бизнеса.

    Особенности эксплуатации и ремонта турбины

    Любой турбированный двигатель обладает своим ресурсом. Для дизельных двигателей такой ресурс может составлять от 250 000 до 500 000 км. При этом срок эксплуатации турбины напрямую зависит от того, как именно вы используете ее ресурс. Для того, чтобы «продлить жизнь» турбины нужно, прежде всего, следовать рекомендациям по безопасной эксплуатации. С этой целью, прежде чем выключить двигатель после «трудового дня», дайте ему покрутиться пару минут на холостом ходу, так как узлы турбины могут по инерции совершать вращательные движения «в сухую», что приведет, рано или поздно, к тому, что турбина выйдет из строя.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Также не рекомендуется сильно газовать первые несколько минут, чтобы смазка турбины, в особенности в холодное время года, успела как следует разогреться.

    Если же поломка все же произошла, то у владельца транспортного средства есть два пути — полная замена турбины или ее ремонт и восстановление отдельных узлов. Первый путь хорош, но приведет к значительным материальным затратам, а потому многие предпочитают не менять, а ремонтировать турбины. При наличии соответствующего современного оборудования, восстановление турбокомпрессора позволяет вернуть агрегат практически «к заводским настройкам». Хороший поставщик услуг по ремонту турбин всегда дает гарантию срока эксплуатации, практически равную аналогичному сроку у новой турбины. Кроме того, ремонт турбины значительно облегчает жизнь владельцу, так как автоматически отпадает вопрос о поиске совместимых и подходящих систем.

    И помните, что своевременное профилактическое обслуживание турбины — это залог ее «здоровья и долголетия».Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

    Когда появились первые турбированные двигатели, они были прерогативой дорогих, преимущественно спортивных автомобилей. Но случилось это достаточно давно, а потому сегодня двигатели с турбонаддувом можно встретить все чаще и чаще. Такой тип двигателя сегодня можно встретить и в грузовых авто, и в легковом транспорте, и в специальной технике. Одним словом, везде, где можно и хотелось бы увеличить КПД автомобиля и его фактическую мощность, рассказывают специалисты turboday.com.ua.

    Прежде всего, турбина — это элемент питания, который способен увеличивать мощность двигателя на 30, а то и 50%. При этом, двигатель не только не начинает потреблять больше топливных ресурсов, но при определенных обстоятельствах, становится даже более экономичным.

    В чем сила турбокомпрессора?

    Своим уникальным возможностям по увеличению мощности двигателя турбины обязаны отработавшим газам, которые поступают под давлением и обеспечивают работу всей системы. Важную роль при этом играет качество рабочей смеси, которое напрямую зависит от содержания в ней атмосферного воздуха.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Если оно достаточное, то дизельное топливо сгорает тщательно и обеспечивает дополнительную мощность. Напротив, если воздуха не хватает, то это может привести к повышенной дымности газов, снижению КПД и мощности, а также к перегреву мотора.

    Еще один немаловажный фактор — это количество и качество масла в турбированном двигателе. Как недостаточное, так и избыточное количество масла — это проблема для турбины, вызывающая не только снижение мощности, но и приводящая к различным поломкам. Чтобы увеличить срок эксплуатации турбированного двигателя, производители рекомендуют своевременно осуществлять замену машинного масла и использовать те его марки, которые подходят именно вашему автомобилю или другой технике с турбонаддувом.

    Сфера применения турбированных дизельных двигателей

    Как мы уже упоминали, сегодня турбина — это не привилегия, а «производственная необходимость». Многие современные «агрегаты» работают в режиме повышенных нагрузок, а в таких условиях без турбонаддува просто не обойтись.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Именно по этой причине турбированные дизельные двигатели сегодня можно встретить:

    • в легковых и грузовых авто;
    • в морском транспорте;
    • в сельхозтехнике;
    • в железнодорожном транспорте;
    • в автобусах;
    • в строительных машинах и т.д.

    Можно утверждать, что турбокомпрессор можно поставить на любой вид двигателя, будь то дизельный, газовый или бензиновый. В любом случае, его использование значительно увеличивает мощность мотора, КПД и производительность. Это выгодно, прежде всего, для тех водителей, которые используют автотранспорт и прочую технику для нужд своего бизнеса.

    Особенности эксплуатации и ремонта турбины

    Любой турбированный двигатель обладает своим ресурсом. Для дизельных двигателей такой ресурс может составлять от 250 000 до 500 000 км. При этом срок эксплуатации турбины напрямую зависит от того, как именно вы используете ее ресурс. Для того, чтобы «продлить жизнь» турбины нужно, прежде всего, следовать рекомендациям по безопасной эксплуатации.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ С этой целью, прежде чем выключить двигатель после «трудового дня», дайте ему покрутиться пару минут на холостом ходу, так как узлы турбины могут по инерции совершать вращательные движения «в сухую», что приведет, рано или поздно, к тому, что турбина выйдет из строя. Также не рекомендуется сильно газовать первые несколько минут, чтобы смазка турбины, в особенности в холодное время года, успела как следует разогреться.

    Если же поломка все же произошла, то у владельца транспортного средства есть два пути — полная замена турбины или ее ремонт и восстановление отдельных узлов. Первый путь хорош, но приведет к значительным материальным затратам, а потому многие предпочитают не менять, а ремонтировать турбины. При наличии соответствующего современного оборудования, восстановление турбокомпрессора позволяет вернуть агрегат практически «к заводским настройкам». Хороший поставщик услуг по ремонту турбин всегда дает гарантию срока эксплуатации, практически равную аналогичному сроку у новой турбины.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Кроме того, ремонт турбины значительно облегчает жизнь владельцу, так как автоматически отпадает вопрос о поиске совместимых и подходящих систем.

    И помните, что своевременное профилактическое обслуживание турбины — это залог ее «здоровья и долголетия».

    Моторное масло для дизельных двигателей, масло для дизеля

    Дизельное моторное масло имеет свою специфику, поэтому оно и выделяется в отдельный класс. В первую очередь это связано с ухудшенными условиями сгорания топлива – смесеобразование происходит уже в конце такта сжатия. Также нужно учитывать повышенное давление в цилиндрах, из-за чего продукты неполного сгорания активнее проникают в картер. При работе мотора на высокосернистом топливе темпы старения масла, в сравнении с бензиновыми двигателями, значительно возрастают.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

    ROLF Lubricants GmbH, разрабатывая новые сорта специализированных дизельных масел, делает упор на повышенную стабильность, применяет эффективные пакеты диспергирующих и моющих присадок.

    Характеристики дизельных масел

    Основной характеристикой масла для дизельных двигателей (с эксплуатационной точки зрения) является вязкость. Ее изменение в зависимости от температуры определяет применимость продукта для конкретного двигателя, а также возможность всесезонного использования.

    Принятая как де-факто классификация SAE обеспечивает удобство маркировки и сравнения характеристик масел. В ней все масла для автомобилей делятся на зимние, летние и всесезонные. Характеристики вязкости разбиты по диапазонам на несколько классов, получающих символическое числовое обозначение. Чем индекс класса выше, тем больше вязкость масла. Например, масло SAE 5W-40 по сравнению с 5W-30 имеет одинаковые низкотемпературные свойства, но оно более вязкое при работе двигателя. У 5W-30 кинематическая вязкость при 100 °С должна находиться в интервале 9,3–12,5 мм2/с, а у 5W-40 в интервале 12,5–16,3 мм2/с.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

    Чтобы отличить «зимний» индекс вязкости, к маркировке добавляется суффикс W. У всесезонных масел указываются и «зимнее», и «летнее» обозначения. Так, моторное масло SAE 10W-40 удовлетворяет требованиям класса 10W для низких температур и аналогично по рабочим характеристикам на прогретом моторе летним маслам SAE 40 (с дополнениями, введенными стандартом SAE J300 в 2007 году).

    Выбирать моторное масло для дизельного двигателя необходимо по простому принципу – индекс «летней» вязкости должен соответствовать требованиям производителя авто. От этого зависят рабочее давление в системе смазки на прогретом двигателе, эффективность разбрызгивания масла коленчатым валом на стенки цилиндров и так далее. Увеличивать вязкость допустимо только при жесткой эксплуатации, повышенных температурах, на двигателях с ощутимым износом. Индекс низкотемпературной вязкости во многом определяется климатом региона, в котором эксплуатируется автомобиль. Чем ниже температуры зимой, тем меньше должен быть индекс низкотемпературной вязкости: от 20W в жарком климате до 0W в северных широтах.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

    По перечню эксплуатационных свойств моторное масло для дизеля выделяется:

    • повышенным щелочным числом. Если это допускается классом качества, так как масло активно набирает кислотные соединения. Особенно это актуально при износе ЦПГ и работе на дизтопливе неудовлетворительного качества;
    • активной работой диспергирующих и моющих присадок. Масло должно надежно удерживать в себе сажу, очищать двигатель от нагара, позволяя масляному фильтру отделить частицы загрязнений;
    • отличными противоизносными свойствами. Для дизельных моторов характерны высокие нагрузки на КШМ уже при низких оборотах, когда давление масла в смазочных каналах меньше всего;
    • термостабильностью. Несмотря на то, что дизельный мотор за счет высокого КПД «холоднее» бензинового, в ряде точек масло может нагреваться значительно выше рабочей температуры самого двигателя. Особенно это характерно для мощных турбодизелей.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

    Качественное моторное масло для дизельных автомобилей производится с добавлением сбалансированного и сложного пакета присадок. Особенно это характерно для специализированных продуктов, которые должны соответствовать актуальным экологическим нормам. Также они должны быть рассчитаны на применение многокомпонентных катализаторов и сажевых фильтров в системе выпуска отработанных газов.

    Классификация дизельного моторного масла

    Для более удобного подбора масла по характеристикам двигателя следует ориентироваться на системы стандартизации смазочных материалов. Старейшая из них и наиболее распространенная – система American Petroleum Institute (API). В ней масла для дизельных двигателей входят в отдельную группу с префиксом С (Commercial). Аналогично группе масел S для бензиновых двигателей, каждый новый принимаемый стандарт получает обозначение следующей буквой латинского алфавита. При этом требования нового стандарта жестче, чем у предыдущего и/или вводятся дополнительные.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Важно, что стандарт обеспечивает совместимость масел в прямом направлении – продукты, изготовленные по новым стандартам, могут применяться в ранее разработанных дизелях.

    Однако из-за того, что дизельные двигатели на автомобилях и спецтехнике могут работать и по четырехтактному, и по двухтактному циклу, маркировка класса качества может усложняться еще и указанием на тактность агрегата. Например, масла класса API CF-2 рассчитаны именно на двухтактные моторы, в то время как API CF-4 – на четырехтактные. Между собой они не взаимозаменяемы.

    Европейская система ACEA изначально выделяла дизельные масла в группу B, стандарты нумеровались численно в порядке принятия. Но после введения норм Euro и увеличения сложности систем снижения токсичности были созданы две новые группы классов:

    • ACEA C – масла для двигателей, соответствующих экологическим нормам Euro 4 и выше. Стандарт включает в себя специфические требования к зольности, содержанию фосфора и серы, рассчитан преимущественно на легковой транспорт;
    • ACEA E – система классификации масел для тяжелого дизельного транспорта.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Масла этой группы не имеют взаимозаменяемости по порядку индексов, подбор ведется по прямому соответствию требованиям производителя техники.

    Типы базовых масел

    Изначально моторные масла для дизельных двигателей производились на минеральной базе – продуктах переработки нефти. Более того, низкооборотным дизелям с малой удельной мощностью, в сравнении с бензиновыми, дольше подходили масла на минеральной основе. Более жесткие классы качества вводились медленнее. Для коммерческого транспорта с его значительными годовыми пробегами очень важно было и то, что минеральные масла имеют наименьшую стоимость.

    Одновременно из-за неудовлетворительной стабильности минеральной базы она должна была дополняться все большим объемом присадок, доводящих качество моторного масла до соответствующего уровня. С распространением турбодизелей, где нагрузки значительно выросли в сравнении с низкофорсированными атмосферными моторами, возникла и потребность в более стабильных и качественных моторных маслах.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

    Синтетика, производимая на гидрокрекинговой или полиальфаолефиновой базе, создала возможность не только увеличить удельную мощность двигателей, но и улучшить экологические характеристики дизелей. Современные нормы экологии уже невозможно обеспечить исключительно за счет управления смесеобразованием двигателя. Помимо катализаторов, используются специфические системы именно для дизелей (сажевые фильтры, впрыск мочевины). Такие моторы нуждаются в отдельных маслах, производство которых на минеральной базе просто нерентабельно из-за высоких требований к испаряемости, зольности и содержанию фосфора.

    Компромиссный вариант – полусинтетика, при производстве которой в минеральную базу вводится достаточный объем синтетического масла. При сохранении демократичной цены полусинтетическое масло становится стабильнее минерального, может соответствовать более жестким классам качества. В случаях, когда использование полусинтетики допустимо по требованиям производителя автомобиля, она дает заметное снижение стоимости эксплуатации машины без особого влияния на ресурс мотора.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

    Дизельное масло для турбированных двигателей

    Специфика дизельных двигателей, описанная выше, наиболее ярко выражена на примере моторов с турбонаддувом. У них увеличиваются и удельные нагрузки, и объем продуктов неполного сгорания топлива, попадающих в масло. Появляются и специфические требования:

    • работоспособность в парах трения «сталь – медные сплавы». В то время как в самом ДВС цветных сплавов такого типа практически нет, подшипники скольжения большинства турбокомпрессоров изготавливаются именно из бронзы. Учитывая, что рабочие обороты турбин доходят до сотен тысяч в минуту, масло в турбокомпрессорном двигателе должно обеспечивать эффективность защиты подшипников;
    • минимальная коксуемость. Турбокомпрессор после работы двигателя на большой нагрузке достаточно долго сохраняет высокую температуру, в то время как поток масла прекращается почти сразу же после остановки мотора. Чрезмерное образование отложений в этом случае быстро выведет турбину из строя.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ В связи с этим и появились различные типы турботаймеров, которые дают турбине остыть на холостых оборотах. Несмотря на распространение турбокомпрессоров с водяным охлаждением, минимальная коксуемость масла по-прежнему важна.

    Полезные советы

    Распространенное мнение о возможности оценки качества моторного масла по скорости его потемнения в корне неверно, даже если речь идет о дешевой «минералке». Потемнение дизельного моторного масла возникает неизбежно из-за проникновения в него сажи и, напротив, сигнализирует об эффективной работе диспергирующих присадок.

    При выборе моторного масла для современных двигателей с сажевыми фильтрами (DPF) необходимо в обязательном порядке использовать сорта с зольностью, соответствующей требованиям производителя техники. Если сервисная документация допускает использование среднезольных масел (MidSAPS), также могут применяться и малозольные LowSAPS-масла. Но, если в сервисной книжке указано использование только малозольных моторных масел, применение MidSAPS не допускается, так как в таком случае уже возможно снижение срока службы сажевого фильтра.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ  Так же на срок службы сажевого фильтра влияет дизельное топливо, чем больше в нем серы, тем скорее DPF выйдет из строя, вне зависимости от зольности моторного масла.

    Моторные масла ROLF для дизельных двигателей

    ROLF OPTIMA 15W-40 SL/CF

    Всесезонное минеральное масло для всех типов бензиновых и дизельных двигателей. Обеспечивает высокие защитные и моющие свойства.

    Подробнее

    Дизельное масло | Моторные масла для дизельных двигателей от ELF

    Дизельные двигатели по сравнению с бензиновыми обладают рядом особенностей, в частности, имеют большую степень сжатия и более высокую скорость сгорания. Из-за повышенной склонности к образованию сажи в процессе работы моторные масла для дизеля должны иметь хорошие очищающие свойства, а повышенное давление в камере сгорания требует окислительной стойкости. Абсолютное большинство современных дизельных двигателей в легковых автомобилях оснащены турбонаддувом, многие моторы последних поколений имеют систему прямого впрыска топлива и сажевый фильтр (DPF), которые накладывают дополнительные требования на качество смазочных материалов.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Для выбора дизельного моторного масла по модели автомобиля можно использовать сервис подбора на нашем сайте.

    ELF EVOLUTION 900 SXR 5W40

    Моторное масло ELF EVOLUTION 900 SXR 5W40 предназначено для дизельных двигателей легковых автомобилей и фургонов различных модификаций, в том числе с турбонаддувом и без него. Оно отвечает стандартам API CF, ACEA B4 и Renault RN0700/0710 и подойдет для всех типов эксплуатации. Это масло обеспечивает превосходную защиту мотора, особенно системы газораспределения, от износа, а специальные моющие присадки очищают детали двигателя от отложений и улучшают его производительность. Исключительная термическая и окислительная стабильность ELF EVOLUTION 900 SXR 5W40 сохраняют характеристики масла длительное время и гарантируют долгую безотказную работу мотора, поэтому это дизельное масло удовлетворяет требованиям большинства автопроизводителей по увеличению интервалов замены.

    ELF EVOLUTION 900 SXR 5W40

    ELF EVOLUTION 700 TURBO DIESEL 10W40

    Моторное масло ELF EVOLUTION 700 TURBO DIESEL 10W40 специально разработано и адаптировано для современных дизельных двигателей, в том числе с прямым впрыском, с и без аккумуляторной топливной системой высокого давления.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Оно соответствует спецификациям ACEA B4, API CF, VW 501.01/505.00, MB229.1 и может использоваться в качестве масла для дизеля большинства автопроизводителей, как в нормальных, так и в экстремальных условиях эксплуатации. Полусинтетическая технология ELF обеспечивает высокий уровень защитных свойств, благодаря которому это моторное масло надежно предохраняет двигатель от износа и отложений в любых режимах. ELF EVOLUTION 700 TURBO DIESEL 10W40 обладает широким температурным диапазоном применения: оно хорошо смазывает двигатель при холодном пуске, но при этом сохраняет эффективность в условиях высокой температуры, особенно характерной для моторов с прямым впрыском.

    ELF EVOLUTION 700 TURBO DIESEL 10W40

    ELF EVOLUTION 900 DID 5W30

    Высококачественное масло ELF EVOLUTION 900 DID 5W30, производимое по синтетической технологии, подходит для автомобилей, требующих смазочных материалов стандартов API CF, ACEA B4, C3 и VW 505.00/505.01. Специалисты ELF рекомендуют это моторное масло для дизельных двигателей Volkswagen TDI, оснащенных насос-форсунками и прямым впрыском.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Его отличные противоизносные и моюще-диспергирующие свойства эффективно защищают двигатель в любых режимах движения. Текучесть масла при низкой температуре облегчает холодный пуск, снижает трение и обеспечивает достаточное смазывание элементов мотора сразу после старта.

    ELF EVOLUTION 900 DID 5W30

    ELF EVOLUTION FULL-TECH FE 5W30

    Моторное масло ELF EVOLUTION FULL-TECH FE 5W30 создано по синтетической технологии и предназначено для автомобилей, удовлетворяющих наиболее современным экологическим требованиям. В частности, это масло рекомендуется для дизельных двигателей, оснащенных сажевым фильтром (DPF): специальный состав Low SAPS с низким содержанием сульфатной золы оптимизирует работу фильтра, предотвращает его засорение и выход из строя и продлевает срок службы агрегата. ELF EVOLUTION FULL-TECH FE 5W30 гарантирует защиту двигателя при всех типах вождения, особенно спортивном и высокоскоростном, и чистоту его деталей. Энергосберегающие свойства этого масла снижают расход топлива на 2,1% по сравнению с обычным, что подтверждено независимыми испытаниями, а стойкость к окислению допускает продленные межсервисные интервалы (в соответствии с предписаниями автопроизводителей).Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ

    ELF EVOLUTION FULL-TECH FE 5W30

    Подробнее о моторных маслах ELF.

    Функции турбокомпрессора | Компания Diesel Components Inc.

    Турбокомпрессоры — это центробежные компрессоры, приводимые в действие турбиной, работающей на выхлопных газах, которые устанавливаются в двигателях для повышения давления воздуха, поступающего в цилиндры. Производительность турбокомпрессора влияет на все жизненно важные параметры двигателя, такие как мощность, выбросы и, что наиболее важно, экономия топлива. Турбокомпрессоры иногда устанавливают тюнеры и энтузиасты на вторичном рынке, в то время как многие автомобили поставляются с ними в стандартной комплектации от производителя.

    Все турбокомпрессоры позволяют увеличить выходную мощность двигателя, которая в противном случае была бы ограничена меньшей.В результате двигатель небольшого размера может производить такую ​​же мощность с турбонагнетателем, как и более крупный двигатель без него.

    Прежде чем перейти к обсуждению основных функций турбокомпрессоров, важно понять несколько фундаментальных концепций.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Мы все слышали о турбинах, но давайте узнаем, как именно они работают?

    Как работают турбокомпрессоры?

    Турбина состоит из двух половин, соединенных валом. С одной стороны, горячие выхлопные газы вращают турбину, соединенную с другой турбиной, которая всасывает воздух и сжимает его в двигателе.Такое сжатие дает двигателю дополнительную мощность и эффективность, поскольку чем больше воздуха попадает в камеру сгорания, тем больше топлива можно добавить.

    Функции турбокомпрессора

    Функция турбонагнетателя заключается в увеличении выходной мощности двигателя без регулировки самого двигателя. Чтобы получить мощность, двигатель обычно нужно делать больше и тяжелее. С другой стороны, турбокомпрессор намного меньше и легче. Кроме того, он приводится в действие выхлопными газами двигателя, которые обычно оставляют двигатель и транспортное средство неиспользованными.

    Выхлопное отверстие

    Вы можете представить себе работу турбонагнетателя как начало в выпускном отверстии.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Выхлопные газы двигателя проходят через турбонагнетатель, прежде чем выйти через выхлопную систему автомобиля. Поток этих газов заставляет турбинное колесо внутри турбонагнетателя вращаться. На той же оси и с другой стороны этой турбины находится другое колесо у ее впускного отверстия.

    Впускное отверстие

    На впускном отверстии турбонагнетателя находится второе колесо, которое называется компрессором или рабочим колесом, потому что, когда оно вращается, оно сжимает воздух, поступающий в турбонагнетатель на стороне впуска.Это второе колесо вращается всякий раз, когда вращается колесо турбины на стороне выпуска, поскольку они соединены одним и тем же валом. Этот сжатый воздух подает больше воздуха во впускное отверстие двигателя. А поскольку более высокая плотность молекул кислорода в сжатом воздухе, а не в несжатом, двигатель выбрасывает больше топлива на каждый ход поршня, что приводит к увеличению мощности.

    Выхлопное отверстие (снова)

    Сжатый воздух, который поступает на впуск двигателя, сгорает внутри и становится выхлопным газом.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Этот выхлопной газ имеет больше энергии, чем раньше, потому что всасываемый воздух теперь сжат и сжигается с большим количеством топлива; таким образом, он раскручивает выхлопную турбину турбокомпрессора быстрее, чем раньше. Это, в свою очередь, вращает крыльчатку компрессора быстрее, чем раньше, что сжимает всасываемый воздух сильнее, чем раньше.

    Увеличение сжатия воздуха приводит к увеличению количества молекул кислорода и топлива для каждого хода поршня. По мере продолжения этого цикла турбонагнетатель может легко продолжать увеличивать степень сжатия всасываемого воздуха.Однако слишком сильное сжатие воздуха в сочетании с избытком топлива может привести к слишком большой мощности, которая повредит двигатель.

    Контроль давления воздуха

    Турбокомпрессор сжимает всасываемый воздух, чтобы ограничить давление воздуха. Это происходит с помощью механизма, называемого «перепускной клапан», который, когда он открыт, обычно позволяет некоторым выхлопным газам обходить колесо турбины на стороне выпуска, чтобы ограничить скорость вращения колеса.Особенности эксплуатации дизельных двигателей с турбонаддувом: Турбодизель – Автомобили – Коммерсантъ Если скорость турбинного колеса ограничена или контролируется, это ограничивает скорость компрессора на стороне впуска, что ограничивает степень сжатия воздуха.

    Откуда берется дополнительная мощность? Турбокомпрессоры

    придают вашему автомобилю больше мощности, но эта дополнительная мощность исходит не напрямую от отработанных выхлопных газов, что иногда сбивает людей с толку. С турбонаддувом мы используем часть этой энергии выхлопных газов для приведения в действие компрессора, что позволяет двигателю сжигать больше топлива в секунду. Это дополнительное топливо — вот где машина получает дополнительную мощность.

    Сколько дополнительной мощности вы можете получить?

    Если турбокомпрессор дает двигателю большую мощность, теоретически вы могли бы продолжать улучшать свой турбокомпрессор, чтобы сделать двигатель более мощным, но в конечном итоге вы достигнете предела.Цилиндры настолько велики, что они могут сжигать только определенное количество топлива.

    Существует ограниченное количество воздуха, которое вы можете вдавить в них через впускное отверстие определенного размера, и ограниченное количество выхлопных газов, которое вы также можете удалить, что ограничивает энергию, которую вы можете использовать для приведения в действие турбокомпрессора. Проще говоря, в игру вступают и другие ограничивающие факторы, которые также необходимо учитывать, потому что вы не можете просто ускорить свой путь до бесконечности!

    Преимущества турбокомпрессора

    Помимо турбонагнетателей с дополнительной мощностью, их иногда называют устройствами, предлагающими «бесплатную мощность».«В отличие от нагнетателя, он не требует мощности от двигателя для его привода. Горячие и расширяющиеся газы, выходящие из двигателя, приводят в действие турбокомпрессор и не позволяют двигателю терять мощность. Двигатели с турбонаддувом также не подвержены такому воздействию, как двигатели без наддува, когда они едут на больших высотах.

    Чем выше высота набирает атмосферный двигатель, тем труднее ему получать кислород из-за разреженной атмосферы. Турбокомпрессор решает эту проблему, потому что он нагнетает кислород в камеру двигателя внутреннего сгорания, иногда при давлении в 2 раза превышающем атмосферное.

    Ищете услуги по ремонту турбокомпрессоров в Миннесоте? Компания Diesel Components, Inc. предоставит вам необходимую информацию

    Теперь, когда вы знаете основные функции турбокомпрессора, вы знаете, что с ним многое может пойти не так. Когда дело доходит до ремонта турбокомпрессора, компания Diesel Components, Inc. не срезает углы.

    Предполагалось, что

    Diesel Components, Inc. станет авторизованным предприятием по ремонту турбокомпрессоров для компаний Garrett, AiResearch и Schweitzer, и это лишь некоторые из них. Будучи авторизованным заводом по ремонту, будьте уверены, что мы будем использовать только высококачественные детали и самые современные методы ремонта, потому что мы твердо верим в то, что все работы выполняются правильно с первого раза.

    Если вам нужны услуги по ремонту турбокомпрессоров в Миннесоте, позвоните нам прямо сейчас.

    Super Turbocharging the Direct Injection Diesel Engine

    В настоящем исследовании моделируется устойчивая работа дизельного двигателя с непосредственным впрыском (TDI) с турбонаддувом и механизмом изменения передаточного числа, соединяющим вал турбокомпрессора с коленчатым валом. Ключевыми параметрами механизма с регулируемым передаточным числом являются диапазон передаточных чисел, эффективность и инерция, а также возможность управления относительной скоростью и потоком мощности.Устройство получает энергию от коленчатого вала или турбонагнетателя или передает энергию им. Таким образом, помимо поршней двигателя внутреннего сгорания (ДВС), также турбокомпрессор вносит вклад в общую механическую мощность двигателя. Подача энергии от коленчатого вала в основном необходима во время резких ускорений, чтобы избежать турбонаддува и увеличить крутящий момент на низких скоростях. На низких скоростях резко увеличивается максимальный крутящий момент, радикально расширяя диапазон нагрузок. Кроме того, приближаясь к точкам работы сбалансированного турбонагнетателя, также можно улучшить как КПД η , определяемый как отношение мощности коленчатого вала поршня к мощности потока топлива, так и общий КПД η * , определяемый как отношение мощности поршневого коленчатого вала, увеличенной мощности от вала турбонагнетателя, к мощности потока топлива, даже если она минимальна.Подача энергии к коленчатому валу возможна в основном при высоких скоростях и высоких нагрузках, когда в противном случае турбина могла бы быть закрыта впустую, а также во время замедления. Использование энергии в турбине в противном случае приводит к повышению общего КПД преобразования топлива на η * больше, чем КПД η . Гораздо меньшие улучшения достигаются для максимального крутящего момента, но снова приближается к точкам работы сбалансированного турбонагнетателя. Принятие гораздо большего турбонагнетателя (целевой рабочий объем x частота вращения на 30% больше, чем у обычного турбонагнетателя), лучший выходной крутящий момент и эффективность преобразования топлива η * и η возможны на любой скорости vs.двигатель с уравновешенным турбонагнетателем меньшего размера. Этот результат мотивирует дальнейшие исследования механизма, который может значительно улучшить традиционные силовые агрегаты на базе дизельных двигателей.

    1 Введение

    Нагнетатели повышают давление на впуске за счет работы сжатия, извлекаемой из коленчатого вала. Полностью теряется энергия выхлопных газов. Турбокомпрессоры повышают давление на впуске за счет энергии выхлопных газов, которые расширяются через коаксиальную турбину за счет повышенного противодавления.

    Турбокомпрессоры обычно более эффективны, чем нагнетатели, и имеют лучшие характеристики во всем диапазоне скоростей и нагрузок. Поскольку нагнетатели приводятся в движение коленчатым валом через механизмы с регулируемым передаточным числом, наддув не зависит от энергии выхлопных газов. В турбонагнетателе наддув зависит от энергии выхлопных газов, поскольку работа в турбине равна работе в компрессоре при равновесной скорости. Обычно турбокомпрессор управляется перепускным клапаном на турбине, который снижает количество энергии, рекуперированной в турбине для работы компрессора.В то время как на высоких скоростях турбина является закрытой, на низких скоростях энергия, доступная в турбине, минимальна, и наддув уменьшается. Отсутствие наддува также наблюдается во время резких ускорений, поскольку энергии турбины недостаточно для выполнения требуемой работы компрессору (турбо-задержка). Таким образом, турбокомпрессор расходует часть рекуперируемой энергии в выхлопе на высокой скорости или во время резких замедлений и не имеет достаточной энергии на турбине во время резких ускорений и на низких скоростях.В нагнетателе вся энергия выхлопных газов теряется.

    В то время как в турбонагнетателе скорость вращения может изменяться в широких пределах, с нагнетателем скорость компрессора ограничивается характеристиками механизма, соединяющего коленчатый вал с валом компрессора. В нагнетателях помимо центробежных компрессоров также используются объемные компрессоры.

    В традиционных турбонагнетателях вал турбонагнетателя не соединен с коленчатым валом, и мощность компрессора идеально сбалансирована мощностью от турбины, при этом перепускной клапан турбины дает возможность контролировать рабочую точку, уменьшая поток через турбину.Если вал турбокомпрессора соединен с коленчатым валом через механизм с изменяемым передаточным числом, это открывает новый мир возможностей, поскольку турбокомпрессор может работать со скоростью, отличной от равновесной, а мощность может подаваться на коленчатый вал или отводиться от него. Это нововведение, которое изучается здесь, направлено на улучшение рекуперации наддува и отходящего тепла и, в конечном итоге, на повышение общей эффективности преобразования топлива и крутящего момента на любой скорости.

    Поскольку дополнительная работа турбины может быть собрана на коленчатом валу, турбокомпрессор может быть выбран намного большего размера, чем в традиционной установке турбокомпрессора.

    Управление частотой вращения турбонагнетателя и, следовательно, потоком мощности к коленчатому валу или от вала турбонагнетателя, а также повышением давления теперь достигается за счет регулирования передаточного числа скоростей в механизме.

    1,1 VanDyne Super Turbocharger

    Название Super Turbocharger не новость. VanDyne Super Turbocharger (или SuperTurbo) [1–4] — это турбокомпрессор, соединяющий вал турбокомпрессора с коленчатым валом. Изобретение по ссылке [2] приводит турбокомпрессор до определенной скорости или давления во впускном коллекторе.Когда энергия выхлопных газов обеспечивает больше работы, чем требуется для приведения в действие впускного компрессора, изобретение восстанавливает эту избыточную энергию, чтобы добавить крутящий момент на коленчатый вал. Изменяя передаточное число бесступенчатой ​​трансмиссии (CVT), SuperTurbo в принципе может потреблять энергию от коленчатого вала, работающего как нагнетатель, или передавать энергию коленчатому валу, работающему как турбокомпрессор. Функция нагнетателя SuperTurbo улучшает переходные характеристики двигателя с уменьшенным размером и турбонаддувом, а функция турбонаддува дает возможность извлекать доступную энергию выхлопных газов из турбины, а не открывать перепускной клапан.

    В практическом применении ссылки [4] высокоскоростной тяговый привод используется для обеспечения снижения скорости от вала высокоскоростной турбины, в то время как второй тяговый привод обеспечивает бесступенчатое регулирование передаточных чисел через вариатор. Однако передаточное отношение вала турбонагнетателя к коленчатому валу двигателя ограничено. Механизм состоит из зубчатых пар, насоса с наклонной шайбой, рычага управления, электродвигателя, гидравлических линий, но в нем отсутствует современный вариатор, такой как тороидальный вариатор Tototrak [5, 6] или тороидальный вариатор Nissan Extroid [7] для управления. передаточное число и поток энергии между турбонагнетателем и коленчатым валом.

    1.2 Нагнетатель с регулируемой частотой вращения Torotrak

    В 2012 году компания Torotrak предложила технологию наддува с регулируемой частотой вращения [5] для работы нагнетателя в широком диапазоне оборотов в минуту и ​​наддува независимо от частоты вращения двигателя. Механизм состоит из вариатора тягового привода (TDV) и эпициклического тягового привода (TDE), которые изменяют скорость центробежного нагнетателя. Механизм получает от двигателя повышающую передачу 3: 1. TDV регулирует передаточное число от 0,35: 1 (понижающая передача) до 2,82: 1 (повышающая передача).TDE обеспечивает фиксированное увеличение передаточного отношения 12,67: 1. Механизм может вращать центробежный компрессор от 13,3 до 107,2 оборотов двигателя в бесступенчато регулируемой величине [5]. Вариатор из [5] аналогичен по конструкции тороидальному вариатору, предложенному для чисто механических систем рекуперации кинетической энергии (KERS) F1 [6] на основе маховика. Двунаправленный двойной тороидальный вариатор был ранее предложен Торотраком для F1 KERS [6]. С Torotrak V-Charge [5] скорость компрессора может быть в пределах 4.В 43 и 35,73 раза больше оборотов двигателя. Таким образом, для частоты вращения двигателя 3000 об / мин скорость компрессора может быть изменена между 13 300 и 107 200 об / мин. Передаточное отношение вала турбонагнетателя к коленчатому валу двигателя широкое. Этот вариатор подходит для управления передаточным числом и потоком энергии между турбонагнетателем и коленчатым валом.

    1,3 F1 MGU-H

    Бензиновый двигатель с непосредственным впрыском (DI) с турбонаддувом, входящий в состав гибридной электрической трансмиссии и оснащенный двигателем-генератором в стиле F1 (MGU-H), установленным на валу турбокомпрессора, был недавно исследован в [8].На рисунке 1 представлена ​​схема турбонагнетателя со стороны компрессора (а) или между компрессором и турбиной (b) со стороны блока двигателя / генератора (b), как это используется в Формуле-1, например, Renault или Ferrari в сезоне 2014 года. MGU-H получает или передает энергию в тот же накопитель энергии (ES) гибридного силового агрегата, который включает в себя мотор-генератор на трансмиссии (MGU-K) в дополнение к двигателю внутреннего сгорания (ICE). Подача энергии от ES в основном необходима во время резких ускорений, чтобы избежать турбо-лага и увеличить крутящий момент на низких скоростях.На низких скоростях он также улучшает отношение мощности коленчатого вала двигателя к мощности потока топлива, а также отношение мощности коленчатого вала двигателя плюс мощность вала турбонагнетателя к мощности потока топлива. Подача энергии к ES возможна при высоких скоростях и нагрузках, где в противном случае турбина могла бы быть закрытой, а также во время замедления. Это улучшает соотношение мощности коленчатого вала двигателя и вала турбонагнетателя к мощности потока топлива. Однако в этом случае мощность, подаваемая на вал турбонагнетателя, идет на подзарядку аккумулятора через MHU-H и не поступает непосредственно на колеса.Точно так же мощность, потребляемая от вала турбокомпрессора, вырабатывается при разряде аккумулятора через MHU-H и не влияет на поток мощности на колеса. Поскольку каждое изменение формы энергии, с механической на электрическую, на химическую и наоборот, происходит с КПД менее 100%, чисто механический супер-турбонаддув также имеет преимущества по сравнению с гибридным электрическим супер-турбонаддувом. Эти преимущества рассматриваются здесь для дизельного двигателя, в котором повышение давления не ограничивается детонацией.

    Рис. 1

    Схема турбонагнетателя со стороной компрессора (а) или между компрессором и турбиной (b) со стороны двигателя / генератора, как используется в F1.

    2 Предлагаемый супертурбокомпрессор с широким диапазоном скоростей

    В предлагаемом нововведении турбонагнетатель увеличенного размера соединен с коленчатым валом через другой механизм изменения передаточного числа. Конструкции да Винчи бесступенчатого вариатора датированы 1490 годом. В 1886 году был подан первый патент на тороидальный вариатор. Конструкция полутороидальной бесступенчатой ​​трансмиссии (CVT), используемая здесь, предлагается во многих статьях, таких как [9].В этой статье предлагаются геометрические и кинематические величины, силы, крутящий момент и эффективность, контактное давление и смазка полутороидального вариатора. Устройство с регулируемым передаточным числом, аналогичное характеристикам Torotrak V-Charge, может быть использовано для запуска турбокомпрессора увеличенного размера в предлагаемом приложении. В настоящей заявке рассматривается механизм передаточного числа от 13,2 до 107,2. CVT должен обеспечивать непрерывное передаточное число переменной скорости от понижающей передачи 1: (2,85) до повышающей передачи (2,85): 1, хотя и имеет тороидальную конструкцию.Конечное передаточное число достигается за счет использования одной или нескольких зубчатых пар с общим передаточным числом 37,6: 1. Этот механизм позволяет передавать на коленчатый вал положительную разницу между работой турбины и компрессора или получать от коленчатого вала отрицательную разницу между работой турбины и компрессора с оптимальной скоростью. Механизм действует в двух направлениях, то есть может передавать мощность на коленчатый вал или от коленчатого вала и турбокомпрессора, и он соединен с валом турбокомпрессора, а не с валом компрессора.Существование продукта — нагнетателя с регулируемой скоростью Torotrack — с бесступенчатой ​​трансмиссией с таким же передаточным числом, как у предлагаемого здесь, является доказательством возможности создания этого устройства.

    Рабочая скорость турбонагнетателя — это скорость, которая максимизирует общий выходной крутящий момент на коленчатом валу и общую топливную экономичность η *, определяемую как отношение мощности на поршневом коленчатом валу, увеличенной мощности от вала турбонагнетателя к потоку топлива. власть. В случае традиционного турбонагнетателя работа турбонагнетателя направлена ​​только на максимальное увеличение работы поршня и КПД η , определяемого как отношение мощности поршневого коленчатого вала к мощности потока топлива.

    В настоящей работе рассматривается дизельный, а не бензиновый двигатель, как в ссылках [1–4] (или [8]). Турбина может рекуперировать намного больше энергии, чем энергия, необходимая для компрессора, и вносить вклад в общий выходной крутящий момент на коленчатом валу с разницей между работой турбины и компрессора. Точно так же, когда компрессору требуется больше энергии, чем энергия, доступная в турбине, именно эта разница обеспечивается коленчатым валом. Эффективность механизма только весит на разнице между работой компрессора и турбины.При работе турбокомпрессора на более высокой скорости, чем уравновешивающая скорость, компрессор выполняет больше работы, давление на впуске увеличивается, больше воздуха задерживается внутри цилиндра, больше топлива впрыскивается при сгорании, больше работы совершается поршнями, и больше работы совершается выхлопными газами, расширяющимися через турбину. Это увеличивает общий крутящий момент и общую эффективность преобразования топлива.

    На рисунке 2 представлена ​​схема турбонагнетателя со стороной компрессора вариатора для механического соединения с желобными шестернями коленчатого вала (a, b), рассматриваемыми в настоящем исследовании.Здесь рассматриваются варианты компрессора со стороны вариатора для механического соединения с коленчатым валом через двойной тороидальный вариатор и 3 пары шестерен или один тороидальный вариатор с 1 парой зубчатых колес к / от коленчатого вала. Бесступенчатая трансмиссия состоит из входного и выходного диска (дисков) и приводных роликов, передаточное число которых равно отношению радиусов входного и выходного контакта. Также может быть добавлено сцепление, чтобы обеспечить сбалансированную работу турбонагнетателя без привязки к скорости двигателя, если / когда это будет сочтено целесообразным.Конструкции бесступенчатой ​​трансмиссии (а) и (b) — это только две из множества возможностей, которые необходимо дополнительно изучить в механической конструкции вала трансмиссии от / до коленчатого вала.

    Рис. 2

    Схема турбонагнетателя со стороной вариатора компрессора для механического соединения с коленчатым валом через двойной тороидальный вариатор, тороидальный и 3 зубчатые пары (а) или одиночный тороидальный вариатор с 1 зубчатой ​​парой (б).

    Механическая система имеет недостатки упаковки и гибкости по сравнению сэлектрическая система. Однако его преимущества заключаются в полной механической интеграции, увеличивающей выходную мощность коленчатого вала.

    CVT должен обеспечивать непрерывное передаточное число переменной скорости от понижающей передачи 1: (2,85) до повышающей передачи (2,85): 1, хотя и имеет тороидальную конструкцию, такую ​​как предложенная на рисунке 1 (b). Если r 1 — радиус контакта на входном диске, а r 2 — радиус контакта на выходном диске, (симметричный) тороидальный вариатор работает от r 2 / r 1 = 2.85 по r 1 / r 2 = 2,85. Поскольку поток мощности через вариатор ограничен, конструкция двойного тороидального вариатора, показанная на Рисунке 1 (а), типичная для трансмиссий двигателя или гоночного механического маховика KERS, не требуется. При изменении r 1 / r 2 изменяется относительная скорость турбокомпрессора и компрессора, и, таким образом, наддув и мощность на коленчатый вал или от него.

    3 Вычислительный метод

    Моделирование рабочих характеристик двигателя (например, хорошо известные из справочников [10, 11], лидеры отрасли в этой области) позволяют рассчитать работу двигателя для заданной геометрии при различных условиях эксплуатации.Точность моделирования повышается за счет применения передового опыта и обширных проверок по сравнению с экспериментами. Настоящее моделирование выполнено для шестицилиндрового дизельного двигателя TDI V с соотношением диаметр цилиндра / ход поршня 0,829, отношение длины шатуна к ходу хода 1,896, степень сжатия 18,5: 1, максимальное отношение давлений через компрессор 4,0, рабочий объем 3,8 литра. Этот двигатель предназначен для гоночных автомобилей, а не для легковых автомобилей.

    Критическим аспектом моделирования, в остальном довольно простым, является моделирование горения.Сгорание здесь моделируется с помощью функции дизельного топлива Wiebe, состоящей из табулированных параметров в зависимости от скорости и нагрузки. Скорость горения задается с помощью трехчленной функции Вибе. Константы Вибе должны соответствовать скорости тепловыделения, рассчитанной на основе измеренного давления в цилиндре. Константы Вибе включают в себя: задержку зажигания (задержка в градусах угла поворота коленчатого вала между началом впрыска и началом сгорания), предварительно смешанная фракция (фракция топлива, которая смешивается перед началом сгорания и сгорает предварительно смешанной), хвостовую фракцию (долю топлива, которая ожоги за пределами основного диффузионного ожога), продолжительность предварительно смешанного ожога (продолжительность в градусах угла поворота кривошипа для предварительного ожога), основная продолжительность (продолжительность в градусах угла поворота коленчатого вала основного диффузионного ожога) и, наконец, продолжительность хвостового ожога (продолжительность в градусах угла поворота кривошипа хвостового ожога) изгиб).Модель также требует указания предварительно смешанной экспоненты, главной экспоненты и хвостовой экспоненты. Функция Wiebe для дизельного двигателя представлена ​​в виде таблицы для воспроизведения экспериментальной скорости тепловыделения, рассчитанной на основе давления в цилиндре для базового дизельного двигателя, который работает с другим турбонагнетателем и другими наддувами. Поскольку предполагается, что температура и давление внутри цилиндра увеличатся, это в конечном итоге приведет к более высокой скорости сгорания. Модель аппроксимирует одним эквивалентным событием впрыска тепловыделение более сложного впрыска, состоящего из нескольких фаз, поскольку стратегия впрыска в современных дизельных двигателях с прямым впрыском основана на последовательности событий впрыска.Дальнейшее улучшение точности моделирования возможно только после экспериментов с двигателем.

    4 Результаты

    Здесь представлены моделирование двигателя с воспламенением от сжатия, работающего с валом турбонагнетателя, соединенным с коленчатым валом с помощью механизма изменения передаточного числа. Турбокомпрессор намеренно увеличен в размерах, а также увеличены размеры портов, диаметров клапанов и подъемников. Турбокомпрессор предназначен для использования с максимальной скоростью x рабочий объем, который на 30% больше нынешнего 3.8 литров × 4500 об. / Мин. Предполагается, что эффективность механизма с изменяемым передаточным числом, обеспечивающего передаточное число от 13,3 до 107,2, составляет 90%.

    На рисунке 3 представлены карты турбины и компрессора. a) и b) карты компрессора, c) и d) карты турбины. Значения скорректированы на 298 К и 100 кПа. Приведенные значения соответствуют формулам:

    RPMreduced = RPMactualTinlet − totalm˙reduced = m˙actual⋅Tinlet − totalPinlet − total

    Рис. 3

    Карта компрессора. Скорость (а) и эффективность (б) vs.степенью давления и скорректированный массовый расход. Линии скорости компрессора от 8 644 до 102 000 об / мин. Карта турбины. Скорость (c) и эффективность (d) в зависимости от степени давления и скорректированного массового расхода.

    С частотой вращения турбонагнетателя, давлением P, температурой T и массовым расходом. Турбокомпрессор имеет области оптимальной работы, области, где он работает менее эффективно, и области, где он не может работать. Соединение коленчатого вала с помощью механизма переменного передаточного числа позволяет искать оптимальную рабочую точку, изменяя передаточное число и, следовательно, скорость турбокомпрессора в дополнение к другим типичным параметрам управления традиционного турбокомпрессора.

    На рисунке 4 представлена ​​созданная модель. Вал турбины и компрессора через шестерни соединены с коленчатым валом двигателя. Передаточное число задано различным для каждой частоты вращения двигателя и нагрузки, но одинаково для турбины и компрессора. На максимальной скорости компрессор работает в зоне между линией помпажа с левой стороны и линией дроссельной заслонки с правой стороны для всех значений массового расхода в диапазоне частот вращения двигателя. Компрессорная система, включая вариатор и шестерню, соединяющую вал с коленчатым валом, выбирается таким образом, чтобы расчетные рабочие точки не выходили за пределы линий помпажа и дросселирования.

    Виртуальные модели двигателей разработаны с использованием программного обеспечения GT-SUITE [11, 17]. GT-SUITE — это один из ведущих в отрасли инструментов моделирования характеристик двигателя, применяемый производителями оригинального оборудования (OEM), исследовательскими центрами и академическими учреждениями и предлагаемый на многих курсах бакалавриата и магистратуры по автомобильной инженерии. Этот конкретный инструмент существует уже 3 десятилетия. Почти 800 из множества опубликованных статей, посвященных разработке, проверке и применению моделей GT-SUITE разработчиками, перечислены в [17].Рисунок 4 позволяет оценить детали модели. В дополнение к элементам потока, в которых решается зависимое от времени уравнение сохранения массы, импульса, энергии и компонентов, на эскизе также показаны специальные элементы, такие как цилиндры двигателя и форсунки, а также элементы компрессора и турбины, имеющие более сложное определение. . Следует отметить, что компрессор и турбины связаны с коленчатым валом отдельными механическими звеньями. Это требует ручной постобработки результатов, чтобы уменьшить механические потери турбонагнетателя, пропорциональные полезной мощности, подаваемой на турбонагнетатель или от него.Более подробную информацию о моделировании можно найти в [11] и [17].

    Кинематическое передаточное число и механический КПД, которые представляют собой потери на трение в зубчатом соединении между коленчатым валом и валом турбонагнетателя, предписываются для каждой рабочей точки нагрузки (BMEP) x скорости. Механический КПД трения также определяется для вала как отношение выходной мощности к входной мощности. Этот параметр также предписывается для каждой рабочей точки нагрузка × скорость.

    Аналогично тому, что было сделано в [8], созданная модель не позволяет напрямую рассчитывать поток мощности к / от коленчатого вала, поскольку только разница между мощностью турбины и компрессора проходит через вариатор и зубчатая пара до коленвала.В [8] только разница между мощностью турбины и компрессора подавалась на MGU-H для зарядки или разрядки батареи. Общая мощность на коленчатом валу, а также вклад поршней и турбонагнетателя корректируются во время постобработки. Если P t — полная мощность турбины, а P c — полная мощность компрессора, тогда Δ P t , c = (P t −P c )> 0, то мощность, передаваемая на коленчатый вал, составляет Δ P t , c η CVT , где η CVT , является КПД вариатора и зубчатой ​​пары.И наоборот, когда Δ P t , c = (P t −P c ) <0, то мощность, потребляемая от коленчатого вала, составляет Δ P t , c / η CVT .

    На Рисунке 5 представлены предварительные результаты работы. a) и b) — это степень давления в компрессоре и турбине, а c) и d) — это соотношение скоростей турбокомпрессор / двигатель и частота вращения турбонагнетателя.e) и f) — отношение мощности турбонагнетателя к общей мощности и общий КПД преобразования топлива η *, отношение мощности на коленчатом валу и валу турбонагнетателя к мощности потока топлива в зависимости от среднего эффективного давления и скорости в тормозной системе.

    Рис. 5

    Предварительные результаты расчетов, различные рабочие параметры двигателя в зависимости от частоты вращения двигателя в об / мин и среднего эффективного давления в тормозной системе в барах. Соотношение давлений в компрессоре (а) и турбине (б). Отношение частоты вращения турбокомпрессора к коленчатому валу двигателя (c) и частота вращения турбонагнетателя (d).Отношение мощности турбонагнетателя к мощности коленчатого вала (e) и общий КПД двигателя η * (отношение мощности на коленчатом валу плюс мощность на валу турбонагнетателя к мощности потока топлива) (f).

    Максимальная частота вращения турбокомпрессора 150 000 об / мин. При средней нагрузке на любой скорости обеспечивается очень высокая степень сжатия около 4, при этом это отношение лишь минимально снижает, увеличивая скорость двигателя выше 3000 об / мин. При высокой нагрузке максимальная частота вращения турбокомпрессора разрешена выше 1500 об / мин.Только в диапазоне низких нагрузок частота вращения турбокомпрессора может быть чрезмерной.

    Это результат предписанного минимального передаточного числа 13,3, поскольку турбокомпрессор, отсоединенный от механизма, мог бы лучше работать ниже этого передаточного числа. Более широкое передаточное число или сцепление могут решить эту проблему.

    С традиционным турбонагнетателем максимальный крутящий момент составляет около 3000 об / мин, при очень плохих характеристиках ниже этой частоты вращения двигателя, а максимальная мощность составляет 4500 об / мин. Увеличиваются и максимальный крутящий момент, и максимальная мощность.Широко распространена область с КПД выше 40%, от 15 до 40 бар и от 2000 до 4000 об / мин. При максимальной нагрузке рассматривается λ 1,4.

    При скорости вращения выше 4000 об / мин эффективность снижается в основном из-за зависимости трения от скорости и усложнения процесса сгорания (4500 об / мин — это технологический предел для дизельного сгорания с диффузионным регулированием). Ниже 2000 об / мин эффективность снижается, поскольку выхлопные газы не поддерживают более высокие скорости компрессора. Однако КПД по-прежнему выше, чем то, что можно было бы достичь без подачи энергии на вал турбонагнетателя.При частичной нагрузке турбокомпрессор продолжает получать энергию на низких скоростях — средних и высоких нагрузках, а на высоких скоростях — средних и высоких нагрузках турбокомпрессор обычно выдает энергию. Турбонагнетатель вносит значительный вклад в общую мощность двигателя, особенно при высоких скоростях и нагрузках. Для конкретного двигателя и турбонагнетателя дополнительная мощность турбонагнетателя может приближаться к 10% мощности коленчатого вала двигателя. На низких скоростях мощность турбонагнетателя отрицательная, требуя почти 20% мощности коленчатого вала двигателя.Минимальное значение λ для полной нагрузки составляет 1,4. λ увеличивается до 6,5–7, снижая нагрузку до 1 бар BMEP. Поскольку карта соотношения скоростей не полностью оптимизирована, дальнейшие улучшения в общей карте эффективности преобразования топлива все еще возможны.

    Не показан в статье, предлагаемый двигатель с автономным турбонагнетателем увеличенного размера (не соединенным с коленчатым валом через шестерню и вариатор) имеет очень низкий крутящий момент и очень низкую эффективность преобразования топлива в диапазоне низких оборотов.В предлагаемом устройстве крутящий момент на низкой скорости увеличивается до значений средней скорости, рис. 5f, в то время как эффективность лишь незначительно снижается при снижении скорости с 2000 до 1000 об / мин.

    На рис. 6, наконец, представлена ​​мощность, подаваемая на коленчатый вал от вала турбонагнетателя (положительное значение для работы турбины больше, чем для работы компрессора) плюс отношение радиусов впуска и выпуска в вариаторе. Мощность максимальная при высоких скоростях и нагрузках и минимальная при низких скоростях и средних и высоких нагрузках. Передаточное число CVT максимально при низкой скорости и средних и высоких нагрузках и минимально при низких нагрузках.Он также уменьшается за счет увеличения скорости. Эти данные являются рабочими входными данными, необходимыми для проверки механической правильности конструкции вариатора.

    Рис. 6

    Предварительные результаты расчетов в зависимости от частоты вращения двигателя в оборотах в минуту и ​​среднего эффективного давления в тормозной системе в барах. Мощность на валу турбокомпрессора (а) и передаточное число (или отношение радиусов впуска к выпускному) на вариаторе (b).

    5 Обсуждение и заключение

    Здесь предлагается супертурбонагнетатель, соединяющий вал турбонагнетателя с коленчатым валом через вариатор и шестерню.Этот супертурбонагнетатель отличается от системы VanDyne, где вал турбонагнетателя соединен с коленчатым валом через шестерню, или нагнетателя с регулируемой скоростью Torotrak, где вариатор и шестерня соединяются с коленчатым валом только валом компрессора.

    Предлагаемое нововведение позволяет достичь максимального среднего эффективного давления в тормозах 40 бар в дизельном двигателе на обедненной смеси с минимальным давлением λ 1.4. Нововведение обеспечивает высокий наддув на любой скорости, а также высокую эффективность преобразования топлива, превышающую 40%, на большей части графика нагрузки x скорости, отсутствие турбо-лага и снижение потерь тепла выхлопных газов.

    Новинка включает теоретически готовые компоненты (конечно, турбокомпрессор, более сомнительно устройство с регулируемым передаточным числом).

    Результаты расчетов должны быть проверены во время экспериментов с двигателем.

    Что касается выхлопного тепла блока двигателя-генератора типа F1 (MGU-H), соединяющего вал турбонагнетателя с тяговой батареей, такой как [8], предлагаемая конструкция имеет значительное преимущество в передаче мощности на коленчатый вал, а не на батарею, что увеличивает мощность двигателя в остальном не изменилась.С точки зрения эффективности чисто механическое соединение лучше, чем преобразование механической энергии в электрическую, затем химическую, затем обратно в электрическую и, наконец, в механическую энергию, как в MGU-H в стиле F1. Предлагаемое нововведение превосходит MGU-H типа F1 [8] как по мощности двигателя, так и по эффективности преобразования топлива и не требует гибридной электрической силовой передачи.

    Этот результат мотивирует дальнейшие исследования механизма, который может значительно улучшить традиционные силовые агрегаты на базе дизельных двигателей.

    Утверждение об электрическом MGU-H в стиле F1 следует из того факта, что предлагаемый механизм передает или получает энергию непосредственно от или к коленчатому валу без какого-либо преобразования энергии. В MGU-H типа F1 турбокомпрессор подает или получает энергию от накопителя энергии, батареи, или получает ее, с преобразованием механической энергии в электрическую, а затем в химическую энергию или преобразованием химической энергии в электрическую, а затем в механическую. энергия, с эффективностью каждого процесса преобразования энергии все, кроме единства.Кроме того, в то время как в предлагаемом устройстве турбонагнетатель передает дополнительную энергию, доступную в конечном итоге коленчатому валу, и, следовательно, увеличивает чистую выходную мощность двигателя, в MGU-H типа F1 дополнительная мощность турбонагнетателя направляется в накопитель энергии, который может быть разряжен путем подачи энергия поступает в турбокомпрессор при восстановлении баланса энергии или в колеса через MGU-K системы рекуперации кинетической энергии, в этом случае снова возникают проблемы с преобразованием энергии. Хотя турбокомпрессор увеличенного размера имеет смысл с предлагаемым механическим соединением вала турбокомпрессора с коленчатым валом, нет никаких оснований использовать турбокомпрессоры увеличенного размера с электрическим MGU-H.

    С максимальной эффективностью преобразования топлива в диапазоне от 40% для легковых автомобилей и выше 50% для грузовиков большой грузоподъемности и незначительными потерями эффективности в большей части диапазона нагрузок традиционные силовые агрегаты с дизельными двигателями превосходят все остальные. конкурент за экономию топлива по сравнению с реальными условиями вождения, в конечном итоге с системой рекуперации механической или электрической кинетической энергии, необходимой для подавляющих городских условий вождения, характеризующихся частыми стартами и остановками [12].

    Что касается выбросов оксидов азота, ахиллова пята дизельного двигателя с обедненным горением, по-прежнему не имеющего дополнительной обработки, конкурирующей с трехкомпонентным каталитическим нейтрализатором стехиометрического бензина, следует отметить, что следует сравнивать различные альтернативы массового транспорта. по всем соответствующим критериям, экологическим, экономическим и эксплуатационным характеристикам, в течение всего жизненного цикла транспортного средства, включая производство, эксплуатацию, техническое обслуживание и утилизацию, а также с помощью объективных испытаний [13].

    В дополнение к дальнейшему развитию доочистки, образование оксидов азота также может быть уменьшено за счет использования прямого впрыска воды [14–16] в дополнение к рециркуляции выхлопных газов, поскольку эта мера имеет потенциал не только для уменьшить склонность к детонации и ограничить тепловые потери в бензиновых двигателях, а также снизить температуру дымовых газов там, где это необходимо, в дизельном топливе с обедненным сжиганием.

    Эта статья является лишь еще одним примером того, что еще есть значительные запасы для улучшения двигателя внутреннего сгорания.Если политически будущее двигателя внутреннего сгорания находится под угрозой [13], поскольку электромобиль предлагается для массовой мобильности до того, как будут решены проблемы с аккумулятором и производство возобновляемой электроэнергии, технически все еще нет лучшего варианта, чем внутренний двигатель внутреннего сгорания, при этом все еще возможны значительные улучшения в конструкции двигателя внутреннего сгорания и в гибридизации трансмиссии.

    BMEP

    Среднее эффективное давление тормоза

    CVT

    Бесступенчатая трансмиссия

    ICE

    Двигатель внутреннего сгорания

    KERS

    система рекуперации энергии

    мотор-генератор тепла выхлопных газов

    MGU-K

    мотор-генератор кинетическая энергия

    η

    мощность на коленчатом валу vs.мощность потока топлива

    η *

    мощность на коленчатом валу и валу турбонагнетателя в зависимости от мощности потока топлива

    λ

    относительное соотношение воздух-топливо

    Ссылки

    [1] VanDyne, EA и Вагнер Р., Компания Woodward Governor Company, 2008. Презентация супертурбокомпрессора. На конференции DEER, Детройт (Мичиган), август. energy.gov/sites/prod/files/2014/03/f8/deer08_vandyne.pdf Поиск в Google Scholar

    [2] Ван Дайн, Э.и Гендрон, Т.А., Woodward Governor Company, 2009. Супер-турбонагнетатель. Патент США 7,490,594. Поиск в Google Scholar

    [3] Chadwell, C.J. and Walls, M., 2010. Анализ уменьшенного двигателя с турбонаддувом с использованием 1-D моделирования CFD. Технический документ SAE № 2010-01-1231. Искать в Google Scholar

    [4] Райли, М.Б., ВанДайн, Э. и Браун, Дж. У., Vandyne Superturbo, Inc., 2015. Супертурбонагнетатель с высокоскоростным тяговым приводом и бесступенчатой ​​трансмиссией. U.S. Patent 9, 217, 363. Искать в Google Scholar

    [5] www.enginelabs.com/news/inside-look-variable-speed-supercharging-technology/ Искать в Google Scholar

    [6] Cross, D . и Brockbank, C., 2009. Механическая гибридная система, состоящая из маховика и вариатора для автоспорта и основных автомобильных приложений, Технический документ SAE № 2009-01-1312. 10.4271 / 2009-01-1312 Искать в Google Scholar

    [7] www.nissan-global.com/PDF/tcvt_e.pdf Искать в Google Scholar

    [8] Boretti, A., 2017. Применение MGU-H типа F1 в турбокомпрессоре бензинового гибридного электрического легкового автомобиля, Нелинейная инженерия, 10.1515 / nleng-2016-0069. Поиск в Google Scholar

    [9] Карбоне, Г., Мангиаларди, Л. и Мантриота, Г., 2004. Сравнение характеристик полнотороидальных и полутороидальных тяговых приводов. Механизм и теория машин, 39 (9): 921–942.10.1016 / j.mechmachtheory.2004.04.003 Поиск в Google Scholar

    [10] www.software.ricardo.com/Products/WAVE Поиск в Google Scholar

    [ 11] www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software/ Поиск в Google Scholar

    [12] Боретти А., 2010 г., Сравнение экономии топлива высокоэффективного дизельного топлива и водорода. двигатели компактного автомобиля с системами рекуперации кинетической энергии на основе маховика, Международный журнал по водородной энергии 35 (16): 8417–8424.10.1016 / j.ijhydene.2010.05.031 Поиск в Google Scholar

    [13] Boretti, A. , 2017, Будущее двигателя внутреннего сгорания после «дизельных ворот», Технический документ SAE No.2017-28-1933. Поиск в Google Scholar

    [14] Boretti, A. (2011), Стехиометрические измерения с закачкой воды, Международный журнал по водородной энергии 36: 4469–4473.10.1016 / j.ijhydene.2010.11.117 Поиск в Google Scholar

    [ 15] Боретти А., Осман А. и Арис И. (2011), Прямой впрыск водорода, кислорода и воды в новый двухтактный двигатель, Международный журнал водородной энергетики 36: 10100–10106.10.1016 / j. ijhydene.2011.05.033 Искать в Google Scholar

    [16] Boretti, A.(2013), Впрыск воды в двигатели с прямым впрыском и турбонаддувом с искровым зажиганием, Applied Thermal Engineering, 52 (1): 62–68.10.1016 / j.applthermaleng.2012.11.016 Поиск в Google Scholar

    [17] Gamma Technologies LLC, » Публикации GT-SUITE ». https://www.gtisoft.com/gt-suite/publications, 2015 (по состоянию на 15 октября 2015 г.). Искать в Google Scholar

    Получено: 2016-11-20

    Принято: 2017-8-10

    Опубликовано в Интернете: 2017-9-16

    Опубликовано в печати: 2018-3- 26

    © 2017 Walter de Gruyter GmbH, Берлин / Бостон

    Эта статья распространяется на условиях Некоммерческой лицензии Creative Commons Attribution, которая разрешает неограниченное некоммерческое использование, распространение и воспроизведение на любом носителе при условии, что оригинальная работа правильно процитирована.

    Руководство для начинающих по изучению дизельных двигателей


    Руководство для начинающих по изучению дизельных двигателей

    Майк МакГлотлин

    Не секрет, что большинство американцев больше привыкли к бензиновым двигателям, чем к дизелям. Статистические данные, собранные RL Polk, подтверждают это, поскольку всего 2,8 процента всех зарегистрированных легковых автомобилей (легковые автомобили, внедорожники, пикапы и фургоны) в 2013 году работали на дизельном топливе № 2. Безусловно, большинство людей в США ожидают найти искру. пробки или блоки змеевиков, когда они открывают капот, а не турбокомпрессоры и топливные насосы (два очень важных элемента почти на каждом дизельном двигателе, с которым вы столкнетесь, отсюда и термин «турбодизель»).

    Чтобы понять разницу между дизельным и бензиновым двигателями, мы начнем со всех общих черт между ними. Тип топлива, сжигаемого любой силовой установкой, ничего не меняет по отношению к общему составу двигателя (то есть вращение коленчатого вала, движение шатунов и поршней вверх и вниз, нагнетание воздуха и отвод выхлопных газов). Фактически, одна и та же базовая архитектура очень похожа. Но то, что происходит в цилиндре в дизельном топливе, сильно отличается от того, что вы найдете в его бензиновых аналогах.

    Проще всего объяснить разницу между бензиновыми и дизельными двигателями с помощью слов «воздух» и «топливо». В бензиновом двигателе воздушный поток — это все. Ты задыхаешь воздух. Дизельная мельница — полная противоположность. Он работает на основе ограничения количества впрыскиваемого топлива — воздух просто следует этому примеру. Следовательно, нет необходимости дросселировать поступающий воздух. С этой целью в дизельном двигателе также не создается вакуума.

    Впускной воздух

    Для наших целей мы будем использовать четырехтактный дизельный двигатель с турбонаддувом и промежуточным охлаждением, чтобы проиллюстрировать потоки воздуха и топлива через современную дизельную электростанцию.Свежий воздух поступает в корпус компрессора (сторона всасывания) турбокомпрессора и сжимается в крыльчатке компрессора, где создается наддув. Это делает воздух более плотным, но и намного теплее.

    Для охлаждения сжатого воздуха перед его поступлением в головку (головки) цилиндров он проходит через охладитель наддувочного воздуха (также известный как промежуточный охладитель). Чаще всего используется промежуточный охладитель типа воздух-воздух и по сути представляет собой простой теплообменник. Интеркулер значительно снижает температуру всасываемого воздуха на пути к двигателю и делает это с очень минимальной потерей наддува.

    Компрессионное зажигание

    Все становится интереснее, когда сжатый воздух нагнетается в цилиндр. Во время такта впуска, когда поршень опускается в нижнюю границу своего диапазона, впускной клапан (ы) открывается, позволяя «не дросселирующему» воздуху заполнить цилиндр. Это отличается от бензинового двигателя двумя способами: 1) газовые двигатели вводят смесь топлива и воздуха во время такта впуска и 2) в дизельном топливе воздух всасывается только во время такта впуска. Затем впускной клапан (-ы) закрывается, и начинается такт сжатия.Когда поршень движется вверх, воздух, который когда-то заполнял цилиндр, теперь занимает всего 6% от площади, которую он занимал раньше. Этот воздух под огромным давлением мгновенно перегревается до более чем 400 градусов тепла, что более чем достаточно, чтобы дизельное топливо воспламенилось само по себе. Именно это и происходит в верхней части хода поршня. Ранее упомянутый перегретый воздух встречает порцию дизельного топлива (выпускаемого в цилиндр соответствующей топливной форсункой) в течение идеального промежутка времени, прежде чем поршень достигнет верхней мертвой точки и произойдет сгорание.Поскольку дизельный двигатель использует теплоту сжатия для воспламенения топлива, никакой помощи для начала процесса сгорания не требуется (например, свечи зажигания, например, в бензиновом двигателе).

    Турбокомпрессоры делают дизели такими, какие они есть: великолепны

    Последним этапом работы является такт выпуска, при котором отработавшие газы сгорания вытесняются из выпускных клапанов через выпускной коллектор в сторону турбины (выхлопа) турбонагнетателя. В обычном бензиновом двигателе нет турбонагнетателя, а это означает, что выхлопные газы, выходящие из двигателя, сразу же направляются в выхлопную трубу.Это не так в дизельном топливе, поскольку турбонагнетатель, который нагнетает свежий воздух в двигатель, фактически использует выхлопные газы, оставляя его, чтобы управлять самим. Поскольку турбокомпрессор состоит из турбинного (выпускного) колеса, имеющего общий вал с компрессорным (впускным) колесом, выхлопные газы всегда необходимы для подачи воздуха в двигатель. Одно зависит от другого. Мы разберем важность турбонагнетателя следующим образом: вы дросселируете топливо (отправляете дизельное топливо в двигатель), происходит сгорание, выхлопные газы покидают двигатель, вращая колесо турбины на выходе, которое поворачивает колесо компрессора, вводя воздух. в двигатель.Бесконечный цикл, если хотите. Тепловой КПД дизельного двигателя повышается за счет турбонагнетателя, поскольку он увеличивает объем поступающего в него воздуха, что создает основу для сжигания большего количества топлива.

    Различия в горении

    Одно из основных различий между дизельными и газовыми двигателями заключается в типе сгорания, который каждый из них использует. Как обсуждалось выше, в дизельном топливе, когда топливо наконец встречает сжатый воздух в цилиндре, результатом является сгорание. В бензиновом двигателе топливо и воздух смешиваются еще до того, как произойдет сгорание.Но, кроме того, камеры сгорания каждого двигателя расположены по-разному. В типичном бензиновом двигателе камера сгорания утоплена в головке (головках) цилиндров. В дизельном двигателе с прямым впрыском камера сгорания фактически находится внутри поршня. Эта камера сгорания чаще всего имеет конструкцию «мексиканская шляпа», которая состоит из утопленного отверстия в центре поршня. Внизу этого углубления имеется выступ конической формы. Благодаря расположению топливной форсунки непосредственно над ней, именно этот выступ позволяет оптимизировать распыление топлива и обеспечить идеальный процесс сгорания.Более чем в 99 процентах всех дизельных двигателей используется конструкция Mexican Hat, поскольку основную ударную нагрузку от взрыва сгорания принимает на центр поршня, а не на головку поршня. Это придает поршню исключительную надежность.

    Прямой впрыск

    Проще говоря, прямой впрыск означает, что форсунки системы выступают и распыляют прямо на верхнюю часть поршня. Здесь нет форкамеры или вихревой камеры, и топливо не должно проходить через впускной коллектор перед поступлением в цилиндр.При непосредственном впрыске весь процесс сгорания происходит быстрее, проще и намного эффективнее, чем в типичном бензиновом двигателе с многоточечным впрыском топлива. Дизели с прямым впрыском также работают при очень бедном соотношении воздух / топливо по сравнению с бензиновыми двигателями. Типичное соотношение воздух / топливо от 25: 1 до 40: 1 (дизельное топливо) по сравнению с 12: 1 до 15: 1 (бензин) дает некоторое представление о том, почему дизели настолько консервативны в отношении расхода топлива. Эффективность дополнительно подтверждается тем фактом, что современные дизельные двигатели с прямым впрыском впрыскивают топливо при давлении, приближающемся (или в некоторых случаях превышающем) 30 000 фунтов на квадратный дюйм.Это обеспечивает наилучшее возможное распыление не только для эффективного сжигания, но и с низким уровнем отходящего тепла.

    Начало впрыска по времени

    Хотя термин «синхронизация» часто используется как в мире бензина, так и в мире дизельного топлива, это одно слово означает две очень разные вещи в зависимости от того, с каким типом двигателя вы имеете дело. Излишне говорить, что важно проводить различие между ними. В бензиновом двигателе время относится к началу сгорания. В дизельном топливе синхронизация — это начало впрыска, или SOI (когда форсунка начинает распылять топливо в цилиндр).Опять же, все сводится к тому, что топливо (и система впрыска) является ключевым аспектом дизельного двигателя.

    Момент. Много этого.

    Люди, незнакомые с дизельными двигателями, часто задаются вопросом, почему и как они создают впечатляющий крутящий момент, который они создают. Отношение крутящего момента к мощности в дизельных двигателях редко бывает ниже 2: 1, а для двигателей тяжелой промышленности типично соотношение 3: 1 и даже 4: 1. Бензиновые двигатели намного ближе к соотношению 1: 1. Причина, по которой дизельные двигатели вырабатывают такой большой крутящий момент, связана с тремя ключевыми факторами: 1) наддув, создаваемый турбонагнетателем, 2) ход поршня и 3) давление в цилиндре.

    В настоящее время серийные дизельные двигатели получают давление от 25 до 35 фунтов на квадратный дюйм прямо с завода. Для сравнения, наддув в 10 фунтов на квадратный дюйм часто считается чрезмерным в бензиновых двигателях. Лучшее в сжатом всасываемом воздухе (то есть наддув) в дизельном двигателе заключается в том, что он снижает насосные потери двигателя на такте впуска и увеличивает давление в цилиндре на рабочем такте (сгорание).

    Коленчатые валы с длинным ходом всегда способствовали созданию крутящего момента, будь то бензиновый или дизельный двигатель.Но почему? Посмотрите на это так, как будто вы используете длинный гаечный ключ, чтобы ослабить очень тугой болт, а не более короткий гаечный ключ, который изначально не справлялся с работой. Вы можете применить больший крутящий момент с большим рычагом, не так ли? Конечно вы можете. В длинноходном двигателе шатун может использовать большее усилие при повороте коленчатого вала (в то время как поршень опускается во время рабочего хода): следовательно, больший крутящий момент.

    Как вы, возможно, уже догадались, давление в цилиндре, создающее крутящий момент, создается во время рабочего хода.Увеличение времени впрыска, которое происходит в цилиндре с более ранним началом впрыска (SOI), эффективно создает большее давление в верхней части поршня. Чем больше давление создается в верхней части поршня, тем создается больший крутящий момент.

    Перестроен

    Чрезвычайное давление в цилиндре, длинный ход и высокий уровень наддува не только объясняют, почему дизели создают крутящий момент, но также объясняют, почему дизельные электростанции построены с использованием таких сверхпрочных компонентов. Чтобы противостоять огромным нагрузкам, которым они подвергаются, производители используют такие вещи, как чугунные блоки с глубокой юбкой (и даже чугун с уплотненным графитом), коленчатые валы и шатуны из кованой стали, и обычно используют головки цилиндров с как минимум 6 болтами на цилиндр.Цельностальные поршни пользуются успехом даже в тяжелой промышленности и в двигателях класса 8. В целях долговечности дизельные двигатели имеют надстройку. В дизелях малого рабочего объема нередко можно найти заводскую штриховку, которая все еще присутствует на цилиндрах после 300 000 миль использования. И это нормально для внедорожного двигателя класса 8 — проехать от 750 000 до 1 000 000 миль между капитальными ремонтами.

    Дизель никуда не денется

    Метод сгорания, впрыска топлива и зажигания, используемый в дизельном двигателе, определенно отличает его от его бензинового аналога.Преимущество дизельного топлива по сравнению с бензиновыми электростанциями — это то, что выдвинуло его на передний план в сегодняшних разговорах об экономии топлива. В связи с быстрым приближением стандартов CAFE (средняя корпоративная экономия топлива), шумом вокруг гибридных автомобилей, кажущихся плоскими, и электромобилей, не обеспечивающих достаточный запас хода, в ближайшие годы все больше производителей обратятся к дизельным электростанциям, чем когда-либо прежде. Будьте уверены, дизельные двигатели здесь не только надолго — они вполне могут стать двигателем будущего.

    Источники:

    Diesel Power Magazine
    Апрельский выпуск 2009 г., стр. 50

    The Diesel Forum (данные R.L. Polk)
    http://www.dieselforum.org/resources/top-10-states-of-diesel-drivers

    TTS Power Systems (начало впрыска)

    Книга: « Современные дизельные технологии: Дизельные двигатели »
    Шон Беннетт

    Как это работает: дизельные двигатели
    http://www.dieselpowermag.com/tech/1208dp_how_it_works_diesel_engines/


    Какие бывают типы турбонагнетателей? Автомобильная промышленность

    В автомобильной промышленности используется ряд различных типов турбокомпрессоров:

    • с одинарным турбонаддувом
    • Твин-турбо
    • Турбина Twin-Scroll
    • Турбина с изменяемой геометрией
    • Регулируемый турбонагнетатель Twin Scroll
    • Электротурбина

    с одинарным турбонаддувом

    Одинарные турбокомпрессоры — это то, что большинство людей называют турбинами.Различаясь в размерах элементов турбонагнетателя, можно достичь совершенно разных характеристик крутящего момента. Большие турбины обеспечивают более высокий уровень максимальной мощности, в то время как турбины меньшего размера могут вращаться быстрее и обеспечивать лучшую мощность на низких частотах. Они представляют собой рентабельный способ увеличения мощности и эффективности двигателя и, как таковые, становятся все более популярными, позволяя меньшим двигателям повышать эффективность за счет выработки той же мощности, что и более крупные безнаддувные двигатели, но с меньшим весом.Однако они, как правило, лучше всего работают в узком диапазоне оборотов, и водители часто будут испытывать «турбо-задержку» до тех пор, пока турбонагнетатель не начнет работать в пределах своего диапазона пиковых оборотов.

    Твин-турбо

    Как следует из названия, двойные турбины означают добавление второго турбокомпрессора к двигателю. В случае двигателей V6 или V8 это можно сделать, назначив одну турбину для работы с каждым рядом цилиндров. В качестве альтернативы, один турбонагнетатель меньшего размера может использоваться на низких оборотах с большим турбонаддувом для более высоких оборотов.Эта вторая конфигурация (известная как двойной последовательный турбонаддув) обеспечивает более широкий рабочий диапазон оборотов и обеспечивает лучший крутящий момент на низких оборотах (уменьшение турбо-лага), но также дает мощность на высоких оборотах. Неудивительно, что наличие двух турбин значительно увеличивает сложность и связанные с этим затраты.

    Twin-Scroll Turbo

    Для турбонагнетателей

    Twin-scroll требуется корпус турбины с разделенным впуском и выпускной коллектор, который соединяет правильные цилиндры двигателя с каждой спиралью.независимо. Например, в четырехцилиндровом двигателе (с порядком включения 1-3-4-2) цилиндры 1 и 4 могут питаться одной спиралью турбонагнетателя, а цилиндры 2 и 3 — отдельной спиралью. Такая компоновка обеспечивает более эффективную подачу энергии выхлопных газов в турбонагнетатель и в результате помогает подавать более плотный и чистый воздух в каждый цилиндр. В выхлопную турбину направляется больше энергии, а значит, больше мощности. Опять же, существует штраф за решение проблемы сложности системы, требующей сложных корпусов турбины, выпускных коллекторов и турбин.

    Турбокомпрессор с изменяемой геометрией (VGT)

    Обычно VGT включают кольцо из лопаток аэродинамической формы в корпусе турбины на входе в турбину. В турбинах для легковых автомобилей и легких коммерческих автомобилей эти лопатки вращаются для изменения угла закрутки газа и площади поперечного сечения. Эти внутренние лопатки изменяют отношение площади турбины к радиусу (A / R) в соответствии с оборотами двигателя и, таким образом, обеспечивают максимальную производительность. На низких оборотах низкое соотношение A / R позволяет турбонагнетателю быстро раскручиваться за счет увеличения скорости выхлопных газов и.На более высоких оборотах соотношение A / R увеличивается, тем самым увеличивая поток воздуха. Это приводит к низкому порогу наддува, уменьшающему турбо-задержку, и обеспечивает широкий и плавный диапазон крутящего момента.

    В то время как VGT чаще используются в дизельных двигателях, где выхлопные газы имеют более низкую температуру, до настоящего времени VGT были ограничены в применениях в бензиновых двигателях из-за их стоимости и необходимости изготовления компонентов из экзотических материалов. Высокая температура выхлопных газов означает, что лопатки должны быть изготовлены из экзотических жаропрочных материалов, чтобы предотвратить повреждение.Это ограничило их применение в роскошных высокопроизводительных двигателях.

    Регулируемый турбонагнетатель Twin-Scroll (VTS)

    Как следует из названия, турбокомпрессор VTS сочетает в себе преимущества турбонаддува с двойной спиралью и турбонаддува с изменяемой геометрией. Это достигается за счет использования клапана, который может перенаправить поток отработанного воздуха только на одну спираль, или путем изменения степени открытия клапана, что позволяет выхлопным газам разделяться на обе спирали. Конструкция турбокомпрессора VTS представляет собой более дешевую и надежную альтернативу турбинам VGT, что означает, что он является жизнеспособным вариантом для бензиновых двигателей.

    Электротурбокомпрессоры

    Электрический турбонагнетатель используется для устранения турбонаддува и помощи обычному турбонагнетателю на более низких оборотах двигателя, где обычный турбонагнетатель не является наиболее эффективным.Это достигается за счет добавления электродвигателя, который раскручивает компрессор турбокомпрессора от пуска и при более низких оборотах до тех пор, пока мощность выхлопного объема не станет достаточно высокой для работы турбонагнетателя. Такой подход делает турбо-задержку в прошлом и значительно увеличивает диапазон оборотов, в котором турбо-режим будет эффективно работать. Все идет нормально. Кажется, что электронные турбины являются ответом на все отрицательные характеристики обычных турбокомпрессоров, однако есть некоторые недостатки.Большинство из них связано со стоимостью и сложностью, поскольку электродвигатель должен быть приспособлен и запитан, а также охлажден, чтобы предотвратить проблемы с надежностью.

    Модернизированные турбодизельные двигатели Toyota обеспечивают больший крутящий момент, большую эффективность и меньшие выбросы

    1. Дизельное топливо нового поколения с улучшенной теплоизоляцией

    Благодаря первому в мире применению технологии изоляции стен Thermo Swing Wall Insulation и применению армированного кремнеземом пористого анодированного алюминия (SiRPA) на поршнях потери охлаждения при сгорании снижаются примерно на 30 процентов.SiRPA — это материал с высокими изоляционными и рассеивающими свойствами, который легко нагревать и легко охлаждать.

    Форма порта, более подходящая для впуска воздуха, резко увеличивает количество воздуха, поступающего в цилиндры. Кроме того, новая форма поршневой камеры сгорания и система впрыска топлива с общей топливораспределительной рампой, которая обеспечивает более высокое давление и более совершенное управление давлением впрыска топлива, используются для оптимизации впрыска топлива в камеру сгорания. Это увеличивает потребление воздуха, обеспечивая высокую тепловую эффективность и низкие выбросы.

    Точный предварительный впрыск, соответствующий состоянию окружающего воздуха, происходит перед основным впрыском, чтобы сократить задержку воспламенения, обеспечивая стабильное сгорание даже в самых суровых условиях окружающей среды, обеспечивая при этом тихую работу и высокий тепловой КПД.

    1. Компактный высокоэффективный турбокомпрессор с изменяемой геометрией (собственного производства Toyota)

    Новый турбокомпрессор, используемый в двигателях GD, на 30 процентов меньше, чем его нынешний эквивалент, и оснащен недавно разработанной турбиной, которая повышает эффективность, и недавно разработанным рабочим колесом, которое обеспечивает мгновенный отклик на ускорение и обеспечивает максимальный крутящий момент в широком диапазоне оборотов в минуту.

    1. Toyota — первая система селективного каталитического восстановления карбамида (SCR)

    Использование запатентованной Toyota компактной системы селективного восстановления на основе мочевины с высокой дисперсией устраняет до 99 процентов выбросов NOx (оксида азота), одной из основных причин загрязнения воздуха. Это поможет транспортным средствам соответствовать стандартам Euro 6 и стандартам выбросов 2010 года, установленным Министерством земли, инфраструктуры и транспорта Японии.

    Двигатели KD, применяемые в настоящее время во всем мире, будут постепенно сокращаться и заменяться двигателями GD.К 2016 году производство достигнет примерно 700 000 единиц в год с выводом на рынок примерно на 90 рынках, а к 2020 году планируется расширить как минимум до 150 рынков.

    Toyota продолжит позиционировать дизельные двигатели как ключевой компонент модельного ряда двигателей Toyota, основываясь на философии предоставления подходящих автомобилей для нужных мест в нужное время. Вся группа Toyota, включая Toyota Industries Corporation, объединит свои усилия для разработки более чистых и более конкурентоспособных дизельных двигателей для самых разных типов транспортных средств с учетом различных потребностей людей во всем мире.

    Устранение влияния рейтинга на реакцию дизельного двигателя с турбонаддувом на JSTOR

    Абстрактный

    Хорошо известно, что реакция дизельных двигателей с турбонаддувом ухудшается по мере увеличения номинального среднего эффективного давления (BMEP) для данной максимальной выходной мощности. Это проблема для дизель-генераторных установок, но теперь она вызывает беспокойство и для двигателей транспортных средств, поскольку их номинальные характеристики растут. Цель статьи — представить компромисс между повышенным BMEP (рейтингом) и ответом, а также обрисовать методы улучшения реагирования.Сложное и подробное моделирование переходных процессов двигателя сначала проверяется на основе данных испытаний для двигателя с высоким BMEP, а затем используется для сравнения реакции 16, 12. 8, 6 и 4-цилиндровых производных того же 4-тактного дизельного двигателя, когда все они рассчитаны на ту же максимальную скорость и мощность. Таким образом, номинальная скорость BMEP увеличивается от атмосферного V16 (6,78 бар) до V12 с турбонаддувом. двигатели V8 и L6 с турбонаддувом и охлаждением наддувом до двухступенчатого L4 с турбонаддувом и охлаждением наддувом (27,1 бар).Время разгона этих двигателей сильно различается: 4-цилиндровому двигателю требуется в 2,4 раза больше времени для достижения максимальной скорости. Рассмотрены различные методы улучшения реакции, одни из которых хорошо известны, а другие — новы. Некоторые из них, такие как пониженная инерция и изменяемая геометрия, являются разработками, за которые несет ответственность производитель турбокомпрессора. Другие, такие как регулируемые фазы впрыска топлива или фазы газораспределения, могут быть разработаны производителем двигателя. Показано, что несколько вариантов развития могут существенно улучшить реакцию до тех пор, пока она не станет близкой к характеристикам двигателя без наддува, независимо от номинальной мощности двигателя.

    Информация об издателе

    SAE International — это глобальная ассоциация, объединяющая более 128 000 инженеров и технических экспертов в аэрокосмической, автомобильной и коммерческой промышленности. Основные направления деятельности SAE International — обучение на протяжении всей жизни и разработка добровольных согласованных стандартов. Благотворительным подразделением SAE International является SAE Foundation, который поддерживает множество программ, включая A World In Motion® и Collegiate Design Series.

    Как работает турбокомпрессор?

    Для получения дополнительной информации о том, как работает турбонагнетатель, вы можете прочитать более подробную информацию на этих других страницах ниже.

    Что такое турбокомпрессор?

    Проще говоря, турбокомпрессор — это своего рода воздушный насос, забирающий воздух с давлением окружающей среды (атмосферное давление), сжимающий до более высокого давления и пропускающий сжатый воздух в двигатель через впускные клапаны.

    В настоящее время турбины используются в основном в дизельных двигателях, но сейчас наблюдается переход к турбонаддувам в серийных бензиновых двигателях.

    Поскольку все двигатели зависят от воздуха и топлива, мы знаем, что увеличение любого из этих элементов в установленных пределах приведет к увеличению мощности двигателя, но если мы увеличим количество топлива, мы должны быть в состоянии сжечь его все.

    Для удовлетворения наших требований к мощности для этого требуется воздух; подача большего количества воздуха представляет гораздо больше проблем, чем заправка большего количества топлива. Воздух находится вокруг нас все время и находится под давлением (на уровне моря это давление составляет около 15 фунтов на квадратный дюйм). Именно это давление заставляет воздух поступать в цилиндры.

    Для увеличения расхода воздуха установлен воздушный насос (турбонагнетатель), в двигатель которого подается сжатый воздух.

    Этот воздух смешивается с впрыснутым топливом, позволяя топливу сгорать более эффективно, увеличивая выходную мощность двигателя.

    Еще одна сторона турбонаддува, которая может представлять интерес, — это двигатель, который регулярно работает на больших высотах, где воздух менее плотный и где турбонаддув восстанавливает большую часть потерянной мощности, вызванной падением давления воздуха.Мощность двигателя на высоте 8000 футов составляет всего 75% от его мощности на уровне моря.


    Как работает турбокомпрессор?

    Отработанные выхлопные газы двигателя используются для привода турбинного колеса, которое соединено валом с колесом компрессора. Компрессор или воздушное колесо всасывает воздух через воздушные фильтры и направляет его в двигатель.

    По мере того, как отработанные газы выводятся из двигателя, они направляются в турбину или горячее колесо турбонагнетателя и таким образом завершают цикл.


    1. Захват

    Горячие газы, образующиеся при сгорании, не выходят через выхлопную трубу, а направляются в турбонагнетатель. Цилиндры внутри двигателя внутреннего сгорания срабатывают последовательно (не все сразу), поэтому выхлопные газы выходят из камеры сгорания нерегулярными импульсами.

    Обычные турбокомпрессоры с одной спиралью направляют эти нерегулярные импульсы выхлопных газов в турбину таким образом, что они сталкиваются и мешают друг другу, уменьшая силу потока.В отличие от этого, турбонагнетатель с двойной спиралью собирает выхлопные газы из пар цилиндров в чередующейся последовательности.

    2. Отжим

    Выхлоп ударяет по лопаткам турбины, вращая их со скоростью до 150 000 об / мин. Чередующиеся импульсы выхлопа помогают устранить турбо-лаг.

    3. Вентиляционное отверстие

    Выполнив свое предназначение, выхлопные газы проходят через выпускное отверстие в каталитический нейтрализатор, где они очищаются от
    монооксида углерода, оксидов азота и других загрязняющих веществ перед выходом через выхлопную трубу.

    4.

    Ответить

    Ваш адрес email не будет опубликован. Обязательные поля помечены *